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Abstract
The relationship between aldehyde exposure and metabolic syndrome is unclear; hence, we aimed to investigate the asso-
ciation between serum aldehyde concentrations and metabolic syndrome. We analyzed the data of 1471 participants from 
the National Health and Nutrition Examination Survey enrolled from 2013 to 2014. The association of serum aldehyde 
concentrations with metabolic syndrome was assessed via generalized linear models as well as restricted cubic splines, and 
endpoint events were further analyzed. After adjusting for covariates, both moderate (odds ratio [OR] = 2.73, 95% confidence 
interval [CI]: 1.34–5.56) and high (OR = 2.08, 95% CI: 1.06–4.07) concentrations of isovaleraldehyde were associated with 
the risk of metabolic syndrome. Interestingly, although a moderate concentration of valeraldehyde was associated with the 
risk of metabolic syndrome (OR = 1.08, 95% CI: 0.70–1.65), a high concentration was not (OR = 0.55, 95% CI: 0.17–1.79). 
Restricted cubic splines revealed a non-linear association between valeraldehyde and metabolic syndrome, and threshold 
effect analysis revealed that the inflection point for valeraldehyde concentration was 0.7 ng/mL. The results of the sub-
group analysis revealed differences in the relationship of aldehyde exposure with components of metabolic syndrome. High 
isovaleraldehyde concentrations may increase the risk of metabolic syndrome, and valeraldehyde demonstrated a J-shaped 
relationship with the risk of metabolic syndrome.
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exposure

Introduction

Metabolic syndrome (MetS) involves a set of disorders, 
including but not limited to central obesity, insulin resist-
ance, dyslipidemia, and hypertension. MetS is a critical risk 
factor contributing to the high morbidity rates of cardiovas-
cular diseases, type 2 diabetes mellitus (DM), and cancer 

worldwide Aguilar et al. 2015. The prevalence of MetS in 
the USA, among adults aged 20 years or above, was 34% 
from 1999 to 2006, 33% from 2007 to 2012, and 34.7% 
from 2011 to 2016 (Buzzetti et al. 2016; Camacho et al. 
2015; Dinkova-Kostova et al. 2002). Although the over-
all prevalence did not rise significantly, it is worth noting 
that an increase in prevalence was observed among adults 
aged 20–39 years, from 16.2% in 2011–2012 to 21.3% in 
2015–2016. Among adults aged at least 60 years, the preva-
lence was 48.6% from 2011 to 2016, which was much higher 
than the 19.5% prevalence among adults aged 20–39 years 
in the same period Dinkova-Kostova et al. 2002. In view of 
the increasing size and age of the global population, MetS 
has become a public health problem worthy of attention.

MetS has a complex pathology. Previous studies have 
identified poor lifestyles and genetic susceptibility as major 
etiological factors Furukawa et al. 2004. Mounting evidence 
suggests that environmental factors, such as smoking and 
exposure to polycyclic aromatic hydrocarbons González 2022, 
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ambient particulate matter Grundy 2016, persistent organic 
pollutants Grundy et al. 2005, heavy metals Haque and Ansari 
2019, pesticides Hirode and Wong 2020, and noise Hotamis-
ligil 2006, may also contribute to the development of MetS.

Aldehydes are abundant in the environment and are closely 
related to people’s health. Sources of human aldehyde expo-
sure include air pollution, smoking (both tobacco cigarettes 
and e-cigarettes), pyrolysis of organic matter, paints, food 
additives, alcohol consumption, water disinfection byproducts 
formed via ozonation, cosmetics, hand sanitizers, and endoge-
nous processes (Hutcheson and Rocic 2012; Kopp et al. 2003). 
Different aldehydes appear to have distinct effects on human 
health. Some aldehydes are reportedly harmful, for example, 
formaldehyde, crotonaldehyde, and hexanal, which are toxic 
and carcinogenic (Lamat et al. 2022; Li et al. 2015); others, 
such as cuminaldehyde and cinnamaldehyde, are beneficial 
and protective against obesity, hyperglycemic states, and non-
alcoholic fatty liver disease (Liao et al. 2020a, b), factors com-
monly associated with MetS. However, in the few studies con-
ducted on the direct relationship between aldehyde exposure 
and MetS, malondialdehyde levels were significantly elevated 
in the blood of patients with MetS, and higher plasma malond-
ialdehyde levels were linked with a higher prevalence of MetS 
(McMahon et al. 2010; Moreto et al. 2014), but the underlying 
mechanism and causal relationship between malondialdehyde 
and MetS are not fully understood. Moreover, it is unknown 
whether other aldehydes have such an effect on MetS.

Oxidative stress and inflammation are thought to be the 
important mechanisms involved in the development of MetS. 
An endogenous aldehyde, 4-hydroxy-trans-2-nonenal (HNE), 
triggered by lipid peroxidation, plays a complex role in the 
regulation of the oxidative stress cascade and inflammatory 
response Mozumdar and Liguori 2011. The inhibitory effects 
of cuminaldehyde on non-alcoholic fatty liver disease and 
obesity are achieved via the alleviation of hepatic oxidative 
damage and hyperlipidemia Liao et al. 2020b. The above 
indicates that aldehydes might act as regulators of oxidative 
stress and inflammation and be involved in the pathogenesis 
of MetS. However, the possible association between alde-
hydes and MetS warrants further investigation. Hence, with 
this study, we aimed to explore the potential relationship 
between serum aldehyde levels and MetS based on data from 
the United States National Health and Nutrition Examination 
Survey collected from 2013 to 2014.

Methods

Study design and participants

The National Health and Nutrition Examination Survey is a 
large-scale, multi-stage, nationally representative survey of 
the ambulatory population in the USA, designed to assess 

participants’ health and nutritional status. Interview data, 
physical examination data, and laboratory results are col-
lected simultaneously and published every 2 years. All data 
and materials are publicly available on the National Center 
for Health Statistics website (https:// www. cdc. gov/ nchs/ 
nhanes/ index. htm). Ethical approval was obtained from the 
National Center for Health Statistics Ethics Review Board, 
and all procedures were performed in accordance with the 
standards of the Declaration of Helsinki.

This continuous cross-sectional study initially included 
10,175 participants enrolled from 2013 to 2014, who were 
aged ≥ 18 years and for whom data on aldehyde exposure 
were available in the National Health and Nutrition Exami-
nation Survey database. We excluded participants for whom 
data on the primary and secondary endpoints of this study 
were missing, to avoid an offset caused by data interpola-
tion. We further excluded participants for whom data on 
aldehyde exposure were missing. The final analytical cohort 
contained 1471 participants. The entire data integration pro-
cess is illustrated in Fig. 1.

Measurement and evaluation of aldehydes

The serum levels of 12 aldehydes were determined by auto-
mated solid-phase microextraction gas chromatography and 
high-resolution mass spectrometry through selected ion 
mass detection and isotope dilution techniques Hutcheson 
and Rocic 2012. The limits of detection of the serum alde-
hydes are listed in Online Resource 1. We analyzed alde-
hydes with more than 75% detection frequency, including 
crotonaldehyde, formaldehyde, propionaldehyde, butyralde-
hyde, valeraldehyde, and isovaleraldehyde.

Definitions of study outcomes and variables

Definitions of primary endpoint events were established 
according to the National Cholesterol Education Pro-
gram’s Adult Treatment Panel III criteria for MetS Ning 
et al. 2021. MetS was diagnosed if three or more of the 
following conditions were present: high waist circum-
ference (men: ≥ 102  cm, women: ≥ 88  cm), low levels 
of high-density lipoprotein cholesterol (men: < 40  mg/
dL, women: < 50  mg/dL), elevated levels of triglycer-
ides (≥ 150 mg/dL), dysglycemia (fasting blood glucose 
level: ≥ 110 mg/dL), high blood pressure (≥ 130/85 mmHg 
or using antihypertensive drugs). The secondary endpoints 
were a body mass index (BMI) > 30 kg/m2, hypertension, 
hyperlipidemia, and DM. Patients were considered hyper-
tensive if they were diagnosed with hypertension by a physi-
cian, they were using antihypertensive medication, or their 
blood pressure was > 140/90 mmHg. Patients were diag-
nosed with DM if they had an elevated blood glucose level 
(≥ 200 mg/dL according to the 2-h oral glucose tolerance 

https://www.cdc.gov/nchs/nhanes/index.htm
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test), a fasting glucose level ≥ 126 mg/dL, a random blood 
glucose level ≥ 200 mg/dL, and/or a glycated hemoglobin 
level > 6.5%, DM was diagnosed by a physician, and/or they 
were using diabetes medication or insulin. Dyslipidemia 
was defined as a triglyceride level > 150 mg/dL, low-den-
sity lipoprotein level > 130 mg/dL, high-density lipoprotein 
level < 40 mg/dL, total cholesterol level > 150 mg/dL, or the 
use of ester-lowering drugs.

Covariates

Covariates that might be associated with aldehyde exposure 
and MetS were selected based on previous studies (O'Brien 
et al. 2005; O'Neill and O'Driscoll 2015; Park et al. 2013; 
Rkhaya et al. 2018): age, sex, race/ethnicity (Mexican Amer-
ican, other Hispanic, non-Hispanic white, non-Hispanic 
black, and other races), educational level (lower than 9th 
grade, 9th to 11th grade, high school graduate, some col-
lege or AA degree, college graduate or above), BMI, waist 
circumference, energy intake, physical activity, routine 

blood test results, biochemical examination results of blood 
components, smoking habit (never, former, current), and 
alcohol use (current heavy alcohol user: ≥ 3 drinks per day 
for women, ≥ 4 drinks per day for men, or binge drinking 
for ≥ 5 days per month; current moderate alcohol user: ≥ 2 
drinks per day for women, ≥ 3 drinks per day for men, or 
binge drinking for ≥ 2 days per month; current mild alcohol 
user: patients who did not meet the aforementioned crite-
ria). In addition, the dietary inflammatory index, which is 
considered an important factor in MetS, was also included 
in our study.

Statistical analyses

Continuous variables are expressed as means (standard 
deviations) or medians (quartiles) and categorical variables 
as numbers (percentages). Comparisons between groups 
of continuous variables, depending on normality and chi-
squaredness, were performed via Welch’s t-test, Student’s 
t-test, and the Mann–Whitney U test. Comparisons of rates 

Fig. 1  Flow chart of the study. 
NHANES, National Health and 
Nutrition Examination Survey
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Table 1  Characteristics of the participants

Basic information Total No metabolic syndrome Metabolic syndrome P

Sex (n, %) 1471 1287 184 0.99
Male 733 (49.8) 641 (49.8) 92 (50.0)
Female 738 (50.2) 646 (50.2) 92 (50.0)
Age (years) 43 ± 19 43 ± 19 45 ± 22  < 0.0001
BMI (kg/m2) 28.3 ± 7.10 28.1 ± 6.95 30.0 ± 7.63 0.04
Waist circumference (cm) 97.1 ± 17.6 96.3 ± 17.0 102 ± 20.1 0.001
Race (n, %) 0.21

  White 580 (39.4) 512 (39.8) 68 (37)
  Black 290 (19.7) 248 (19.3) 42 (22.8)
  Mexican 256 (17.4) 216 (16.8) 40 (21.7)
  Other Hispanic 145 (9.9) 131 (10.2) 14 (7.6)
  Other race 200 (13.6) 180 (14.0) 20 (10.9)

Smoking status (n, %) 0.784
  Never 592 (40.2) 534 (41.5) 58 (31.5)
  Former 229 (15.6) 206 (16.0) 23 (12.5)
  Current 488 (33.2) 434 (33.7) 54 (29.3)
  Unknown 162 (11.0) 113 (8.8) 49 (26.6)

Drinking (n, %)  < 0.0001
  Mild 373 (25.4) 333 (25.9) 40 (21.7)
  Moderate 247 (16.8) 225 (17.5) 22 (12.0)
  Heavy 256 (17.4) 238 (18.5) 18 (9.8)
  Unknown 595 (40.4) 491 (38.2) 104 (56.5)

Educational level (n, %)  < 0.0001
  Lower than 9th grade 201 (13.7) 147 (11.5) 53 (28.8)
  9-11th grade 287 (19.5) 243 (18.9) 44 (23.9)
  High school graduate 303 (20.6) 271 (21.1) 32 (17.4)
  Some college or AA degree 407 (27.7) 372 (28.9) 35 (19)
  College graduate or above 273 (18.6) 253 (19.7) 20 (10.9)

Laboratory tests
  WBC (×  109/L) 7.43 ± 2.29 7.42 ± 2.29 7.47 ± 2.35 0.204
  RBC (×  1012/L) 4.69 ± 0.463 4.68 ± 0.465 4.75 ± 0.446 0.665
  Hb (mg/dL) 14.1 ± 1.51 14.1 ± 1.50 14.1 ± 1.62 0.255
  PLT (×  109/L) 240 ± 60.1 240 ± 58.8 240 ± 68.3 0.152
  Alt (U/L) 24.7 ± 22.6 24.4 ± 22.9 26.9 ± 19.7 0.273
  Ast (U/L) 25.4 ± 16.4 25.0 ± 16.1 28.3 ± 18.3 0.012
  HbA1c (%) 5.63 ± 0.912 5.54 ± 0.765 6.28 ± 1.45  < 0.0001
  HDL (mmol/L) 1.34 ± 0.398 1.38 ± 0.398 1.10 ± 0.309 0.002
  LDL (mmol/L) 2.78 ± 0.885 2.83 ± 0.882 2.49 ± 0.848 0.319

Exercise and diet
  Physical activity 2100 (840–5410) 2080 (840–5450) 2340 (720–5250) 0.970
  MET: recreational activity 1080 (540–2160) 1090 (540–2160) 1000 (520–2580) 0.773
  MET: work activity 2880 (840–7680) 3000 (915–7620) 2640 (780–9660) 0.906
  MET: walking and bicycle use 600 (280–1680) 670 (285–1680) 420 (200–930) 0.046
  Energy (kcal) 2035 ± 857 2067 ± 887 1804 ± 660 0.002
  Protein (g/d) 79.5 ± 36.5 80.4 ± 37.7 73.2 ± 29.9 0.050
  Carbohydrate (g/d) 247 ± 110 250 ± 114 221 ± 81 0.002
  Total sugars (g/d) 110 ± 68 112 ± 70 97 ± 52 0.023
  Dietary fiber (g/d) 15.9 ± 8.49 16.1 ± 8.63 14.3 ± 7.21 0.001
  Total fat (g/d) 77.4 ± 38.1 78.5 ± 38.6 69.5 ± 33.8 0.158
  Dietary inflammatory index 1.024 ± 1.715 0.983 ± 1.71 1.313 ± 1.5 0.030
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between the two groups were performed via the chi-square 
and Kruskal–Wallis H test for nominal and ordinal data, 
respectively.

Aldehydes were categorized into tertile groups, with those 
in the lowest tertile serving as the reference group. Logistic 
regression analysis was performed to assess the association 
between aldehyde exposure and MetS. The stability of the 
results was verified by including different combinations of 
the variables: model 1 (adjusted for age, sex, race, physical 
activity, and smoking status), model 2 (adjusted for age, sex, 
race, physical activity, smoking status, educational level, and 
alcohol use), and model 3 (adjusted for age, sex, race, physi-
cal activity, smoking status, educational level, alcohol use, 
DM, hypertension, hyperlipidemia, and BMI). The interaction 
between each type of aldehyde and the secondary endpoint 
event was analyzed, and sensitivity analysis was performed 
for each subgroup. Trend tests across exposure groups were 
performed by entering the categorical variables as continuous 
terms into the logistic model.

Restricted cubic splines (with nodes at the 5th, 35th, 65th, 
and 95th percentiles) were used to determine whether there 
was potential nonlinearity between aldehydes and MetS. If a 
nonlinear relationship was detected, a two-segment logistic 
regression model was applied to determine the correspond-
ing inflection point, and the superiority of the segmented 
model over the single-segment model was verified via the 

likelihood ratio test. If the relationship was linear, the logis-
tic model was used to determine the correlation. All statisti-
cal analyses were performed using the R software (version 
4.2.0), and two-sided p-values < 0.05 indicated statistical 
significance.

Results

Demographic characteristics

Table 1 summarizes the baseline characteristics of alde-
hyde-exposed participants. A total of 1471 participants 
were included in this study, among whom the overall 
prevalence of MetS was 12.5%. Healthy participants were 
typically younger, had a lower BMI, glycated hemoglobin 
level, dietary inflammatory index, and co-occurrence of 
chronic diseases, and had a higher high-density lipopro-
tein level, energy intake, severity of alcohol abuse, and 
educational attainment than did patients with MetS. No 
statistically significant differences were observed between 
the groups for the other variables. Table 2 reveals that 
there were no significant differences in the proportions of 
the six aldehydes between the MetS and no-MetS groups, 
with a minimum missing data proportion of 19.5% and a 
maximum of 25.0%.

Table 1  (continued)

Basic information Total No metabolic syndrome Metabolic syndrome P

Disease history (n, %)
  Diabetes mellitus 220 (15) 140 (10.9) 80 (43.5)  < 0.0001
  Hypertension 513 (34.9) 411 (31.9) 102 (55.4)  < 0.0001
  Hyperlipidemia 935 (63.6) 789 (61.3) 146 (79.3)  < 0.0001

Data are presented as mean (SD), median (interquartile range), or n (%). BMI, body mass index; Alt, alanine transaminase; Ast, aspartate 
aminotransferase; HbA1c, glycated hemoglobin type A1C; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MET, metabolic 
equivalent; WBC, white blood cell; RBC, red blood cell; PLT, platelets; Hb, hemoglobin

Table 2  Serum concentrations (ng/mL) of six aldehydes quantified in the study sample

Data are presented as medians (interquartile ranges)

Aldehydes Total (ng/mL) No-metabolic syn-
drome (ng/mL)

Metabolic syndrome (ng/mL) P n (%) Missing data (%)

n = 1471 n = 1287 n = 184

Crotonaldehyde 0.104 (0.104–0.176) 0.104 (0.104–0.176) 0.104 (0.104–0.178) 0.841 2087 (75.5) 677 (24.5)
Formaldehyde 136 (124–143) 136 (124–149) 136 (126–148) 0.462 2224 (80.5) 540 (19.5)
Propionaldehyde 2.03 (1.54–2.59) 2.03 (1.54–2.60) 1.94 (1.53–2.49) 0.328 2063 (75) 701 (25)
Butyraldehyde 0.538 (0.374–0.705) 0.532 (0.370–0.704) 0.556 (0.421–0.705) 0.258 2085 (75.4) 679 (24.6)
Valeraldehyde 0.223 (0.223–0.402) 0.223 (0.223–0.402) 0.223 (0.223–0.392) 0.851 2108 (76.3) 656 (23.7)
Isovaleraldehyde 0.471 (0.323–0.922) 0.474 (0.326–0.930) 0.455 (0.295–0.846) 0.127 2155 (78.0) 609 (22)
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Relationship between aldehyde levels and primary 
endpoint events

In the fully adjusted model, the 95% confidence intervals 
(CIs) and odds ratios (ORs) for MetS in the second and 
third tertiles, respectively, compared with the lowest ter-
tiles group were 1.14 (0.74–1.76) and 5.98 (1.78–20.16) for 
crotonaldehyde; 0.74 (0.45–1.20) and 0.76 (0.47–1.20) for 
formaldehyde; 1.77 (1.04–3.00) and 1.30 (0.77–2.19) for 
propionaldehyde; 0.92 (0.56–1.51) and 1.04 (0.65–1.68) for 
butyraldehyde; 1.08 (0.70–1.65) and 0.55 (0.17–1.79) for 
valeraldehyde; and 2.73 (1.34–5.56) and 2.08 (1.06–4.07) 
for isovaleraldehyde. Isovaleraldehyde was associated with 
the development of MetS as indicated by the trend test 
(p = 0.003, 0.036, and 0.008 in models 1, 2, and 3, respec-
tively). The same was true for moderate propionaldehyde 
exposure (p for trend = 0.009, 0.038, and 0.034 in models 
1, 2, and 3, respectively). Further details are presented in 

Table 3. The association between valeraldehyde and MetS 
was nonlinear (test for nonlinearity, p = 0.047). However, no 
nonlinear relation was observed for the other five aldehydes 
(Online Resource 2). Restricted cubic spline plots revealed 
a J-shaped association between valeraldehyde and MetS, and 
we further performed smoothed curve fitting with threshold 
effect analysis. The inflection point of valeraldehyde was 
0.7 ng/mL. In addition, we present the relationship between 
exposure to the six major aldehydes and MetS, adjusted for 
covariates, in Fig. 2.

Relationship between aldehyde levels 
and secondary endpoint events

The association between aldehyde levels and four common 
components of MetS (hypertension, hyperglycemia, hyper-
lipidemia, and BMI ≥ 30 kg/m2) was analyzed (Table 4). 
After adjusting for covariates, we discovered that a moderate 

Table 3  Adjusted odds ratios for associations between aldehydes and the prevalence of metabolic syndrome

Model 1 was adjusted for age, sex, race, physical activity, and smoking status
Model 2 was adjusted for age, sex, race, physical activity, smoking status, educational level, and alcohol use
Model 3 was adjusted for age, sex, race, physical activity, smoking status, educational level, alcohol use, diabetes mellitus, hypertension, hyper-
lipidemia, and body mass index
OR: odds ratio, CI: confidence interval, Q: quantile

Model 1 p P-trend Model 2 p P-trend Model 3 p P-trend
OR (95% CI) OR (95% CI) OR (95% CI)

Crotonaldehyde 0.606 0.598 0.647
Q1 1 1 1
Q2 1.15 (0.77–1.71) 0.502 1.16 (0.77–1.74) 0.479 1.14 (0.74–1.76) 0.549
Q3 4.46 (1.57–12.66) 0.005 5.92 (1.96–17.89) 0.002 5.98 (1.78–20.16) 0.004
Formaldehyde 0.256 0.231 0.209
Q1 1 1 1
Q2 0.78 (0.50–1.21) 0.260 0.77 (0.49–1.20) 0.242 0.74 (0.45–1.20) 0.219
Q3 0.83 (0.53–1.30) 0.390 0.77 (0.49–1.20) 0.246 0.76 (0.47–1.20) 0.258
Propionaldehyde 0.009 0.038 0.034
Q1 1 1 1
Q2 1.91 (1.18–3.09) 0.009 1.67 (1.02–2.74) 0.042 1.77 (1.04–3.00) 0.036
Q3 1.46 (0.90–2.36) 0.127 1.24 (0.76–2.04) 0.386 1.30 (0.77–2.19) 0.328
Butyraldehyde 0.810 0.572 0.75
Q1 1 1 1
Q2 0.94 (0.60–1.49) 0.800 0.87 (0.55–1.39) 0.570 0.92 (0.56–1.51) 0.743
Q3 1.04 (0.68–1.60) 0.860 0.99 (0.64–1.55) 0.980 1.04 (0.65–1.68) 0.868
Valeraldehyde 0.504 0.829 0.672
Q1 1 1 1
Q2 1.14 (0.77–1.67) 0.522 1.04 (0.70–1.54) 0.855 1.08 (0.70–1.65) 0.729
Q3 0.84 (0.28–2.46) 0.743 0.76 (0.25–2.29) 0.622 0.55 (0.17–1.79) 0.320
Isovaleraldehyde 0.003 0.036 0.008
Q1 1 1 1
Q2 2.87 (1.52–5.41) 0.001 2.26 (1.18–4.35) 0.015 2.73 (1.34–5.56) 0.006
Q3 2.29 (1.28–4.11) 0.005 2.11 (1.14–3.90) 0.017 2.08 (1.06–4.07) 0.033
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concentration of propionaldehyde was negatively associ-
ated with the risk of developing hyperlipidemia, but not 
the lowest concentration (OR = 0.62, 95% CI: 0.45–0.87, p 
for trend = 0.004). Similarly, a moderate concentration of 
serum isovaleraldehyde was negatively associated with the 
risk of hyperlipidemia (OR = 0.59, 95% CI: 0.38–0.90, p 
for trend = 0.017), but not a high concentration (OR = 0.71, 
95% CI: 0.48–1.07, p for trend = 0.017). None of the other 
aldehydes were associated with any components of MetS.

Subgroup analysis

The subgroup analysis showed significant interactions 
between isovaleraldehyde and obesity, hyperglycemia, 
hypertension, and hyperlipidemia, with the overall benefits 
of altering blood aldehyde concentrations after fully adjust-
ing for variables being 0.51 (0.31–0.82) in the non-obese, 
0.61 (0.40–0.94) in the non-hypertensive, 0.38 (0.19–0.76) 
in the non-hyperlipidemic, and 0.46 (0.31–0.69) in the non-
diabetic populations, which was consistent across models for 
most of the components (p < 0.05 for all three models, except 
for hypertension in model 1). In addition, strong interac-
tions were observed between valeraldehyde and obesity and 
DM. However, these results were not stable in the sensitiv-
ity analysis; for example, for the diabetic population, dif-
ferent results were reported when different covariates were 

included (p = 0.043, 0.099, and 0.058 in models 1, 2, and 3, 
respectively). No statistically significant associations were 
observed for the other strata (Fig. 3).

Discussion

The pathogenesis of MetS is not fully understood. Few stud-
ies have been conducted on the relationship between alde-
hyde exposure and the MetS risk. To our knowledge, this is 
one of the first studies to explore the association between 
levels of individual serum aldehydes and MetS and its sub-
types. After adjusting for several variables, including age, 
sex, race, physical activity, smoking habit, educational level, 
alcohol use, DM, hypertension, hyperlipidemia, and BMI, 
isovaleraldehyde was associated with the development of 
MetS as shown by the trend test. Interestingly, a J-shaped 
relationship was observed between valeraldehyde exposure 
and MetS based on the segmented model, with an inflection 
point of 0.7 ng/mL, which was not observed for the other 
five aldehydes.

The mechanisms leading to the development of MetS 
are complex; however, oxidative stress and inflammatory 
responses are the leading causes (Selcuk et al. 2012; Silva 
et al. 2018). Obesity and insulin resistance lead to elevated 
levels of systemic oxidative stress in patients with MetS. 
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Fig. 2  Restricted cubic splines for the association between alde-
hyde exposure and metabolic syndrome, adjusted for the confound-
ers hypertension, hyperlipidemia, hyperglycemia, body mass index, 
waist circumference, energy use, dietary inflammatory index, high-
density lipoprotein level, aspartate aminotransferase level, educa-
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d butyraldehyde, e valeraldehyde, and f isovaleraldehyde. RCS, 
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Increased oxidative stress caused by accumulated fat, accom-
panied by an augmented expression of NADPH oxidase and 
decreased expression of antioxidative enzymes (causing dys-
regulation of plasminogen activator inhibitor-1, TNF-α, resis-
tin, leptin, adiponectin, and other adipocytokines), promotes 
the development of MetS Sinharoy et al. 2019. Systemic oxi-
dative stress further activates the downstream inflammatory 
cascade, significantly increasing levels of inflammatory mark-
ers, such as IL6, CRP, and TNF-α Sonowal and Ramana 2019. 
Persistent chronic inflammation exacerbates the progression 
of cardiovascular diseases and DM Timucin and Basaga 2017. 
Several studies have demonstrated a relationship between 
aldehyde levels and oxidative stress and inflammation. In 
a state of insulin resistance, acetaldehyde levels in smooth 
muscle cells may be upregulated, which induces oxidative 

stress and promotes vasoconstriction, leading to hypertension, 
whereas the inhibition of acetaldehyde accumulation may pre-
vent hypertension Vasdev et al. 2004. Furthermore, in rats, 
cuminaldehyde reportedly improves high-fat diet-induced 
non-alcoholic fatty liver disease, a key component of MetS, 
by lowering oxidative stress and hyperlipidemia (Liao et al. 
2020b; Weng et al. 2022). HNE, the most abundant and toxic 
lipid peroxidation end product, reportedly regulates both oxi-
dative stress and inflammation. It induces cellular antioxidant 
defense via the KEAP1-Nrf2 signaling pathway (Mozumdar 
and Liguori 2011; Xu et al. 2021; Xue et al. 2008). Inter-
estingly, HNE can either activate or inhibit NFκB signaling 
to regulate various proinflammatory pathways in a concen-
tration-dependent manner; a low concentration can activate 
NFκB, while a high concentration acts as an inhibitor thereof 

Table 4  Multivariable 
associations of selected 
aldehydes with secondary 
endpoint events

The model was adjusted for age, sex, race, physical activity, smoking status, educational level, and alcohol 
use
OR, odds ratio; CI, confidence interval; BMI, body mass index; Q, quantile

Hypertension Diabetes mellitus Hyperlipidemia BMI ≥ 30 kg/m2

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Crotonaldehyde
  Q1 1 1 1 1
  Q2 1.13 (0.83–1.54) 0.83 (0.56–1.22) 0.96 (0.73–1.26) 0.86 (0.66–1.14)
  Q3 1.44 (0.40–4.70) 2.09 (0.58–7.54) 1.12 (0.39–3.18) 1.21 (0.45–3.23)
  p for trend 0.450 0.308 0.769 0.283

Formaldehyde
  Q1 1 1 1 1
  Q2 1.05 (0.74–1.48) 1.04 (0.67–1.64) 1.06 (0.78–1.44) 1.18 (0.86–1.61)
  Q3 1.08 (0.76–1.53) 0.95 (0.61–1.50) 1.23 (0.90–1.68) 1.04 (0.76–1.43)
  p for trend 0.797 0.859 0.719 0.307

Propionaldehyde
  Q1 1 1 1 1
  Q2 0.87 (0.60–1.26) 1.23 (0.76–1.99) 0.62 (0.45–0.87) 1.03 (0.74–1.43)
  Q3 0.77 (0.54–1.11) 0.96 (0.60–1.54) 0.94 (0.68–1.30) 0.88 (0.64–1.23)
  p for trend 0.451 0.403 0.004 0.817

Butyraldehyde
  Q1 1 1 1 1
  Q2 0.93 (0.65–1.33) 0.78 (0.49–1.25) 0.84 (0.61–1.15) 0.79 (0.57–1.09)
  Q3 0.88 (0.62–1.23) 1.02 (0.66–1.57) 0.81 (0.60–1.11) 0.97 (0.71–1.31)
  p for trend 0.677 0.315 0.270 0.154

Valeraldehyde
  Q1 1 1 1 1
  Q2 0.93 (0.68–1.26) 1.03 (0.69–1.53) 0.86 (0.65–1.12) 0.99 (0.75–1.30)
  Q3 1.41 (0.64–3.11) 1.65 (0.69–3.96) 1.06 (0.51–2.17) 0.80 (0.38–1.65)
  p for trend 0.583 0.965 0.253 0.964

Isovaleraldehyde
  Q1 1 1 1 1
  Q2 1.12 (0.69–1.81) 0.69 (0.36–1.32) 0.59 (0.38–0.90) 0.97 (0.64–1.49)
  Q3 1.15 (0.74–1.79) 1.48 (0.85–2.59) 0.71 (0.48–1.07) 1.03 (0.69–1.54)
  p for trend 0.714 0.095 0.017 0.840
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(Mozumdar and Liguori 2011; Zhang et al. 2020; Zhang 
et al. 2021; Zhu et al. 2022). In this study, we discovered that 
isovaleraldehyde and valeraldehyde were closely associated 
with MetS, likely related to the regulation of oxidative stress 
and inflammation. However, our results need to be validated 
in further animal experiments.

In this study, isovaleraldehyde was inversely associated 
with MetS and valeraldehyde displayed a J-shaped relation-
ship with MetS, which suggests that a higher serum concen-
tration of isovaleraldehyde may be protective against MetS, 
and a low dose (less than 0.7 ng/mL) may also have ben-
eficial effects. As these two aldehydes are not known to be 
teratogenic, carcinogenic, or potentially harmful to human 
beings at such a concentration, they may provide promising 
avenues for the treatment of MetS.

Few large studies have been conducted to explore the 
relationship between aldehyde exposure and MetS. Nota-
bly, recent population-based studies revealed that benzalde-
hyde and isopentanaldehyde are strongly related to obesity 
and cardiovascular diseases, highlighting the crucial role 
of aldehyde exposure for metabolic regulation in humans 
(O'Brien et al. 2005; O'Neill and O'Driscoll 2015). How-
ever, those studies did not further elucidate the underlying 
association between aldehydes and MetS. This is, to our 
knowledge, the first large-scale, nationwide population 
database study in which the relationship between aldehyde 
exposure and MetS was examined. We improved the accu-
racy and reliability of the results by excluding aldehydes for 
which more than 25% of the data were missing. Multiple 

adjustments on the data were performed, and different mod-
els were established to analyze potential relationships, both 
qualitatively and quantitatively. However, this study also 
has some limitations. First, aldehydes are known to have 
a wide range of sources. The serum aldehyde data that we 
used in this study reflect the overall exposure of each alde-
hyde and cannot be used to accurately distinguish between 
exogenous and endogenous sources. Second, the cross-
sectional study design prevented the exclusion of reverse 
causality. Therefore, in the future, a longitudinal study is 
required to overcome this limitation. Third, the biological 
effects (the underlying mechanism) of valeraldehyde and 
isovaleraldehyde on the development of MetS need to be 
further validated through animal experiments. Fourth, the 
participants in this study were from a single geographical 
location; thus, the generalizability of the conclusions to 
other populations remains to be confirmed. For a better 
understanding of the effect of aldehyde exposure on human 
health and homeostasis, the normal serum concentration 
ranges of different aldehydes need to be established.

Conclusions

Isovaleraldehyde and valeraldehyde concentrations are 
associated with MetS, with the latter having a J-shaped 
relationship. Further studies are necessary to clarify cau-
sality and reveal potential underlying mechanisms of 
action.
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