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Abstract

Effective immune responses require antigen presentation by major histocompatibility complexes 

(MHC) with cognate TCR and antigen-independent costimulatory signaling for T cell activation, 

proliferation, and differentiation. Among several costimulatory signals, CD40-CD40L is of special 

interest to the transplantation community as it plays a vital role in controlling or regulating 

humoral and cellular immunity. Blockade of this pathway has demonstrated inhibition of donor-

reactive T cell responses and prolonged the survival of transplanted organs. Several anti-CD154 

and anti-CD40 antibodies have been used in the transplantation model and demonstrated the 

potential of extending allograft and xenograft rejection-free survival. The wide use of anti-CD154 

antibodies was hampered due to thromboembolic (TE) complications in transplant recipients. 

These antibodies have been modified to overcome the TE complications by altering the antibody 

binding fragment (Fab) and Fc (Fragment, crystallizable) receptor region for therapeutic purposes. 

Here, we review recent preclinical advances to target the CD40-CD40L pair in transplantation.

Introduction:

Co-stimulation blockade has been shown as an effective way to suppress the immune 

response in transplantation against donor antigens and prolong graft survival. Several 

costimulatory (e.g., CD28:CD80/CD86, CTLA: CD80/CD86 and CD40: CD40L (CD154)) 

pathways play a pivotal role in transplantation. The CD40/CD40L co-stimulation pathway is 

among the most promising therapeutic targets in transplantation. Blockade of this pathway 

by anti-CD154 (MR-1) and anti-CD154 (5-C8) antibodies has prolonged graft survival and 

induced tolerance in mice and nonhuman primates (NHPs).1–7 Anti-CD154 antibodies have 

demonstrated therapeutic potential, but thromboembolic (TE) complications have been seen 

during preclinical and clinical testing; therefore, further use of unmodified antibodies has 

stopped.8,9 Lately, anti-CD40 antibodies, due to lack of TE potential, have been preferred 

in experimental transplantation as they inhibit the same costimulation pathway. Prolonged 

graft survival in NHP models has been reported.10–14 Since the potential of CD40/CD40L 
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costimulatory blockade by anti-CD40 and CD154 antibodies has been recognized, many 

clinically viable antibodies targeting this pathway have been produced for transplantation 

over the last 20 years. In this review, we discuss newer agents undergoing clinical trials 

to interrupt CD40/CD40L interactions in transplantation to prolong graft survival. Despite 

excellent results of significantly prolonging graft survival, none of these antibodies have 

reached clinical approval yet.

CD40/CD40L Pathway

CD40/CD40L is a member of the TNFR/TNF (tumor necrosis factor receptor/tumor necrosis 

factor) superfamily and is crucial for the functional activation of B cells and dendritic cells 

(DCs). CD154 (CD40L) is expressed mainly on activated T and B cells and platelets; 

its expression can be induced on monocytic cells, natural killer cells, mast cells, and 

basophils15. CD154 is involved in selecting T-cell clones during the negative selection 

process in the thymus and thereby shapes the peripheral TCR repertoire. However, CD40 

is expressed on B cells along with other cells, e.g., dendritic cells (DCs), monocytes, 

platelets, and macrophages, as well as by nonhematopoietic cells such as myofibroblasts, 

fibroblasts, epithelial, and endothelial cells.16,17 Mechanistically, the interaction of CD40 of 

B cells with its ligand CD154 on T cells promotes B cell proliferation, immunoglobulin (Ig) 

production, isotype switching, and somatic hypermutation (SHM) of the immunoglobulin. 

This enhances Ig affinity for antigens and the formation of long-lived plasma cells and 

memory B cells.18 Likewise, the engagement of CD40 on antigen-presenting cells stimulates 

the release of pro-inflammatory cytokines and chemokines,19 which influence the immune 

response downstream. CD40/CD40L costimulatory pathway plays an important role in T-

cell-mediated dendritic cells (DCs) activation/maturation and macrophage activation (Figure 

1). Blocking of this interaction significantly affects humoral response20 and has also been 

shown to prolong graft survival1,3,7 in experimental transplantation models. Whereas CD154 

interaction with APCs enhance donor reactive CD8+ T cell infiltration and accelerate 

allograft rejection, blockade of this CD40/CD40L pathway with anti-CD154 antibody 

can delay donor-reactive CD4+ and CD8+ T-cell expansion and differentiation and also 

help to convert peripheral donor reactive regulatory T-cells to antigen-specific induced 

regulatory T (iTreg) cells21 and potentially induce tolerance. Several studies have reported 

preventing allograft rejection by inhibiting donor-reactive T-cell responses and promoting 

long-term graft survival by anti-CD154 antibodies in mice22,23 and nonhuman primates 

(NHPs).3,4,7 Recently, Wolf et al reported that CD154 is also ligand for integrin molecule 

(Mac-1, i.e., αMβ2, CD11b/CD18) expressed on innate immune cells (e.g., myeloid cells, 

including monocytes, macrophages, neutrophils and lesser extent to activated lymphocytes 

except NK cells).24 Therapeutic inhibition of Mac-1 (CD11b/CD18) effectively inhibits 

inflammation and thrombosis by reducing leukocyte adhesion and migration.25 Liu et al. 

have demonstrated that blocking of CD11b along with anti-CD40 antibody prolongs skin 

allograft survival in murine model.26 Leo Buhler and his colleagues have also demonstrated 

the importance of CD40/CD40L co-stimulation pathway-blockade in xenotransplantation27 

and later, several investigators, including us reported a prolonged xenograft survival in 

NHPs.5,12,14,28–31
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CD40/CD40L Blocking antibodies

Anti-CD154 (CD40L) and anti-CD40 antibodies, like all antibodies, have antigen binding 

(Fab) and Fc (Fragment, crystallizable) fragments which contain heavy and light chains. 

Several monoclonal antibodies have been engineered (Figure 2) to target CD40/CD40L 

and have demonstrated the potential of prolonging allograft and xenograft rejection-free 

survival in transplantation preclinical models (Table 1 and 2). These blocking antibodies 

have significant therapeutic potential in transplantation by their effect on inhibiting donor 

reactive T cell responses and inducing long-term survival in both murine and nonhuman 

primate models.

Anti-CD154 Antibodies

The CD40/CD40L blockade pathway using an anti-CD40L, non-B cell depleting antibody 

has shown great promise in rodent and nonhuman primate models for inhibiting 

rejection and prolonging graft survival.4–7,32 Treatment with anti-CD154 antibody has 

effectively reduced donor-specific antibody (DSA) production in these models. Co-

stimulation blockade by anti-CD154 antibody prolongs graft survival, but its wide use 

in the experimental and clinical setting is limited initially due to thromboembolic (TE) 

complications.8,9 CD154 is expressed on platelets, and an anti-CD154 antibody is thought 

to potentially activate them, which then augments the thrombin-generating coagulation 

cascade.33 In contrast, thromboembolic complications were not observed with newer 

modified anti-CD154 reagents. Currently, several anti-CD154 antibodies are being used in 

transplantation with variable results.

Ruplizumab (hu5C8)—Ruplizumab (hu5C8) is a mouse-human IgG1κ chimeric 

recombinant monoclonal antibody (mAb) against CD40L. Treatment with hu5C8 antibody 

has been shown to prevent acute renal and primary skin allograft rejection and prolonged 

cardiac xenograft survival in NHPs.3,4,7 Kenyon et al. and others have demonstrated 

long-term survival and function of intrahepatic islet allografts in NHPs with hu5C8 as 

well.7,34–36 Despite prolonged survival, Kawai et al. have reported a high incidence 

of thromboembolic complications in monkeys who have received renal allografts.8 

Heparin (100 units/kg) administration before the antibody treatment prevented thrombotic 

complications significantly. We and others have also used 5C8 antibodies in pig to baboon 

xenotransplantation model and demonstrated the prevention of early graft rejection and 

prolonged cardiac xenograft survival.5,28,37,38 Cardiac xenograft survival was prolonged 

significantly in NHPs, but thromboembolic complications were encountered after anti-

CD154 antibody treatment.5,38

Toralizumab (IDEC-131)—IDEC-131 is a humanized anti-CD154 mAb with the variable 

regions of the murine antibody and human γ1/κ constant regions and binds to CD154 on T 

cells with high specificity and avidity. Clinically, IDEC-131 has been used to treat systemic 

lupus erythematosus (SLE) autoimmune disease, and John Davis and their colleagues 

conducted a phase I clinical trial.39 Xu et al. treated rhesus monkeys with a low (i.e., 15 

mg/kg/dose) and high (i.e., 20 mg/kg/dose) dose of IDEC131 along with rapamycin and 

donor-specific transfusion and reported prolonged skin allograft survival up to 246 days32 

and suggested that it may have led to operational tolerance (i.e., no immunosuppression and 
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normal allograft function).40 Pfeiffer et al. reported that the treatment with IDEC-31mAb 

modestly extended cardiac allograft survival (up to 56 days) in cynomolgus monkeys.6 Wu 

et al. tested the IDEC-131 mAb in the pig-to-baboon heterotopic cardiac xenotransplantation 

model. They reported 7 days of median xenograft survival (range 6 to 11), and all the 

animals had induced anti-pig antibodies to either Gal or non-Gal antigens.41 O’Neill and 

their colleagues have reported that IDEC-131 is inferior to huC58 mAb in a nonhuman 

primate cardiac allotransplant model.42

ABI793—ABI793 is a novel human anti-human CD154 mAb generated by Schuler et 

al. using human immunoglobulin (Ig) transgenic mice (HuMAb-Mouse, Medarex Inc., 

Annandale, NJ).43 The CD40L epitope used in this antibody differed from hu5c8 (CD154) 

mAb. ABI793 belongs to the human immunoglobulin-G1:kappa family, and it has been 

shown to inhibit in vitro and human mixed lymphocyte reactions in a dose-dependent 

manner. Schuler et al. reported that ABI793 has also been efficacious in cynomolgus 

and rhesus monkey renal transplantation models, and treatment with ABI793 (20 mg/kg) 

prolonged the renal allograft survival (median graft survival of 108 days) in cynomolgus 

monkeys.43 Thrombocytopenia and severe acute tubular necrosis (ATN) episodes were 

observed unrelated to rejection and responded to fluid and diuretic treatment.43,44 A low 

dose of ABI793 was ineffective and could not prevent allograft cellular rejection.43 Some 

recipients underwent rejection and showed signs of chronic and acute thromboembolic 

vascular lesions with hemorrhages in the lung and brain of allograft recipients. Kanmaz 

et al. have reported that recipients with chronic active rejection showed relatively strong 

alloantibody responses.44 However, Knosalla et al. have used ABI793 mAb in pig-to-

baboon xenotransplantation and reported that baboon recipients could be well-tolerated 

and prevent an elicited antibody response to pig antigens.45 Although, this study was too 

small to conclude whether any other complications (e.g., ATN, thrombotic complications, 

thrombocytopenia, etc.) which were seen before will occur in this nonhuman primate 

species. Hering et al. tested its efficacy in the xenotransplantation model and reported 

prolonged porcine islets xenograft survival up to 158 days in immunosuppressed nonhuman 

primates.46

H106—H106 is humanized anti-CD154 mAb and it has shown to be efficacious in 

xenotransplantation model. Cardona and colleagues demonstrated engraftment of adult 

porcine islet xenografts in diabetic nonhuman primates after Anti-CD154 (H106) antibody 

treatment to rhesus macaque.30 These results suggest that a costimulation blockade-based 

immunosuppressive regimen by H106 prevents hyperacute rejection.

Fc receptor-modified CD40L Antibodies

Recent evidence suggests that the Fc region of anti-CD154 antibodies interacting with 

Fc receptors plays an important role in platelet activation and aggregation of platelets.9 

Ferrant et al. and others reported that the Fc effector function of anti-CD154 antibody was 

a necessary component for therapeutic benefit.47,48 Therefore, an Fc-disabled, glycosylated 

anti-CD154 heavy chain variant was created, which was found to be effective in models of 

autoimmune diseases and transplantation.49 A novel blocking domain Ab construct (dAb) 

was developed that targets CD40L but has disrupted the FcγR binding and complement-
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fixing function. Pinelli et al. demonstrated that the Fc-silent anti-CD154 domain antibody 

inhibits alloreactive T cell expansion and attenuates cytokine production of antigen-specific 

T cells in an allogeneic mouse model. They have also suggested that it can promote the 

conversion of Foxp3+-induced Treg cells like other conventional anti-CD154 antibodies.50 

Because of their ability to convert effector T cells into induced Treg in the presence 

of CTLA4-Ig, suggests that Fc-silent anti-CD154 antibodies have the potential for their 

translation to clinical use. Several monoclonal antibodies were engineered with various 

Fc fragments (altered or modified) and have been tested in multiple experimental and 

preclinical transplant models, summarized below.

CDP7657 (Dapirolizumab Pegol)—CDP7657 is a high-affinity polyethylene 

glycosylated monovalent Fab fragment without the functional Fc portion of the anti-CD154 

antibody. Shock et al. demonstrated that a high dose (60 mg/kg i.v.) of CDP7657 could 

inhibit CD154-dependent immune responses without activating platelets and thrombotic 

complications in rhesus monkeys.51 Phase 2 clinical trial of dapirolizumab pegol was 

conducted in patients with moderate-to-severe active systemic lupus erythematosus.52

Tegoprubart (AT1501)—Tegoprubart is a humanized IgG1 with a high affinity for 

CD154 and inhibits both CD40/CD40L and CD11 costimulatory signaling pathways. It 

is a synthetic antibody developed by Eledon Pharmaceuticals. AT-1501 is being tested to 

treat autoimmune diseases, i.e., amyotrophic lateral sclerosis (ALS), IgA nephropathy, and 

an autoimmune kidney disorder. AT-1501 has been shown to promote islet allograft survival 

in Nonhuman Primates.52 It is also being tested in Phase-I/II clinical trials for the prevention 

of renal transplant rejection in Canada.53 A single dose of Tegoprubart was found to be safe 

and well-tolerated in healthy volunteers and ALS patients in a Phase 1 trial and initiated a 

Phase 2a trial to test multiple ascending doses of the therapy.54

Letolizumab (BMS-986004)—Letolizumab is an Fc-silent anti-CD154 domain 

humanized mAb designed to treat inflammatory diseases and developed by Bristol-Myers 

Squibb. It inhibits T-cell mediated proliferation and differentiation of B cells like others. It 

also inhibits the production of platelet-derived anti-glycoprotein (GP) IIb/IIIa antibodies by 

B cells and GPIIb/IIIa-dependent T-cell proliferation. This mAb prevents platelet destruction 

and helps increase platelet counts and its direct binding with CD40L and Fcγ-RIIA of 

platelets, which prevent anti-CD154-induced thromboembolism.55 Phase I/II clinical trial 

studies’ for BMS-98600 and sirolimus along with tacrolimus are undergoing in patients with 

hematologic cancer or blood disorder to avoid graft versus host disease after donor stem cell 

transplant.56

Dazodalibep (HZN-4920/VIB4920)—Dazodalibep is an Fc-deficient CD154 antagonist 

fusion human mAb developed by Horizon Therapeutics to prevent autoimmune active 

Rheumatoid Arthritis. It binds to CD154 on activated T cells and blocks the interaction with 

CD40-expressing B cells. It is currently in Phase 2 clinical trial for Sjögren’s syndrome and 

rheumatoid arthritis autoimmune disease. A Phase 2a clinical trial is also active to Evaluate 

the Safety and Efficacy of VIB4920 along with Belatacept for Prophylaxis of Allograft 

Rejection in Adults Receiving a Kidney Transplant.
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TNX-1500—TNX-1500 is a humanized mAb against CD154. It has an antibody binding 

fragment (Fab) region of hu5C8, and a modified Fc region (IgG4) engineered to 

reduce FcγRIIa-binding associated with the risk of thrombosis. Efficacy of TNX-1500 

has been tested in heterotopic kidney57 and heart58 allotransplant model in NHPs. 

Lassiter et al. demonstrate that monotherapy of TNX-1500 prolongs the renal allograft 

survival, whereas treatment with MMF resulted in increased allograft failure.57 Miura 

et al. also demonstrated that standard treatment of TNX-1500 mAb to NHPs prolongs 

allograft survival without thromboembolic complications. And TNX-1500 mAb also inhibits 

alloimmunity, alloantibody production, and class switching of immunoglobulin subtypes.58

Anti-CD40 antibodies

Blockade of CD40-CD40L interaction with an anti-CD40 antibody is a potent 

immunosuppressive agent to prolong graft survival in an experimental transplantation 

model. It affects T cell-dependent immunoglobulin class switching, germinal center 

formation, CD8 T cell priming, dendritic cell longevity, cytokine production, and 

endothelial activation.17,18,59,60 Anti-CD40 mAb has been shown to augment immune 

responses to boost anti-tumor and anti-virus activity.17,59,61 Anti-CD40 antibody has 

been shown to deplete antigen-presenting cells, but several nondepleting antibodies are 

available, which have shown high efficacy in bone marrow, islet, and renal transplantation 

in NHPs.10,12–14,47,62 Its treatment successfully suppresses the immune response and 

dramatically prolongs graft survival in mice and NHPs.12–14,63,64 Humanized anti-CD40 

antibody has also demonstrated a rejection-free 2-month survival of first pig to human heart 

transplantation.65

7E1-G1 and 7E1-G2b—These are rat IgG1 and IgG2b antibodies specific for mouse 

CD40 antigens. 7E1-G1 is a potent agonist, but 7E1-G2b (anti-CD40 Ab) demonstrated 

anti-CD40 properties similar to Anti-CD40L agents in promoting allogeneic bone marrow 

chimerism and skin graft survival in mouse model.66 Therefore, 7E1-G2b is an attractive 

agent for co-stimulation blockade-based tolerance regimens in mouse models.

ch5D12—ch5D12 is a molecularly engineered chimeric mAb (IgG(4), which has the 

variable domains of the heavy and light chains of the murine version of 5D12 (mu5D12). 

This chimeric antibody was tested in an experimental autoimmune encephalomyelitis 

model67 and Crohn’s disease.68 ch5D12 binds to B cells, monocytes, and dendritic cells 

but not to peripheral CD4+ or CD8+ T cells. It can also weekly bind with activated 

endothelial cells and inhibit T-cell proliferation, antigen-presenting cell (APC) activation, 

and GC formation. Treatment of ch5D12 in cynomolgus monkeys inhibits the IL-8 and 

IL-12 cytokine production from pro-inflammatory T helper-1 cells. Haanstra et al. reported 

that a high dose of ch5D12 extended kidney allograft survival in a rhesus monkey model. 

ch5D12 treatment and anti-CD86 antibody prevented kidney allograft rejection, and an 

additional 12-week course of low-dose cyclosporine A (CsA) treatment resulted in long-term 

drug-free survival without donor-specific antibodies.69

3A8—3A8 is mouse anti-human CD40 mAb which has been shown to prolong the 

engraftment of hematopoietic stem cells (HSCs) in rhesus macaque along with CTLA4-Ig 
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and Sirolimus. Treatment with 3A8 alone developed a rhesus anti-mouse antibody (RAMA) 

response, which suggests that 3A8 is immunogenic and negatively affects the potency 

of CD40 blockade. Badell et al. demonstrated that the efficacy of 3A8 in an alloislet 

transplantation model in NHPs results in similar immunomodulation.10 The addition of 

CTLA4-Ig treatment along with 3A8, basiliximab, and sirolimus significantly prolonged 

graft survival without depleting B cells and donor-specific antibodies (DSA) were also 

not produced.10,70 We have also used 3A8 mAb along with the previously described 

immunosuppression (B and T-cell induction, MMF, and a tapered dose of steroids, i.e., the 

Mohiuddin IS regimen) in a pig-to-baboon heterotopic cardiac xenotransplantation model 

and demonstrated that 3A8 binds and activates baboon B cells in vitro, but only modestly 

suppressed antibody production in vivo.64 Cardiac xenograft survival in baboons was also 

not extended (the most prolonged survival was 28 Days).

Chi220 (BMS-224819)—Chimeric mouse anti-human CD40 (IgG) monoclonal antibody 

has been used in the treatment of arthritis and transplantation. Treatment with Chi220 has 

modestly extended kidney and islet allograft survival13,47 in rhesus macaques, but most 

recipients developed donor-specific antibodies (DSA) despite peripheral B cell depletion. 

At the same time, both Chi220 and CTLA-4-Ig could suppress the DSA without having 

an augmented effect on allograft Survival.13 Adams et al. demonstrated that Chi220-treated 

animals alone or in combination with CTLA-Ig deplete peripheral CD20+ B cells. This 

depletion is rapid but transient,14,47 suggesting that Chi220 is a weak agonist. Thompson et 

al. have used Chi220 in pig to NHPs islet xenotransplantation model and reported effective 

engraftment and prolonged survival of porcine islet in NHPs.14

2C10—2C10 is a mouse-rhesus IgG chimeric antibody. It is engineered to contain either 

rhesus IgG1 (2C10R1) or IgG4 (2C10R4) heavy and kappa light chain constant regions 

that can effectively block the interaction of T cell-bound CD154 with CD40 on B cells 

and antigen-presenting cells. This chimeric mouse-rhesus mAb binds to a unique epitope 

of CD40 different from several other anti-CD40 mAb and lacks agonistic properties. 

Treatment with recombinant 2C10 isotypes resulted in a modest change in peripheral B cell 

counts71 and prevented antigen-specific antibody formation in a dose-dependent manner. 

Chimeric rhesus 2C10R4 (IgG4) mAb was tested in an allogenic islet transplant model 

in NHPs. Lowe et al. reported a significantly prolonged alloislet graft survival (median 

rejection-free allograft survival was 280 days compared to 8 days for control) in NHPs.71 

Kwun et al. have used 2C10 along with proteasome inhibitor (Bortezomib/ Belatacept) 

in presensitized rhesus macaques who received a kidney allograft.72 They demonstrated 

that 2C10/Bortezomib/Belatacept treated recipients had significantly reduced bone marrow 

plasma cells and prolonged allograft survival. We and others have also used 2C10 chimeric 

antibody in a pig-to-baboon xenotransplantation model and reported prolonged survival 

of cornea, kidney, islet, and heart xenograft.11,12,14,28,73–76 We have reported the most 

extensive cardiac xenograft survival and demonstrated that withdrawal of 2C10 antibody in 

cardiac xenograft recipients triggers donor-specific antibodies and rejection of heterotopic 

cardiac xenograft.12 2C10 treatment has also been found to be very effective for prolonging 

the survival of life-supporting cardiac xenografts.77,78
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Bleselumab 4D11(ASKP1240)—4D11 is type 4 immunoglobulin G (IgG4) human 

antagonistic anti-CD40 mAb. It inhibits human CD154-induced proliferation and suppresses 

both delayed-type hypersensitivities. 4D11 does not induce antibody-dependent cell-

mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) and prevents 

renal allografts rejection in cynomolgus monkeys79 and suppresses anti-donor antibodies.80 

B cell counts decrease in the periphery of 4D11 treated animals and recover after cessation 

of mAb. None of the renal allograft recipients treated with 4D11 did have anti-drug 

antibodies and thromboembolic complications. Watanabe et al. evaluated the effect of 4D11 

on islet transplantation (ITx) in cynomolgus monkeys. They observed a prolonged allograft 

survival without adverse events in single donor-derived allogeneic ITx.81 These encouraging 

results suggest that it could be a promising immunomodulating agent in clinical organ 

transplantation.

A phase I/II clinical trial for 4D11 (ASKP1240), i.e., Bleselumab, was initiated in de 

novo kidney transplant recipients.82 Harland et al. reported that Bleselumab treatment 

with tacrolimus was not worse than standard care for renal transplant recipients. Whereas 

Bleselumab and MMF-receiving recipients had higher biopsy-proven acute rejection 

episodes (6 and 36 months) after transplantation.83

Clinical Trials:

Iscalimab (CFZ533): Phase 1 Clinical trial—CFZ533 is humanized IGg1 mAb against 

anti-CD40 mAb developed by Novartis and XOMA for treating autoimmune diseases. 

CFZ533 was also tested in a clinical trial for the treatment of allograft rejection in renal 

(phase 1)84 and liver transplant recipients (phase 2)85 to replace calcineurin inhibitors (CNI). 

Early phase 1 clinical trial results from renal transplant recipients looked promising. Farkash 

E et al. demonstrated that recipients receiving CFZ333 had normal allograft histology as 

compared to standard care and suggested that it has the potential to improve long-term 

outcomes.86 However, a review of interim data from the clinical trial found that CFZ333 

treatment was inferior to tacrolimus-based therapy in preventing organ rejection. Therefore, 

the phase 1 Clinical trial was halted for kidney transplant patients87; however, the phase 2 

trial in liver transplant recipients is continuing and Novartis exploring its potential treatment 

for other conditions.88

KPL-404: Phase 1 Clinical Trial—KPL-404 is a humanized anti-CD40 mAb designed 

by Kiniksa Pharmaceuticals to block the CD40/CD40L pathway and suppress T-cell 

Dependent Antibody Response (TDAR). Phase 1 clinical trial was performed and 

demonstrated safety and tolerability in healthy volunteers.89 A high dose of KPL404 

(10mg/Kg) suppresses the TDAR after KLH antigen challenge.90 KPL-404 can potentially 

treat conditions or diseases where dysregulation of the CD40-CD154 pathway is involved. A 

phase 2 Clinical trial is underway to evaluate the safety and pharmacokinetics of KPL-404 

for 12 weeks in rheumatoid arthritis patients.91 Most recently, KPL404 was used in first 

pig-to-human cardiac xenotransplantation after getting a FDA approval in the “expanded 

access (EA)” program to avoid rejection of a genetically modified cardiac xenograft.92
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NJA-730a: Phase 1 Clinical Trial—Besides mAb against anti-CD40, NapaJen Pharma 

has developed an oligo, a short single strand of synthetic RNA (NJA-730). It is an anti-CD40 

oligonucleotide combined with a beta-glucan delivery vehicle with the potential to treat 

acute graft-versus-host disease (GVHD). The half-life of NJA-730 is approximately 30 

minutes and can be rapidly eliminated from circulation. A single dose of an ortholog of 

NJA-730 in a mouse model of bone marrow transplantation found that it significantly 

prolongs the engraftment of bone marrow in murine recipients (up to 45 days after the 

transplantation) and can effectively prevent GVHD. A Phase 1, first-in-human clinical 

trial of NJA-730 in Australia reported that NJA-730 treatment is safe and tolerable in 

approximately 80 healthy adult male volunteers.93

While there are many anti-CD40/CD40L monoclonal antibodies, only some of them have 

made initial clinical trials. Unfortunately, it is impossible to compare these reagents side 

by side, even in the preclinical setting, because of the manufacturer’s intellectual property 

licensing. Also, these antibodies have variable affinities for their targets and are epitope 

specific, sometimes with differing effects in vivo, even after promising in vitro development. 

Novel pathways have also discovered that augment CD40/CD40L signaling. Recently, Liu 

and Ford have reported that blockade of CD40/CD40L by the anti-CD154 antibody (MR-1) 

was more effective than the anti-CD40 antibody (7E1G2b) in prolonging graft survival in 

a murine transplant model as CD154 binds with the CD11b receptors and inhibits donor-

reactive CD8+ T cell infiltration. Blocking both CD154 and CD11b (M1/70) enhances the 

efficacy of anti-CD154 antibodies by inhibiting cellular trafficking.26

Conclusion

There are many novel therapeutics targeting the CD40/CD40L pathway for prolonging 

allograft and xenograft survival in preclinical transplantation models. Anti-CD154 antibody 

blocks this interaction and deplete of CD4 T cells. It also promotes production of induced 

regulatory T (iTreg) cells and dampens the cell mediated immune response in transplant 

recipient. Whereas anti-CD40 antibody inhibit the clonal expansion of B cells and plasma 

cells to produce antibody and suppress humoral immune response. Anti CD40 (2C10R4) 

is also a nondepleting antibody. Some of these agents have progressed to clinical trials in 

autoimmune diseases and allotransplantation with mixed results, but others show promise 

as adjunctive immunomodulators. Xenogeneic immune response is primarily antibody 

mediated; therefore, anti-CD40 antibody treatment that inhibit B cell activation and antibody 

production is beneficial for preventing xenograft rejection. Studies have also demonstrated 

the dependence of xenograft survival on blockade of this pathway and antibody mediated 

rejection occurring after the anti-CD40 treatment is stopped. It also appears that the blocking 

CD40/CD40L pathway improves xenograft rejection-free survival by curbing xenoantigen-

specific elicited antibody-mediated rejection and perhaps blocking the T cell help. Other 

studies in NHP allotransplant models have shown the effectiveness of monotherapy with 

these agents. It may even be that blocking CD40/CD40L pathway with anti-CD154 and 

anti-CD11b antibodies could be superior to anti-CD40 or anti-CD154 antibodies alone, as 

blocking both CD11b and CD154 can inhibit alloreactive CD8+ cells and help in converting 

and producing iTreg cells.26 All these studies demonstrate CD40/CD40L agents’ therapeutic 

potential, but it is still unclear whether a single anti-CD154 /anti-CD40 antibody or a 
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combination of 2 or more is better at preventing rejection. We believe that it is also possible 

that anti-CD154 treatment alone or in combination may benefit more to allotransplantation 

and anti-CD40 antibody can control antibody mediated xenorejection. However, this finding 

still needs to be validated. Whether CD40/CD40L agents with alternative approaches will 

supplant current immunosuppression regimens has not been proven yet. However, preclinical 

data suggests their role in preventing antibody mediated processes from co-stimulation 

signaling provided by antigen presenting cells to B-cells could be a sustainable alternative to 

traditional immunosuppression.
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Figure 1. Mechanism of CD40/CD154(CD40L) pathway:
a. Costimulation interaction: Ligation of CD40 on B cells with CD154 (CD40L) on T 

cells activates B cells differentiation and clonal expansion that enhances the formation of 

long-lived plasma cells and memory B cells which release antibodies and produce cytokines 

which activate other immune cells, and likewise CD40L interaction with CD40 on B cells 

stimulated T cells and help in proliferation and differentiation of T cells. b. Costimulation 

Blockade: Anti-CD154 antibody (in red) blocks the interaction and depletes alloreactive 

T cells (CD4+) cells by ADCC and helps produce induced regulatory T (iTreg ) cells. 

Anti-CD40 antibody (in black) blocks the interaction and inhibits clonal expansion of B 
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cells, plasma, and memory B cells, reducing antibody production. Blocking CD154 (in red) 

and CD11b (in blue) inhibits alloreactive CD8+ T cells and helps produce iTreg cells.
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Figure 2. Anti-CD154 antibodies and their modified version:
First-generation anti-CD154 antibodies with intact F(ab)2 and FC region, Second and third-

generation Anti CD154 antibodies with truncated /silenced Fc region
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