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Abstract
Hyperreflective foci (HF) reflects inflammatory responses for fundus diseases such as diabetic macular edema (DME), 
retina vein occlusion (RVO), and central serous chorioretinopathy (CSC). Shown as high contrast and reflectivity in optical 
coherence tomography (OCT) images, automatic segmentation of HF in OCT images is helpful for the prognosis of fundus 
diseases. Previous traditional methods were time-consuming and required high computing power. Hence, we proposed a 
lightweight network to segment HF (with a speed of 57 ms per OCT image, at least 150 ms faster than other methods). Our 
framework consists of two stages: an NLM filter and patch-based split to preprocess images and a lightweight DBR neural 
network to segment HF automatically. Experimental results from 3000 OCT images of 300 patients (100 DME,100 RVO, 
and 100 CSC) revealed that our method achieved HF segmentation successfully. The DBR network had the area under curves 
dice similarity coefficient (DSC) of 83.65%, 76.43%, and 82.20% in segmenting HF in DME, RVO, and CSC on the test 
cohort respectively. Our DBR network achieves at least 5% higher DSC than previous methods. HF in DME was more easily 
segmented compared with the other two types. In addition, our DBR network is universally applicable to clinical practice 
with the ability to segment HF in a wide range of fundus diseases.
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Introduction

Hyperreflective foci (HF) is defined as spot-shaped or block-
shaped regions with high contrast and high reflectivity in opti-
cal coherence tomography (OCT) images [1]. Previous stud-
ies have shown that HF is mainly caused by microglia (MG) 

aggregation and hard exudate (HE) [2]. Besides, In addition, 
HF caused by MG activation appears earlier than HE and has 
greater clinical applications [1–3, 5–8].

HF can be considered as biomarkers for the progression, 
treatment response, and prognosis in retina diseases OCT, 
including diabetic macular edema (DME), retina vein occlu-
sion (RVO), and central serous chorioretinopathy (CSC)  
[1, 3–6]. In DME, the degree of it can be assessed by the 
number and location of HF and the effect of the anti-VEGF 
treatment can be assessed by comparing the number and 
volume of HF [7, 9, 10]. In RVO, HF demonstrates the 
process of immunity to retinal immunity associated with 
pathogenesis, and ophthalmologists can predict the patient’s 
best-corrected visual acuity based on the number and vol-
ume of HF [10–12]. In CSC, HF can be used to predict the 
time to inflammation resolution as well as the probability of 
recurrence [13–15]. Given the significance of HF in OCT 
images, it is necessary to segment them. However, manual 
segmentation of HF by ophthalmologists is costly, time-
consuming, and susceptible to uncontrollable factors such 
as their work experience and status, which poses a great 
challenge for the application of HF [16–18].
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In recent years, with the development of computer sci-
ence, it has made great contributions to HF segmentation 
algorithms, which can be divided into two main categories: 
traditional segmentation algorithms and deep learning–based 
segmentation methods. Traditional HF segmentation meth-
ods usually require manual adjustment of parameters as well 
as extensive a priori knowledge. Okuwobi et al. [19] pro-
posed morphological reconstruction to estimate the HFs by 
extracting the extremal regions from the connected regions. 
However, this method lacks quantitative analysis and thus 
cannot be applied in clinical applications. Deep learning 
method has achieved great success in the medical image 
segmentation field. Yu et al. [20] used deep convolutional 
neural networks (DCNN) to automatically and accurately 
segment HFs of diabetic retinopathy in SD-OCT images. 
Since they only partially tackled the class imbalance prob-
lem, the network had the problem of misclassifying large 
blood vessels and low-contrast backgrounds as HF. Okuwobi 
et al. [19] used a 3D-Uet network for the segmentation of HF 
in diabetic retinopathy, which used denoised and enhanced 
OCT images as two-channel inputs to UNet network, and 
used depth-wise convolution instead of standard convolu-
tion to obtain the high-dimensional information of the OCT 
images. However, this method does not take into account the 
false positive results caused by the high-frequency noise in 
the NFL/GCL and IS/OS layers. The above deep learning 
approach for identifying HF is only applicable to segment 
one specific fundus disease, which means it does not have 
universal applicability and broad clinical merit. Moreover, 
the complex structure and large parameters of previous deep 
learning segmentation networks lead to long training times 
and high computing power costs, making it difficult to be 
applied in clinical practice [19, 20].

To address the above issue, we proposed a novel network 
composed of a DBR block with dilated convolution. We contrib-
uted three datasets of HF from DME, CSC, and RVO patients’ 
OCT. On these datasets, first, we validated the effectiveness of 
NLM and patch-based image split methods through extensive 
experiments. Then, we continuously adjusted the probability 
thresholds to further improve the segmentation accuracy. Finally, 
under the condition of optimal parameter configuration, the per-
formance of our DBR network with previous methods (UNet, 
UNet + +, RelayNet, FCN, DeepLabv3) was evaluated.

Proposed Method

Overview

We present our HF segmentation method as shown in Fig. 1 
including two steps. In the first step, we process the OCT 
image with NLM to remove the speckle noises. Then, we split 
the filtered images into patches to solve the imbalanced ratio 

between HFs and backgrounds. After preprocessing, we feed 
these patch images into the proposed DBR neural network at 
the second step. In our network, a coarse-to-fine architecture 
is designed to gradually extract the deep features hidden in 
the patch image with three DBR blocks of different receptive 
fields. Finally, we transform these features into HF segmen-
tation results with a convolution layer of kernel size = 1 and 
classify each pixel with a SoftMax layer.

Dataset

The patients in this study were recruited from the Shang-
hai General Hospital. The study protocol was approved by 
the Institutional Review Board and the Ethics Committee of 
Shanghai General Hospital, in accordance with the princi-
ples of the Declaration of Helsinki (IRB No. 2022SQ066). 
The medical records of untreated patients with DME, RVO, 
and CSC who were followed up in the ophthalmology 
department of Shanghai General Hospital from January 2019 
to June 2021 were retrospectively analyzed. Patients were 
required to have a central retinal thickness (CRT) > 300 mm 
and HF appearing on ≥ SD-OCT on OCT images at 10 inter-
vals on consecutive scans. All patients with RVO and DME 
were free of subretinal fluid (SRF) or epiretinal membrane 
(ERM). Subretinal fluid was defined as well-defined, usually 
bell-shaped HF between the ellipsoidal region and the retinal 
pigment epithelium (RPE). At least 2 consecutive B-scans 
were required. We excluded patients with high myopia (> 6 
diopters [D]), a history of uveitis, vitreous hemorrhage, glau-
coma, and patients with poor image quality due to severe 
media clouding, poor focus, and other reasons. Only images 
with a quality fraction > 16 dB were selected. Informed con-
sents were obtained from all patients.

According to the above criteria, we collect three groups 
of OCT images of patients with DME, RVO, and CSC (1000 
images per group). In each group, we select 70% as the train-
ing set, 20% as the validation set, and 10% as the test set. 
Each set is independent and the HF region of an OCT image 
is labeled by experts. To prevent the offset in the experi-
mental HF segmentation results due to the single dataset  
division, we also apply k-fold cross-validation [31] for com-
puting the average of the HF segmentation metrics, where 
the proposed DBR neural network is trained and tested under 
different dataset division situations. The image size of all 
data sets is resized to 480 × 480 using bilinear interpolation 
[32] in order to maintain consistency. The clinical charac-
teristics of the patients are listed in Table 1.

NLM Edge‑Hold Denoise

The first challenge is to remove the speckle noise caused by 
the unstable scanning speed of the OCT machine and the 
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generation of scattered particles in the eyes [21]. The speckle 
noise makes the boundaries of OCT images unclear leading to a 
low signal-to-noise ratio and bad HF segmentation results [22].

In this paper, we filter speckle noise in OCT images with  
the non-local means (NLM) denoise method. NLM is a 
global filtering algorithm, which utilizes the relationship 
between the whole image and local features for denoising 
[23]. As shown in Fig. 2, The OCT image denoised by NLM 
can provide more edged and detailed information for HF 
segmentation, while bilateral filtering only considers the 

neighboring information of pixels, resulting in the lack of 
edged representations in the bilateral filtered OCT images.

Patch‑Based Image Split

In Table 2, we compute the pixel occupancy of HFs against 
backgrounds in the three disease groups from the dataset 
(e.g., the average percentage of HFs is 0.5025% and the aver-
age percentage of backgrounds is 99.4975%) and observe 
that the percentage of pixels occupied by HFs is significantly 
lower than that of backgrounds. Therefore, the number of HF 
samples for training the network is small, making the net-
work tend to misclassify some HF pixels as backgrounds and 
increase the false negative in the HF segmentation results.

To solve the above problem, we propose a patch-based 
image split method. We divide the images into two catego-
ries, where the patches containing HFs are used as positive 
samples, and the patches without HF are used as negative 
samples, in order to increase the proportion of HFs in positive 
samples. The positive and negative samples are jointly fed into 
the network for adversarial training to improve the ability of 
the network to discriminate HFs.

Fig. 1   Overall framework of the proposed HF segmentation method

Table 1   Demographic characteristics of the data sets

* P < 0.05 was considered statistically significant
a The analysis of variance test was used for the comparison among 
three disease groups; the chi-square test was used for the comparison 
of the proportion of gender

Parameters RVO CSC DME Pa

Age, years 60.77 ± 8.77 51.98 ± 9.46 60.41 ± 10.65  < 0.001*
Gender, 

male%
43.00% 69.00% 53.00%  < 0.001*

Race Chinese Chinese Chinese /
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DBR Neural Network

We propose a lightweight neural network consisting of DBR 
blocks. DBR block consists of dilated convolution layer, batch 
normalization layer, and ReLU activation function. In con-
trast to the convolution layer, the dilated convolution layer has 
wider receptive fields since the convolution kernel operates in 
a sparse mode [24], as shown in Fig. 3, where the orange pixels 
(features) are chosen as the locations to perform the convolu-
tion operation. Hence, more local features can be detected for 
semantic segmentation. We also apply the residual connection 
in the DBR block [25]. This connection strategy can avoid the 
gradient disappearance as the layer gets deeper and accelerate 
the convergence behaviors, allowing the network to reach the 
fine-tuning stage earlier.

The DBR block can be formulated as follows:

where X denotes the input data. Y denotes the extraction 
result of the block layer and DConv denotes the dilated con-
volution (i.e., dilate rate = 4) as well as batch normalization 
operation. ⊕ denotes the residual connection.

(1)Y = X ⊕ (DConv (X,ReLU))

The whole framework of the proposed DBR neural network 
is illustrated in Fig. 4. We design a hierarchical coarse-to-fine 
sampling architecture with DBR blocks of different dilated 
rates and kernel sizes. The DBR network is composed of three 
DBR blocks with dilated rates of 8, 4, and 1, and convolution 
kernel sizes of 3 × 3 × 64, 3 × 3 × 32, and 3 × 3 × 16, respec-
tively, which can gradually detect hidden features in small-
sized images with the reduction of dilated rate and kernel. 
Then, we use a 1 × 1 × 2 convolution layer and a SoftMax layer 
to map the features extracted from these DBR blocks to the 
maximum probability between the two categories (HFs, back-
grounds) of each pixel.

Segmentation Loss Function

Our goal is to segment HFs from OCT images. With the condi-
tion of patch-based image split, we propose to apply a propor-
tional weight factor in the loss function for improving the HF 
segmentation performance of the network. The formula for 
computing the weight coefficient is as follows:

where k denotes the category of HFs or backgrounds, Nk 
denotes the number of pixels corresponding to category k, 
and N denotes the number of all pixels of the images.

The segmentation loss is defined by the cross-entropy cost 
function and dice cost function:

(2)wk =

(

1∕Nk

)2

(1∕N)2

(3)lossce = −

M
∑

n=1

C
∑

i=1

wkynk log
(

ynk
�
)

Fig. 2   Comparison of different 
denoise filter methods

Table 2   The proportion of HF and background pixel

Disease Proportion of HF 
pixel

Proportion of 
background

RVO 0.5066% 99.5934%
CSC 0.5227% 99.4773%
DME 0.4783% 99.5217%
Mean
(whole dataset)

0.5025% 99.4975%
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where M denotes the number of pixels in each batch, C denotes 
the category (background, DME or CSC or RVO), ynk denotes 
the true value of the classification probability of the ith pixel in 
the nth image in every batch, ynk′ denotes the estimated value 
of classification probability of the ith pixel in the nth image in 
a batch, wk denotes the weight of its corresponding category, 
�1 denotes the weight factor of lossce , and �2 denotes the weight 
factor of lossdice.

Experiment

Environmental Setting

The hardware environment is NVIDIA cuDNN7.5, CUDA10.0, 
and the configuration is RTX1050TiGPU. The neural network 
learns the weights of each layer by training data and verifies the 
performance of the model by validation data.

The setting of the Adam optimizer is shown in Table 3 below. 
We apply the Adam optimizer for updating the parameters of the 
network via the segmentation loss function mentioned in Eq. (5). 
We set the batch size to 32 and perform 500 epochs.

Evaluation Metrics

To quantitatively evaluate the segmentation effect of the DBR 
network, we employ the following metrics. The dice similarity 
coefficient (DSC) [26] can measure the competitive similar-
ity between the manual HF segmentation and automatic HF 

(4)lossdice = 1 −

M
∑

n=1

C
∑

k=1

wk

2 ⋅ ynkynk
�

ynk + ynk
�

(5)loss = �1lossce + �2lossdice

segmentation by the proposed DBR neural network, which can 
be defined as:

We also use interest over union (IOU) [38] and precision and 
recall to evaluate our method, which can be defined as:

where TP denotes the true positive, FP denotes the false positive, 
TN denotes the true negative, and FN denotes the false negative.

Quantitative Results of Different Patch Sizes 
and Probability Threshold

We gradually increase the patch size by 8 intervals in the 
integer range from 0 to 64 and estimate the corresponding 
DSC on the test dataset of three diseases, in order to search 
for the best patch size to split the OCT image. Figure 5 
shows that the best performance can be achieved at patch 
size = 32. On the one hand, the larger patch size results in a 
lower percentage of high frequencies in the patches, making 
the network tend to segment all pixels into backgrounds. 
On the other hand, the smaller size cuts down the effec-
tive information of the patch; hence, the DBR network is 
harder to extract features from patches and degrade the HF 
segmentation quality.

(6)DSC =
2TP

FP + FN + 2TP

(7)IOU =
TP

TP + FP + FN

(8)Precision =
TP

TP + FP

(9)Recall =
TP

TP + FN

Fig. 3   The architecture of 
DBR block

Fig. 4   The architecture of DBR 
segmentation network
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Moreover, even though the SoftMax layer can output a 
higher probability between background and HFs, it is not 
fully reliable (e.g., the probability of a pixel segmented as 
HF is 0.65; however, this probability is too low to identify 
this pixel as HF). Therefore, for decreasing the uncertainty, 
we set a probability threshold. Only if the probabilities of 
those pixels estimated to be HFs are higher than this thresh-
old, they can be identified as clinically significant.

As displayed in Fig. 6, we gradually set the probability 
threshold from 0.3 to 1.0, and visualize the corresponding 
DSC of the test dataset. It can be observed that the best 
performance should be with a probability threshold = 0.9.

Comparison of Different Denoise Methods

As discussed in the previous experiment, the best patch 
size = 32, and the probability threshold = 0.9. On this basis, 
we compare the segmentation performance of the DBR net-
work under two denoising methods.

As can be seen from Table 4, the average of precision, 
DSC, recall, and IOU based on the NLM filter are improved 
by 6.27%, 14.36%, 6.26%, and 9.43% compared to the bilateral 
denoise method. It demonstrates that NLM can remove speckle 
noise more efficiently and provide the network with more real-
istic, texture-informative OCT images for HF segmentation.

Comparison of Different Segmentation Methods

With NLM filter, patch size = 32, and the probability thresh-
old = 0.9, our proposed DBR network is compared with other 
state-of-the-art segmentation neural networks on three dif-
ferent HF segmentation tasks for fundus lesions [27–30].

Figure 7 demonstrates that our DBR network can converge 
faster and with a higher segmentation accuracy after 200 
iterations than the other networks, thanks to the lightweight 
DBR parameters.

As presented in Table 5, we calculate the parameters, 
memory, and speed (time consumed in segmenting one OCT 
image) of all segmentation methods.

Note that the DBR network is able to identify the more 
complete HF regions and avoid wrong segmentations than 
other methods over all three lesion tasks as shown in Fig. 8. 
It indicates that the hierarchical coarse-to-fine structure of 
the DBR network is able to extract deep features and analyze 
them, resulting in the remarkable segmentation performance.

As presented in Tables 6, 7, and 8, we quantitatively ana-
lyze the evaluation metrics of precision, DSC, and recall for the 
mentioned methods, which proves that the performance of the 
DBR network is not limited by fewer parameters due to the hier-
archical coarse-to-fine structure (with average DSC = 80.76% 
on three HF segmentation tasks, at least 5% more than others).

Discussion

HF, reflecting the inflammatory changes in OCT images, 
plays a crucial role in the diagnosis and treatment of fundus 
diseases. In this paper, we propose a lightweight approach 
for segmenting HF regions in OCT images, where NLM fil-
ter and patch-based image split are introduced to preprocess 

Table 3   Hyperparameters of training

Optimizer Adam
Learning rate 1e − 2
Learning rate decay 0.9 exponential decay per epoch
Batch size 32
Epochs 500

Fig. 5   Quantitative comparison of different patch sizes

Fig. 6   Quantitative comparison of different probability threshold
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data. Then, a novel network consisting of DBR blocks in a 
hierarchical coarse-to-fine sampling architecture is used to 
perform HF segmentation with fewer parameters and faster 
inference speed. A series of experiments are conducted to 
evaluate the effectiveness of the proposed approach.

It was necessary to handle three aspects carefully during 
the segmentation of HF from the OCT images. To remove 
the speckle noise and retain the details of images, we pro-
pose an NLM filter to take the global information into 
account and yield OCT images with less noise. To solve the 
low proportion of HF in OCT images, patch-based image 
split is proposed to resize OCT images without losing any 
information and make the network discover more features as 
the proportion of HF in each patch increases. To fasten the 
convergence of the network and achieve greater segmenta-
tion generalization in various fundus diseases, we propose 
a DBR network, which is constructed with a coarse-to-fine 
sampling architecture. The network consists of three DBR 
blocks, which can leverage the dilated convolution to build 
multi-scale features for OCT patches with different dilated 
rates (from high to low), thus leading to fewer parameters 
and lower hardware costs.

We first compare the improvement brought by NLM and 
bilateral filters in HF segmentation. In the NLM filter, the target 

pixel is weighted by its similarity and location to all pixels in 
the image, while the bilateral filter just considers the set of 
surrounding pixels to compute the weights. Therefore, NLM 
makes less loss of image details and generates more pure OCT 
images, resulting in more effective HF segmentation.

Then, we evaluate the segmentation performance under dif-
ferent patch sizes and different probability thresholds. Splitting 
OCT images into patches can assist the neural network to focus 
on discovering the hidden features of HF regions in positive 
samples. However, the proportion of HF in a large patch size 
is small, and the completeness of HF in a small patch size may 
lose. Furthermore, setting a probability threshold can remove 
those HF regions of low segmentation confidence, though, the 
strict probability threshold may mistakenly filter out the cor-
rect segmentation results, and the loose probability threshold 
cannot work as mentioned above. Experiment results show that 
patch size = 32 and probability threshold = 0.9 can achieve the 
best segmentation performance.

Finally, after proving the effectiveness of the NLM filter 
and confirming the most suitable patch size as well as proba-
bility threshold, we compare the proposed DBR network with 
other state-of-the-art methods with the same preprocessing 
step mentioned above. The proposed network, consisting of 
DBR blocks, has remarkable performance in automatic seg-
mentation of HF (83.65% of DSC in DME, 76.43% of DSC 
in RVO, and 82.20% of DSC in CSC), fewer parameters, and 
faster convergence behavior due to the fact that DBR blocks 
can gain wide receptive fields without the requirement of 
high feature resolution by performing dilated convolution 
operations. Moreover, the hierarchical coarse-to-fine sampling 

Table 4   Quantitative comparison between NLM and bilateral filtering method

Disease Precision (%) DSC (%) Recall (%) IOU (%)

NLM Bilateral NLM Bilateral NLM Bilateral NLM Bilateral

RVO 70.21 ± 2.53 68.51 ± 3.90 76.43 ± 3.06 58.62 ± 4.52 73.19 ± 3.49 70.11 ± 4.33 57.23 ± 2.78 44.38 ± 3.41
CSC 75.38 ± 3.47 73.42 ± 4.25 82.20 ± 3.75 71.35 ± 3.95 74.37 ± 3.22 69.85 ± 4.57 61.79 ± 4.23 56.52 ± 5.03
DME 81.04 ± 3.36 65.90 ± 3.78 83.65 ± 3.62 69.24 ± 4.24 80.01 ± 3.21 68.83 ± 4.98 62.08 ± 4.38 51.93 ± 4.83
Whole dataset 75.54 ± 1.37 69.27 ± 1.69 80.76 ± 1.15 66.40 ± 2.31 75.87 ± 1.92 69.60 ± 2.29 60.37 ± 1.28 50.94 ± 2.27

Fig. 7   Quantitative analysis of validation accuracy curves

Table 5   Model property comparison of our method and other methods

Segmentation method Parameter 
(million)

Memory  
(million Byes)

Speed 
(ms/OCT 
image)

DBRNet (ours) 2.14 8.51 57
UNet 7.76 31.04 213
UNet + +  9.04 36.17 278
RelayNet 7.08 28.39 192
FCN 12.35 48.52 447
DeeplabV3 15.11 60.47 626
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structure of the proposed DBR network can construct multi-
scale features with different dilated rates, allowing it to 
achieve HF segmentation on a wide range of ocular diseases.

As mentioned in Table 5, the dilated rate from high to 
low can help DBR neural networks extract features more 
efficiently with fewer parameters than those composed of 
CNNs [33–37], which are computationally dense and time-
consuming in extracting features. Therefore, under the same 
hardware conditions, the proposed DBR neural network 
requires less computing power and runs remarkably faster 
than other segmentation networks, showing its great poten-
tial for segmenting HF when the hardware environment can-
not afford large model inference.

There were several limitations to this study. First, the par-
ticipants in this study were 60.77 ± 8.77 years old, meaning 

the results are only applicable to this age group. Further 
research is needed to determine if the findings can be gener-
alized to other age groups. Secondly, since this research was 
cross-sectional, our model could only detect lesions present 
in this database. It is unclear whether the proposed DBR 
network would be able to accurately segment changes in HF 
regions as the disease progresses, and this issue should be 
further investigated using external data sets.

Experiment results demonstrate the great performance of the 
proposed DBR network in HF segmentation, though, the datasets 
are mostly collected from only one hospital and the proposed 
DBR neural network is proven to be effective on three diseases in 
this paper. In the future, we will collaborate with other hospitals 
to obtain more datasets of different diseases and further improve 
the performance of the proposed DBR neural network.

Fig. 8   Qualitative comparison of our approach and other networks

Table 6   The precision of our method and other methods

DBR (our) UNet UNet ++  RelayNet FCN DeepLabv3

RVO precision (%) 70.21 ± 2.23 60.38 ± 2.43 59.86 ± 2.76 63.93 ± 2.32 57.42 ± 3.41 56.43 ± 3.56
CSC precision (%) 75.38 ± 3.47 59.53 ± 3.48 60.74 ± 3.73 72.56 ± 3.48 60.05 ± 4.17 56.79 ± 4.43
DME precision (%) 81.04 ± 3.36 61.39 ± 3.59 70.45 ± 3.92 75.83 ± 3.47 68.97 ± 4.59 66.47 ± 4.96
Whole dataset precision (%) 75.54 ± 1.37 60.43 ± 1.88 63.68 ± 1.96 70.77 ± 1.63 62.14 ± 2.20 59.89 ± 2.43
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Conclusion

In this paper, we present a novel method including an NLM 
filter, patch-based image split, and DBR block to segment 
accurate HF regions in OCT images. Compared with the 
other networks, the DBR network shows its remarkable abil-
ity to perform HF segmentation with maximum precision, 
DSC, and recall (at least 5% more than the other networks) 
as well as fast segmentation speed (57 ms/ OCT image). 
The proposed lightweight DBR network, suitable for HF 
segmentation, can provide clinically relevant information 
for better disease management.
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