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Abstract
Oncotype Dx Recurrence Score (RS) has been validated in patients with ER + /HER2 − invasive breast carcinoma to estimate 
patient risk of recurrence and guide the use of adjuvant chemotherapy. We investigated the role of MRI-based radiomics fea-
tures extracted from the tumor and the peritumoral tissues to predict the risk of tumor recurrence. A total of 62 patients with 
biopsy-proved ER + /HER2 − breast cancer who underwent pre-treatment MRI and Oncotype Dx were included. An RS > 25 
was considered discriminant between low-intermediate and high risk of tumor recurrence. Two readers segmented each tumor. 
Radiomics features were extracted from the tumor and the peritumoral tissues. Partial least square (PLS) regression was 
used as the multivariate machine learning algorithm. PLS β-weights of radiomics features included the 5% features with the 
largest β-weights in magnitude (top 5%). Leave-one-out nested cross-validation (nCV) was used to achieve hyperparameter 
optimization and evaluate the generalizable performance of the procedure. The diagnostic performance of the radiomics 
model was assessed through receiver operating characteristic (ROC) analysis. A null hypothesis probability threshold of 5% 
was chosen (p < 0.05). The exploratory analysis for the complete dataset revealed an average absolute correlation among 
features of 0.51. The nCV framework delivered an AUC of 0.76 (p = 1.1∙10−3). When combining “early” and “peak” DCE 
images of only T or TST, a tendency toward statistical significance was obtained for TST with an AUC of 0.61 (p = 0.05). 
The 47 features included in the top 5% were balanced between T and TST (23 and 24, respectively). Moreover, 33/47 (70%) 
were texture-related, and 25/47 (53%) were derived from high-resolution images (1 mm). A radiomics-based machine learn-
ing approach shows the potential to accurately predict the recurrence risk in early ER + /HER2 − breast cancer patients.

Keywords  Artificial intelligence · Breast cancer · Oncotype DX · Machine learning · Magnetic resonance imaging

 *	 Piero Chiacchiaretta 
	 p.chiacchiaretta@unich.it

	 Antonio Corvino 
	 an.cor@hotmail.it

1	 Advanced Computing Core, Center of Advanced Studies 
and Technology (CAST), “G. d’Annunzio” University 
of Chieti-Pescara, Chieti, Italy

2	 Department of Innovative Technologies in Medicine 
and Odonoiatry, “G. d’Annunzio” University, Chieti, Italy

3	 Department of Radiology, Stanford University School 
of Medicine, Stanford, CA, USA

4	 Department of Neuroscience, Imaging and Clinical Sciences, 
“G. d’Annunzio” University, Chieti, Italy

5	 Unit of Radiology, “Santissima Annunziata” Hospital, Chieti, 
Italy

6	 Unit of Pathology, Breast Center EUSOMA, Ortona, Chieti, 
Italy

7	 Unit of Ultrasound in Internal Medicine, Department 
of Medicine and Science of Aging, “G. D’Annunzio” 
University, Chieti, Italy

8	 Unit of Radiology, “Renzetti” Hospital, Lanciano, Italy
9	 Breast Unit, “Gaetano Bernabeo” Hospital, Ortona, Italy
10	 Motor Science and Wellness Department, University 

of Naples “Parthenope”, 80133 Naples, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-023-00781-5&domain=pdf
http://orcid.org/0000-0003-1089-9809


1072	 Journal of Digital Imaging (2023) 36:1071–1080

1 3

Introduction

Breast cancer is a leading cause of death and the most 
common cancer in women [1]. It consists of four main 
subtypes, classified by tumor genotype and molecular 
characterization in luminal A, luminal B, HER2-enriched, 
and basal-like cancer [1–3]. Luminal tumors represent the 
most invasive breast cancer (70%) in western countries. 
They are usually estrogen-receptor (ER) and/or proges-
terone-receptor (PR) positive and HER2-receptor (HER2) 
negative.

Hormone therapy represents a mainstay for patient 
management [4]. About 15% of luminal B cancers will 
develop a recurrence within 10 years from the diagnosis 
if treated with hormonal therapy alone. Although the risk 
of recurrence could be lowered by adjuvant chemotherapy, 
selecting patients who might benefit from adjuvant chemo-
therapy is debated [5–7].

Oncotype Dx Recurrence Score (RS) 21-gene expres-
sion assay (Genomic Health Inc., Redwood City, CA) pro-
duces a score based on the quantitative expression level 
of 21 genes in ribonucleic acid extracted from formalin-
fixed, paraffin-embedded breast tumor tissues. This assay 
has been validated in patients with ER + /HER2 − invasive 
breast carcinoma to estimate patient risk of distant breast 
cancer recurrence and guide the use of adjuvant chemother-
apy [8–11]. Recent studies demonstrated that RS correlates 
with recurrence rates and adjuvant treatment response [5, 
9, 12–14]. The National Comprehensive Cancer Network 
(NCCN) and the American Society of Clinical Oncol-
ogy (ASCO) both recommended the use of Oncotype Dx 
RS testing in patients with ER + /HER2 − breast cancers 
[15, 16]. Moreover, the Guidelines Development Group 
of the European Commission Initiative on Breast Can-
cer recently prioritized a clinical question on the use of 
multigene test to guide the use of adjuvant chemotherapy 
in ER + , HER2 − , and lymph node–negative or up to 3 
lymph node–positive invasive breast cancer [17]. For these 
reasons, this assay is now incorporated into clinical prac-
tice guidelines for treatment decisions [12]. However, the 
technique is costly and is performed on surgical breast 
tumor specimen. These limitations prompted researchers 
to investigate new imaging-based biomarkers [18–24]. 
Multiparametric magnetic resonance imaging (MRI) is the 
most sensitive modality to diagnose and assess treatment 
response in breast cancer patients [25–28]. In this regard, 
recently developed imaging-based methods, such as radi-
omics, allow analyzing imaging data and extracting many 
quantitative features, thereby adding a whole tumor volume 
of extra information to the conventional qualitative visual 
assessment [18–24, 29–35]. MRI-based predictors of tumor 
recurrence allow the non-invasive selection of patients at 

high risk of recurrence, with significant improvements on 
patient healthcare and overall costs. Few studies investi-
gated the use of MRI-based radiomics for the prediction 
of breast cancer recurrence having the Oncotype Dx RS as 
reference standard [36–44]. Compared to previous studies 
on Oncotype Dx, ours not only was focused on the tumor 
but also investigated the peritumoral tissues. In fact, as in 
other recent studies, not only on breast cancer, radiomics 
features extracted from the tumor site and the peritumoral 
environment showed a potential role in terms of prediction 
of treatment response [45–48]. Moreover, the American 
Society of Clinical Oncology (ASCO) recently revised 
the breast cancer recurrence risk by addressing the use 
of Oncotype Dx in guiding decisions on the use of adju-
vant systemic therapy. In detail, they divided high risk and 
low-intermedium risk based on a RS cut-off of 25 [9]. In 
this regard, only one study was recently published on the 
potential correlation between radiomics and RS adopting 
this cut-off, but it did not assess the role of peritumoral 
tissues [49].

This study investigated the ability of MRI-based radiom-
ics features extracted from the tumor and the peritumoral 
tissues to predict the risk of tumor recurrence in ER + /
HER2 − breast cancer patients. Thus, by demonstrating 
the presence of imaging-based biomarkers, we could non-
invasively identify patients who are more likely to benefit 
from adjuvant therapy.

Materials and Methods

Subjects

This study received formal approval from the Ethical Com-
mittee of the University G. d’Annunzio of Chieti-Pescara, 
Italy; informed consent was waived by the same ethics 
committee that approved the study (Comitato Etico per 
la Ricerca Biomedica delle Province di Chieti e Pescara 
e dell’Università degli Studi “G. d’Annunzio” di Chieti e 
Pescara). The study was conducted according to ethical prin-
ciples laid down by the latest version of the Declaration of 
Helsinki. A total of 62 patients who underwent clinically 
indicated breast MRI between January 2016 and May 2020 
at our institution were retrospectively included. Inclusion 
criteria were as follows: [1] ER + /HER2 − early breast can-
cer confirmed via biopsy, [2] MRI performed on a 1.5-T 
scanner, and [3] availability of Oncotype DX RS.

MRI Protocol

All patients in this cohort underwent a clinically indicated 
breast MRI consisting of a standard T1-weighted (T1w), 
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T2-weighted (T2w), diffusion-weighted imaging (DWI), 
and dynamic contrast enhancement (DCE) acquisition 
performed using a 1.5-T MR scanner (Achieva, Philips 
Medical System, Best, the Netherlands) equipped with a 

dedicated phased-array breast coil. Detailed information 
regarding the DCE acquisition is described in Table 1.

Imaging Analysis

Whole volume tumor manual segmentation of the tumor 
(T) was performed on the first (“early”) and second 
(“peak”) contrast-enhanced dynamic T1w images for 
each patient by two independent senior radiology resi-
dents. The software used for the segmentation was an 
open source medical image computing platform, 3D 
Slicer Version 4.8 (www.​3dsli​cer.​org). To create the 
“tissue surrounding tumor” segmentations (TST), a 
“3dmask_tool” (AFNI) was used [50]. First, a 2-mm 
dilatation (“dilate”) and a 2-mm erosion (“erode”) were 
obtained from the CT of each patient. Then, the two 
masks were subtracted (“dilate” − “erode”) to obtain the 
TST which was 4 mm thick (Fig. 2) [45]. All the TST 
segmentations were then checked by the two readers and 
manually adjusted if necessary to include only the outer 
border of the tumor and the adjacent perivisceral tissue. 
T and TST are shown in Fig. 1a.

Table 1   MRI protocol parameters

FFE, Fast Field Echo
** First (“early”) and second (“peak”) DCE acquisition after the end-
ovenous administration of contrast agent (gadolinium chelate)

T1-weighted 
post-contrast
3D-FFE

Repetition time (msec) 3000–5000
Echo time (msec) 80
Section thickness (mm) 2
Section gap (mm) 0
Acquisition matrix size 340 × 340
No. of signals acquired 2
Field of view (mm) 340 × 340
Sensitivity encoding (SENSE) Yes
Acquisition time (sec) 54.3, 90**

No. of sections 167

Fig. 1   a Tumor (T) and tissue surrounding tumor (TST) segmentation on the first (“early”) and second (“peak”) contrast-enhanced dynamic 
(DCE) T1w images. b Schematic representation of the radiomics features extraction and the machine learning framework implemented

http://www.3dslicer.org
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Radiomic Features Extraction

The extraction of radiomics features from the masked (T 
and TST) T1w images was performed using PyRadiomics 
[51]. Reproducibility assessments of the features extracted 
by the two readers from the segmentations of all patients 
were performed (Fig. 2). To avoid data heterogeneity bias 
and minimize acquisition-related radiomics variability, MR 
images and masks were resampled using 3 isotropic voxel 
dimensions (1 × 1 × 1 mm, 2 × 2 × 2 mm, and 3 × 3 × 3 mm). 
For each segmentation and for each image resolution (1 mm, 
2 mm, and 3 mm), ten built-in filters (Original, wavelet, 
Laplacian of Gaussian (LoG), square, square root, loga-
rithm, exponential, Gradient, LBP2D, and LBP3D) were 
applied, and seven feature classes (first-order statistics, 
shape descriptors, glcm, glrlm, ngtdm, gldm, and glszm) 
were calculated, which resulted in a total of 1409 radiom-
ics features for each image (Fig. 1b) [52–54]. Prior to the 
machine learning analysis, all features were converted into 
z-scores relying on their subject distribution.

Machine Learning Analysis

A machine learning approach was used to exploit the radi-
omics features’ multidimensionality and infer the risk of 
recurrence (high vs. low-intermedium). Two main strategies 
were implemented to address the large number of features 
extracted [55, 56]. The first approach reduced the number 
of used features by selecting only highly repeatable fea-
tures between the masks delineated by the two radiologists 
(r > 0.95). The second approach leveraged the high collinear-
ity among radiomics features which was evaluated through 
an initial exploratory analysis. It then used a linear regres-
sion analysis to infer the risk of recurrence, thus employ-
ing a space dimension reduction procedure, namely, the 

partial least square (PLS) regression [55–58]. PLS has one 
hyperparameter, namely, the number of uncorrelated com-
ponents to be used in the regression. Leave-one-out nested 
cross-validation (nCV) was used to achieve hyperparameter 
optimization and evaluate the generalizable performance of 
the procedure [58–60]. In nCV, data are divided into folds, 
and the model is trained on all data except one-fold in an 
iterative, nested manner. Whereas the outer loop estimates 
the model’s performances among iterations (test), the inner 
loop evaluates the optimal hyperparameter (validation). If 
the number of folds equals the number of samples (one-fold 
per sample), the procedure is defined as leave-one-out nCV, 
an approach highly suited for medical applications where 
samples represent subjects [61–63]. The whole leave-one-
out nCV PLS analysis was repeated multiple times for the 
following group of masks: (a) DCE images (“early” and 
“peak”) in both T and TST, (b) “peak” DCE in both T and 
TST, (c) “early” DCE in both T and TST, (d) “peak” DCE 
in T, (e) “peak” DCE in TST, (f) “early” DCE in T, and (g) 
“early” DCE in TST.

Reference Standard

A recurrence score > 25 was considered to discriminate 
between low-intermediate (≤ 25) and high risk ( >) of tumor 
recurrence [9, 11, 64, 65].

Calculation

The classification performances were assessed through 
receiver operating characteristic (ROC) analyses considering 
the inferred (out-of-training-sample) recurrence risk in the 
outer loop fold of the machine learning framework. Patients 
with low-intermediate recurrence risk were attributed to the 

Fig. 2   The segmentation 
process included three steps. 
Firstly, the whole breast tumor 
(T) was manually segmented 
on contrast-enhanced dynamic 
T1w images. In the second 
step, the edge of T was dilated 
(D) and eroded (E) by 2 mm, 
respectively. In the third step, 
we overlapped the dilated and 
eroded masks and subsequently 
subtracted them to include the 
most peripheral portion of the 
tumor and the surrounding tis-
sues (TST)
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“negative” group, whereas patients with high recurrence risk 
were attributed to the “positive” group. The ROC analyses 
were also performed on random shuffled outcomes to simu-
late the null hypothesis and evaluate its confidence interval 
(repeated 106 times). The ROC analysis delivered an area 
under the curve (AUC), which, using the random shuffled 
outcomes, could be transformed into a z-score for assess-
ing its statistical significance. The statistical analysis was 
performed in MATLAB.

Results

Out of the 62 women included in the study, the mean age 
was 49 (interquartile range: 44.25–53) years. Forty-seven 
(75.8%) patients showed a RS ≤ 25 (low-intermediate recur-
rence risk) and 15 (24.2%) showed a RS > 25 (high recur-
rence risk) (Table 2). In total, 1409 radiomics features were 
extracted for each image. Each MRI included “early” and 
“peak” DCE images. We extracted two masks (T and TST) 
from each set of images (“early” DCE T, “early” DCE TST, 
“peak” DCE T, and “peak” DCE TST). All MRI images 
were resampled at 3 resolutions, for a total of 33,816 features 
per patients. In detail, the number of features selected (based 
on inter-read repeatability of r > 0.95) for each repetition of 
the analysis was as follows: n = 940 from “early” and “peak” 
DCE T + TST images, n = 644 from “peak” DCE T + TST 
images, n = 296 from “early” DCE T + TST images, n = 315 
from “peak” DCE T, n = 329 from “peak” DCE TST, n = 230 
from “early” DCE T, and n = 66 from “early” DCE TST. 
The exploratory analysis for the complete dataset revealed 
an average absolute correlation among features of 0.51. The 

high average absolute correlation among features justified 
the use of PLS. Using the nCV machine learning PLS frame-
work, a significant inference on the risk of recurrence was 
obtained when including all features in the analysis (“early” 
and “peak” DCE T + TST, optimal number of PLS compo-
nents, n = 19), with an AUC​ = 0.76, z = 3.01, p = 1.1∙10−3 
(Fig. 3A). Standalone combinations of “early” and “peak” 
DCE images of T and TST did not deliver a significant mul-
tivariate inference of the risk (p > 0.05; Fig. 3B). When com-
bining “early” and “peak” DCE images of only T or TST, 
a tendency toward statistical significance was obtained for 
TST with an AUC of 0.61 (p = 0.05). Figure 4A reports the 
nCV β-weight distribution depicting the strength and sign 
of the effect of the original radiomics features in the infer-
ence of the outcome. Since the larger labeling value of “1” 
was associated with an increased risk of tumor recurrence, 
the positive β-weight suggested a higher risk at increasing 
feature value and vice-versa for negative weights. Figure 4B 
reports the top 5% (n = 47) β-weights associated with the 
most relevant features involved in the prediction (those 
with the largest β-weight magnitudes). These features were 
balanced between T and TST (23 and 24, respectively). 
In detail, 25 of the top 5% features were associated with 
images at 1 mm resolution, 15 at 2 mm resolution, and 7 
at 3 mm resolution. Most (33/47) of those features were 
related to the texture analysis. Thirty-three (70%) top 5% 
weights were associated with the second-order analysis of 
the images (e.g., features computed using the gray-level co-
occurrence matrix (GLCM), or the gray-level dependence 
matrix (GLDM)), whereas only 14 features were related to 
first-order analysis. In addition, a larger number of “peak” 
(n = 33) versus “early” DCE (n = 14) features were present.

Discussion

Our results showed that MRI-based radiomics can predict 
the risk of recurrence in ER + /HER2 − early breast cancer 
patients. These findings confirmed the promising prelimi-
nary results showing a significant association between radi-
omics signatures and risk of breast cancer recurrence [38, 
40]. For example, Li et al. reported that radiomics features 
including tumor size and tumor heterogeneity predicted mul-
tigene assay recurrence scores [38]. A recent study generated 
a radiomics signature based on dynamic contrast-enhanced 
MRI to distinguish between low (recurrence score < 18) and 
non-low (recurrence score > 18) Oncotype DX risk groups in 
estrogen receptor (ER)–positive invasive breast cancer [40]. 
The authors obtained a Rad score based on 10 radiomics 
features reaching an AUC of 0.759 [40].

Of note, we distinguished low-intermediate risk (recur-
rence score < 25) and high-risk (recurrence score > 25) 
patients according to the last American Society of Clinical 

Table 2   Demographics and baseline features of the included patients

Value

Gender
  Female 62 (100%)

Mean age (IQR) 49.4 (44.25–53)
MRI exam (n) 62
Mean Oncotype Recurrence Score 20.4
Primary pT stage
  T1 (T1a; T1b; T1c) 41
  T2 21
  T3 and T4 0

Primary pN stage
  N0 31
  N1 (N1mi; N1a; N1b) 31
  N2 and N3 0

Recurrence score (RS)
   ≤ 25 47 (75.8%)
   > 25 15 (24.2%)
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Oncology (ASCO) clinical practice guideline update. In this 
regard, the panel of experts referred to the publication of 
the Trial Assigning Individualized Options for Treatment 
(TAILORx) evaluating noninferiority of endocrine therapy 
alone versus chemoendocrine therapy for invasive disease-
free survival in women with Oncotype DX scores. Based on 
informal consensus, the panel recommended that oncologists 
offer chemoendocrine therapy to patients with recurrence 
scores of 26 to 30 (9). Only one study adopting this cut-
off was recently published in literature for assessing ER + /
HER2 − breast cancer patients’ 21-gene RS using a multipar-
ametric MRI-based radiomics model [49]. They obtained 
an AUC of 0.82 from DCE of the tumor that improved to 
0.92 when adding DWI and T2-weighted images. Com-
pared to this study, ours analyzed not only the tumor but 
also the tissues surrounding the tumor. In detail, the machine 
learning framework delivered a significant inference on the 
risk of recurrence when including radiomics features from 
the tumor and the peritumoral tissues. On the other hand, 
the standalone combinations of radiomics features did 
not deliver a significant multivariate inference of the risk. 
These results are in line with other recent studies, not only 
focused on breast cancer, showing a potential predictive role 

of radiomics features extracted from the peritumoral envi-
ronment [45–48]. For example, Braman et al. investigated 
the role of MRI-based radiomics signatures to characterize 
HER2-positive tumor biological factors and estimate tumor 
response to HER2-targeted neoadjuvant therapy [46]. The 
authors indicated a classifier performance with an AUC of 
0.89 when combining peritumoral and intratumoral features 
[47]. Other authors investigated the predictive role of DCE-
based quantitative features to distinguish molecular subtypes 
(luminal A/B or basal). They showed that DCE-based fea-
tures of background parenchymal enhancement were statisti-
cally significant in separating luminal A versus nonluminal 
A cancers and distinguishing basal subtypes [48].

Interestingly, most of the top 5% features derived from 
1-mm slice thickness images. This result suggests that high-
resolution imaging was a relevant parameter for the predic-
tion performance, and it is in line with Chen et al. that used a 
cubic spline interpolation algorithm resizing DCE images at 
0.9 × 0.9 × 2.2 mm. Most of those features were texture-related, 
reflecting the degree of heterogeneity in breast tissue.

The role of contrast-enhanced imaging was also relevant 
in our study. This type of imaging assesses the permeabil-
ity of blood vessels by using an intravenous contrast agent 

Fig. 3   ROC analysis of the machine learning (PLS) classification performance. Patients with RS ≤ 25 were attributed to the “negative” group, 
whereas patients with RS > 25 were attributed to the “positive” group
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(gadolinium chelate) that shortens the local T1 time leading 
to a higher signal on T1-weighted images. The neoplastic 
neoangiogenesis produces leaky vessels allowing for faster 
extravasation of contrast agents. This leads to a rapid local 
enhancement which makes the tumor detectable on post-
contrast images [25, 26]. In this regard, 70% of the top 5% 
features were extracted by contrast-enhanced images obtained 
at the “peak” of contrast enhancement. These results align 
with the current state-of-the-art breast MRI that recommends 
the acquisition of images approximately 60–90 s after the 
administration of contrast [26]. Although breast MRI without 
intravenous contrast administration has been proposed as a 
screening procedure, current techniques, such as DWI, are not 
sensitive enough to replace DCE-MRI [66, 67].

Our study has some limitations. First of all, it included 
a relatively low number of patients and lacked a valida-
tion cohort. This is due in part to the extraordinary cost 
of genetic testing that limited the study population size. 
However, our analysis is set to be a proof-of-concept 
study, and the nCV implemented in our study minimized 
the effect driven by the reduced number of samples and 
overfitting (59). Second, ours is a retrospective single-
center study. Further studies, possibly with a prospective 
design and multicentric, are warranted to confirm our find-
ings and better define the role of radiomics as a predic-
tive biomarker in breast cancer. Third, we only analyzed 
dynamic contrast-enhanced MRI images, thereby exclud-
ing T2-weighted or diffusion-weighted images. Further 
studies are needed to clarify the potential role of these 
sequences in tumor recurrence prediction.

Conclusions

In conclusion, a radiomics-based machine learning approach 
showed the potential to accurately predict the recurrence risk 
in early ER + /HER2 − breast cancer patients. Most of the 
discriminant radiomics features were extracted from high-
resolution images obtained at the “peak” of the contrast 
enhancement. They were mainly related to texture analysis 
from the tumor and peritumoral environment.
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