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Abstract
Accurate registration of lung X-rays is an important task in medical image analysis. However, the conventional methods 
usually cost a lot in running time, and the existing deep learning methods are hard to deal with the large deformation caused 
by respiratory and cardiac motion. In this paper, we attempt to use deep learning methods to deal with large deformation and 
enable it to achieve the accuracy of conventional methods. We proposed the cascading affine and B-spline network (CABN), 
which consists of convolutional cross-stitch affine block (CCAB) and B-splines U-net-like block (BUB) for large lung motion. 
CCAB makes use of the convolutional cross-stitch model to learn global features among images. And BUB adopts the idea 
of cubic B-splines which is suitable for large deformation. We separately demonstrated CCAB, BUB, and CABN on two 
chest X-ray datasets. The experimental results indicate that our methods are highly competitive both in accuracy and runtime 
when compared to both other deep learning methods and iterative conventional approaches. Moreover, CCAB also can be 
used for the preprocessing of non-rigid registration methods, replacing affine in conventional methods.

Keywords Deep learning · Medical image registration · Affine registration · Deformable registration

Introduction

Image registration is the process of aligning two different 
images with a transformation model. It is one of the most 
basic tasks in the field of medical image processing which 
has important applications in a variety of medical image 
analysis, including diagnostic tasks, radiotherapy, segmen-
tation, and image-guided surgery [1, 2]. In clinical diagno-
sis, doctors have different needs for variant diseases, and it 
leads to the increasing diversity of images after registration. 
As for lung X-ray images, they can clearly record the gen-
eral lesions of the lung, e.g., lung inflammation, mass, and 
tuberculosis. Reading lung X-ray images requires high-level 
knowledge of doctors, and years of experience, and needs 
more time for analysis. The registration of lung images can 
be used as preprocessing to help subsequent segmentation 
tasks, thus helping doctors diagnose patients’ conditions 
better and faster in clinical practice. Nevertheless, there 
are various factors that affect radiography, including the 

difference in the position of the instruments, the deviation 
of the patient’s position to varying degrees, and the influence 
of the patient’s internal organ movement such as breathing 
motion and heart beating. The chest X-rays obtained from 
the same patient in different periods have large and com-
plex non-rigid deformation [3], as shown in Fig. 1. It will 
affect the judgment of doctors, resulting in misdiagnosis and 
missed diagnosis. Therefore, the registration of chest X-rays 
is a significant task. Applying lung registration to follow-up 
inspection and motion estimation in treatment planning will 
go a long way to improving the treatment of patients and 
speedups in clinical workflows [4, 5].

Since the breakthrough of AlexNet [6] in the ImageNet 
challenge of 2012, deep learning has been applied in 
many computer vision tasks including image registration. 
Recently, many researchers proposed unsupervised deep 
learning–based image registration methods [7–10]. These 
approaches have demonstrated accuracy and running time 
in a variety of registration tasks. However, when it comes 
to chest image registration with large deformation, they 
may not be suitable for two reasons [11]. First, the gra-
dient of the similarity metric at the finest resolution is 
rough in general, as many possible transformations of the 
moving image could yield similar measurements of simi-
larity. Second, the optimization problem is hard to solve 
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without the initialized transformation at the finest resolu-
tion because of the large degrees of freedom in the trans-
formation parameters. Therefore, conventional iterative 
optimization algorithms based on machine learning are 
still a common method in chest X-ray registration because 
of their good effect on dealing with large deformation. 
These conventional algorithms [12–15] are optimized 
iteratively according to the extracted features. But these 
approaches also have a common problem, which is their 
high cost of running time.

To solve these problems, De Vos et al. [16] divided the 
whole registration task into direct affine and deformable 
image registrations, which are optimized separately. They 
also proposed a deep learning image registration (DLIR) 
network by stacking multiple convolutional neural networks 
(CNN). Hu et al. [17]. introduced a network architecture 
that consists of GlobalNet and LocalNet, effectively learn-
ing global and local interventional deformation. RCN [18] 
also utilizes an end-to-end recursive cascaded network to 
divide large deformations into small ones and optimize them 
step by step. The idea of recursive networks has also been 
applied to chest X-ray image registration. Recursive refine 
network (RRN) [19] applies a recursive network on chest 
CT registration. For the large deformation of the lung, they 
have performed several multi-scale refinements to achieve 
coarse-to-fine registration. Hering et al. [3] also employed 
a Gaussian pyramid–based multilevel framework that can 
solve the lung CT registration optimization in a coarse-to-
fine fashion.

When it comes to selecting the spatial transform model, 
Murphy et al. [4] have proved that free form deformation 
(FFD) and demons perform better in chest registration than 
other algorithms. However, the demons algorithm is not suit-
able for large deformation. FFD model was originally used 
in the computer graphics community. After combing with 
cubic B-splines [20], it has been widely used in the field of 

medical image registration [21–23]. Therefore, we decided 
to adopt the idea of FFD in our network to deal with large 
deformation.

In this paper, we propose a network that employs the con-
volutional cross-stitch affine block (CCAB) for rigid regis-
tration and the B-splines U-net-like block (BUB) for nonlin-
ear registration. In our method, we propose the convolutional 
cross-stitch module (CCM) in our network to combine the 
information of fixed and moving images. Meanwhile, in the 
BUB, we use the cubic B-spline method, which is more suit-
able for large deformation than dense deformation fields.

Methods

Overview

Let F and M present the fixed images and moving images 
respectively. Medical image registration aims to find a spa-
tial transformation ϕ that aligns a fixed image IF and a mov-
ing image IM, which is also called the deformation field. In 
our deep learning method, we use CNN to train it as the 
function:

where θ are the parameters of g. Our method warps moving 
images IM to warped image IM(ϕ) and evaluates the loss func-
tion L between IF and IM(ϕ) to update θ. So, the optimization 
problem can be written as:

where

(1)g�
(
IF, IM

)
= �,

(2)� = arg min
�

{
L
(
IF, IM ,�

)}
,

(3)L
(
IF, IM ,�

)
= Lsim

(
IF, IM(�)

)
+ �Lsmooth(�),

Fig. 1  Large deformation in 
chest X-rays taken by the same 
patient at different periods
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function Lsim(∙, ∙) is the image similarity measure, and 
Lsmooth(∙) is an optional regularization term to encourage the 
smoothness of ϕ to ensure the topology of IM.

To achieve the aim of large deformation registration of 
lung X-ray, we divided our network into two parts, CCAB 
and BUB, as shown in the dashed box in Fig. 2. The pair of 
the fixed images and moving images are input into CCAB 
together. The warped images which are the output of CCAB 
are paired with the same fixed images and then input into 
the BUB together.

Cross‑stitch Convolutional Affine Block

Affine transformation is commonly used as a rigid regis-
tration method to calibrate deformation caused by different 
photographing positions. Affine transformation is a com-
bination of a series of linear transformations which can 
maintain the parallelism of lines on the image. Using affine 
registration at the beginning can help simplify the subse-
quent optimization steps and improve the overall registration 
accuracy. So, it is often the first step in image registration.

To extract the global information better, we introduced 
the cross-stitch module to improve affine registration. 
Cross-stitch module helps to enable two different independ-
ent networks to learn knowledge from each other. Coin-
cidentally, the affine network used in DLIR is a parallel 
dual-channel structure. Therefore, the cross-stitch units 
can be used in an affine network to improve affine accu-
racy which was realized in cross-stitches affine network 
[24] (CAN). In CAN, the pair of input feature images are 
flattened and then concatenated to form a matrix. After 
that, this matrix will be multiplied by another parameter- 
learnable square matrix and re-split into a flattened form of 
the pair of two feature images. Nevertheless, when we tried 
to reproduce their experiment on our datasets, it is hard 
to be applied to affine registration of two high-resolution 
images which is commonly used in medicine, because the 
parameter-learnable square matrix in CAN will occupy a lot 

of computing resources. For example, if the shape of both 
feature images is 512 × 512, then the shape of this image 
will be 524,288 × 524,288 (512 × 512 × 2). Therefore, we 
replace the matrix multiplication operation with convolu-
tional operation of several different kernel sizes, which not 
only retains the ability to learn the optimal combination of 
the feature maps obtained from the previous layer but also 
can effectively reduce computing costs and be applied to 
most size images. We refer to it as a convolutional cross-
stitched module (CCM), and it is combined with our CCAB.

Despite affine transformation having been applied in 
many registration networks based on deep learning, most 
of them only regress the affine transformation matrix A and 
do not calculate the transformation parameters, including 
rotation, two translations, two scaling, and two shearing 
transformation parameters. For example, there are seven 
parameters with spatial meanings for 2D transformation 
including one for rotation (θ), two for translations (tx, ty), 
two for scaling (scx, scy), and two for shearing (shx, shy). The 
2D affine transformation matrix is:

where a1–a6 are the six parameters used for interpolation. 
And the translation matrix Mt, the scaling matrix Msc, the 
shearing matrix Msh, and the rotation matrix Mr can be rep-
resented as:

Thus, from these seven spatial parameters, the six parame-
ters in 2D transformation matrix A can be easily calculated by:

(4)A =

⎡⎢⎢⎣

a1 a2 a3
a4 a5 a6
0 0 1

⎤⎥⎥⎦
,

(5)

Mt =

⎡⎢⎢⎣

1 0 tx
0 1 ty
0 0 1

⎤⎥⎥⎦
,Mr =

⎡⎢⎢⎣

cos� −sin� 0

sin� cos� 0

0 0 1

⎤⎥⎥⎦
,

Msc =

⎡⎢⎢⎣

scx 0 0

0 scy 0

0 0 1

⎤⎥⎥⎦
,Msh =

⎡⎢⎢⎣

1 shx 0

shy 1 0

0 0 1

⎤⎥⎥⎦
.

image similarity image similarity
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Fig. 2  Cascading affine and B-splines network
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After affine registration, the pixels whose coordinates 
are (x, y) on the moving images will become (x’, y’) on the 
warped images by the formula:

Considering that our task is to complete the large defor-
mation registration of the lung, which is mainly caused by 
the contraction and expansion of the lung and the shift of 
the shooting position, therefore, we choose to remove the 
shearing transformation from the affine transformation, 
which can reduce the calculation cost and make the net-
work converge faster.

In our CCAB, as shown in Fig. 3, the fixed image IF and 
the moving image IM are fed into two separate convolutional 
modules. The two convolutional layers and two activation 
layers in convolutional modules (Conv Module) can extract 
the feature maps and down-sample them for the enhance-
ment of the receptive field. After that, the two feature maps 
of IF and IM are concatenated and put into the CCM to enable 
the relevant information between the two images that can be 
learned effectively. The CCM used in our network consists 
of a 7 × 7 convolution kernel and a 5 × 5 convolution ker-
nel. The two different kernel sizes can extract features of 
multiple scales. With the down sampling operation in the 
network, the receptive field of CCM gradually increases, 
which contributes to capture the features of a larger size. 
The output feature map of the last CCM will go through the 
fully connected layer and turn into the spatial parameters. 

(6)A = Mt ⋅Msc ⋅Msh ⋅Mr =

⎡⎢⎢⎣

scxcos� + shxscxsin� −scxsin� + shxscxcos� tx
shyscycos� + scysin� −shyscysin� + scycos� ty

0 0 1

⎤⎥⎥⎦
.

(7)
⎡
⎢⎢⎣

x,

y,

1

⎤
⎥⎥⎦
= A

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦
.

According to Eq. (6), these six parameters in matrix A can 
be calculated to warp IM.

B‑splines U‑Net‑Like Block

Many deformable models can deal with local deformation. 
However, we prefer to use cubic B-splines because differ-
ent from dense deformation field such as VoxelMorph, cubic 
B-splines deform an object by manipulating an underlying 
mesh of control points. The basic idea of cubic B-splines is to 
deform an object by manipulating an underlying mesh of con-
trol points. According to the different intervals between control 
points, B-splines can realize the registration of deformation in 
different ranges. The resulting deformation controls the shape 
of the object and produces a smooth and continuous transfor-
mation. The main target of BUB is to learn the offsets of each 
control point through the designed U-net-like network sketched 
in Fig. 4. Therefore, BUB is designed to output the offset of 
each control point in the x and y directions. In the following, 
it will be introduced how to realize the nonlinear deformation 
of the whole image through the offset of each control point.

In addition, searching for regularization parameters in the 
registration network is often a time-consuming and difficult 
task. To solve this problem, we introduced the conditional 
module proposed by Mok and Chung [25]. This module can 
learn the conditional features that are correlated with the 
regularization hyperparameter by shifting the feature stat-
ics. It enables the network to learn the features in different 
cases of regularization parameter. This will help to find the 
optimal regularization parameter without tedious multiple 
training and grid searching.
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Firstly, a certain amount of control points with the inter-
vals d as a hyperparameter need to be set on the image. A 
large interval of control points allows modeling of global 
non-rigid deformation, while a small interval of control 
points allows modeling of highly local non-rigid deforma-
tion. And the resolution of the control point mesh determines 
the number of degrees of freedom and the computational 
complexity. Referring to the paper [22], we use 16 control 
points in 4 rows and 4 columns to control the offset of a 
pixel. Then, the offsets of these control points are optimized 
through the back-propagation of the network. In our algo-
rithm, the rows Rcp and columns Ccp of the control points 
are calculated from:

where R and C are the rows and cols of pixels on the image, 
and ceil(∙) denotes rounding-up operation. It is important 
to note that there will be several control points outside the 
image to ensure that every pixel on the image is controlled 
by 16 control points. Therefore, Rcp and Ccp ought to be 
added 3. In order to obtain the registration field, it is ought 
to calculate the offsets of each pixel on the image. For each 
pixel with coordinate (x, y), the offset (∆x, ∆y) can be cal-
culated from:

(8)Rcp = ceil(R∕d) + 3,Ccp = ceil(C∕d) + 3,

where i and j are calculated from:

where floor(∙) denotes the rounding-down operation.
In addition, in Eq. (9), φi+l,j+m is the offset of the con-

trol points dominating the offset of pixels, and Bk(t) is the 
B-spline interpolation formula:

As shown in Fig. 4, the fixed image and the moving 
image are first concatenated and put into the U-net-like net-
work. The convolutional module (Conv Module) includes 
two convolutional layers and two activation layers, while 
the deconvolutional module (Deconv Module) consists of 
one convolutional layer, one deconvolutional layer, and two 
activation layers. These convolutional layers inside assist in 
extracting feature maps; at the same time, the convolutional 

(9)(Δx,Δy) =

3∑
l=0

3∑
m=0

Bl(u) ⋅ Bm(v) ⋅ �i+l,j+m,

(10)i = floor(x∕d), j = floor(y∕d),

(11)Bk(t) =

⎧⎪⎨⎪⎩

�
−t3 + 3t2 − 3t + 1

�
∕6�

3t3 − 6t2 + 4
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∕6�
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layer and deconvolutional layer can realize up sampling and 
down sampling of feature map respectively. At the bottleneck 
layer of the network, we use 5 conditional modules to help 
to search for the optimal regularization hyperparameter λ. 
The conditional module is designed as a residual structure. 
At the end of the network, there is a convolutional layer that 
converts the output into the offsets of the control points with 
the size of R × C × 2, where R and C represent the number of 
rows and columns of the control points, respectively.

Loss Function

In many deformable image registration methods [7, 11, 18, 
26], negative local normalized cross-correlation (NCC) is suc-
cessfully utilized to be a similarity metric for gradient descent 
optimization. NCC is a statistic of corresponding correlation, 
obtained by calculating the correlation of the pixels between two 
images [27]. Therefore, we use NCC as the similarity measure 
Lsim to evaluate the results of registration in our experiments. Let 
f and m(ϕ) denote the pixel in fixed images and warped images, 
and Ω is the image domain. The formula of NCC is:

Furthermore, in non-rigid registration, minimizing Lsim 
will encourage m(ϕ) to approximate f, but may generate a 
discontinuous displacement vector field ϕ. To solve this 
problem, we introduced the L2 gradient loss proposed by 
Rueckert et al. [20] as a regular term Lsmooth to encourage a 
smooth displacement vector field:

(12)

Lsim(f ,m,�) = −NCC(f ,m,�) = −

1

Ω

∑�
f − f̂

��
m(�) − m̂(�)

�
�

1

Ω

∑�
f − f̂

�2
�

1

Ω

∑�
m(�) − m̂(�)

�2
.

(13)Lsmooth(�) =
�‖∇�(p)‖2.

We approximate spatial gradients using differences 
between neighboring pixels. The complete loss of our 
method is defined as:

Considering our network consists of rigid registration 
CCAB and non-rigid registration BUB, the value of the 
regularization parameter λ is 0 in CCAB. And the selection 
of λ in BUB will be discussed in the following experiments.

Results

Implement Details

To evaluate the registration performance of the proposed 
method, we conduct our experiments on two datasets. One 
was from a hospital in Shandong province, containing 39 
X-ray images taken from 12 patients at different time. The 
resolution of chest X-ray images is about 3000 × 3000 
pixels. Here we refer it as Test12 dataset. The other is a 
public dataset ChestX-ray8 [28] extracted from the clinical 
PACS database at the National Institutes of Health Clinical 
Center, which contains 112,120 frontal-view chest X-ray 
PNG images with 14 disease labels from 30 K patients 
[29]. This dataset is for disease detection on chest X-rays, 
so some patients only have a single visit record, which is 
not suitable for medical image registration tasks. There-
fore, we screened the dataset to fit the condition that all 
enrolled patients must have at least two medical records. 
After that, we obtained a total of 823 eligible pairs of 
chest X-rays from 280 patients. Since the size of each 
chest X-ray is different, the filtered images have been 
uniformly resampled to 512 × 512 in the preprocessing. 

(14)L
(
IF, IM ,�

)
= Lsim

(
IF, IM(�)

)
+ �Lsmooth(�).

(a) (b) (c) (d)

(h) (i) (j) (k) (l) (m)

(e) (f) (g)

Fig. 5  Visual rigid registration results of ChestX-ray8. a Fixed image. b Moving image. c Elastix-affine. d ANTs-affine. e DLIR. f GlobalNet. g 
CCAB. h Subtraction image before registration. Sub-images (i–m) correspond to the subtraction images of the above algorithm in turn
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The difference between them is that Test12 is the dataset 
without lung lesions, and ChestX-ray8 is the dataset with 
lung lesions. In the experiment of CCAB, we use affine 
based on the traditional registration toolbox Elastix and 
ANTs to compare with the proposed method to illustrate 
the registration performance. In addition, because of the 
similar model structure, the deep learning method DLIR 
and GlobalNet [17] are also compared with our method. 
While in the experiment of BUB, two state-of-art con-
ventional registration methods, SyN [30] and FFD [31, 
32], based on B-splines are compared with the proposed 
method to illustrate the registration performance. Besides, 
RCN [18] and RNN [19] are also chosen because of their 
ability to deal with large deformation. In order to evaluate 
the registration performance, the visualization of warped 
images and subtraction of fixed images and moving images 
are used in our paper. Note that the gray value of all the 

input in deep learning networks was normalized into 
0–1 in preprocessing, and the output gray value will be 
restored to the original range. Besides, in CCAB, there is 
a limited range of the obtained spatial parameters. So that 
according to the prior knowledge, we will normalize each 
spatial parameter to its specific range. This part is added 
after the full connection layer.

As for the parameters of the baseline methods, we run 
SyN, affine in ANTs and FFD, and affine in Elastix with 
the parameters recommended in VTN [33]. The parameters 
of both RCN and RRN are set according to their papers. 
The number of RCN cascades is set to 10. NCC is selected 
as the loss function in all deep learning methods. For bet-
ter comparison, the parameter settings of affine methods in 
GlobalNet and DLIR are consistent with those of CCAB, 
and the number of convolutional layers other than CCM is 
also consistent.

Table 1  Comparison of 
different rigid registration 
methods. Standard deviation is 
provided in the brackets. The 
best performances are shown 
in bold

Methods ChestX-ray8
MSE MI Dice CPU time/s GPU time/s

Before 0.048 (0.017) 0.719 (0.206) 0.833 (0.076) - -
Elastix-affine 0.029 (0.020) 1.020 (0.194) 0.921 (0.030) 0.767 (0.055) -
ANTs-affine 0.032 (0.018) 1.038 (0.188) 0.922 (0.029) 0.622 (0.114) -
DLIR 0.041 (0.034) 0.915 (0.172) 0.914 (0.054) 0.025 (0.003) 0.005 (0.002)
GlobalNet 0.035 (0.041) 1.005 (0.198) 0.920 (0.034) 0.022 (0.003) 0.004 (0.003)
CCAB 0.028 (0.015) 1.032 (0.204) 0.926 (0.028) 0.025 (0.002) 0.018 (0.002)
Methods Test12

MSE MI Dice CPU time/s GPU time/s
Before 0.048 (0.012) 0.916 (0.199) 0.876 (0.045) - -
Elastix-affine 0.036 (0.021) 1.187 (0.103) 0.923 (0.045) 0.805 (0.041) -
ANTs-affine 0.038 (0.043) 1.235 (0.113) 0.924 (0.042) 0.627 (0.102) -
DLIR 0.043 (0.024) 1.088 (0.130) 0.917 (0.029) 0.024 (0.002) 0.005 (0.003)
GlobalNet 0.041 (0.021) 1.162 (0.120) 0.921 (0.029) 0.020 (0.002) 0.004 (0.002)
CCAB 0.030 (0.020) 1.256 (0.119) 0.928 (0.032) 0.027 (0.003) 0.006 (0.002)

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)
Fig. 6  Visual rigid registration results of Test12. a FIXED image. b Moving image. c Elastix-affine. d ANTs-affine. e DLIR. f GlobalNet. g 
CCAB. h Subtraction image before registration. Sub-images (i–m) correspond to the subtraction images of the above algorithm in turn
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The evaluation metrics in our experiment include mean 
square error (MSE), mutual information (MI), and dice. 
For the parameter setting of the registration network, the 
batch size was 2 due to the limitation of GPU memory, 
the learning rate was 0.0001, and the training epoch was 
5000. Our code was developed using Pytorch 1.9.0. It 
was run on a Windows server and a Ubuntu server with 
a GPU NVIDIA RTX 2060 Super and a CPU Intel Core 
i5-10,500. We divided the whole dataset into training set, 
validation set, and test set, accounting for 70%, 15%, and 
15% respectively. We used the training set to train the 
registration model. The model might be overfitting, so we 

utilized the validation set to choose the best model. The 
test set was used to test the registration model and obtain 
the registration results.

CCAB Registration Results

Figures 5 and 6 display the subtraction images including 
before registration and after registration. We can see that the 
gray value of our method’s result near the lung contour is 
more uniform. It means that CCAB can achieve better regis-
tration results. From Table 1, we can also see that the MSE, 
MI, and dice of our method are comparable to those of the 

Fig. 7  Visual rigid registration 
results of other two patients’ 
data. From left to right are 
respectively fixed images, mov-
ing images, and CCAB results. 
The images in the second line 
correspond to the subtraction 
images of the above images in 
turn
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conventional affine registration method in both ANTs and 
Elastix. Furthermore, it is also 23 times faster than the con-
ventional affine registration method in CPU time and is 35 

times faster when it comes to GPU time. In addition, we also 
compare our method with the deep learning method of similar 
models: GlobalNet and DLIR. The result shows that with the 

Fig. 8  Dice-regularization parameters curve of two datasets. a ChestX-ray8. b Test12. First row: mean value of dice scores. Second row: std of 
dice scores

Fig. 9  Jacobian determinant of the deformation fields
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help of the cross-stitches convolutional module, our model 
can improve the registration results better which proves the 
effectiveness and necessity of the cross-stitches convolutional 
module. In the ChestX-ray8 dataset, the dice of the proposed 
network increases by 0.43%, compared to the second-best 
approaches. And in the Test12 dataset, the increment of dice 
is also 0.43%. The experimental result benefits from the CCM 
which can combine the information of different scales of two 
characteristic maps at each layer of the network. As the size 
of the feature maps decreases, the receptive field of CCM 
also gradually increases, which enables it to better capture 
the global information related to the two, helping to improve 
the accuracy of rigid registration. Figure 7 shows the results 
of CCAB for the data of two other patients.

BUB Registration Results

As shown in Figs. 5 and 6, there are still many lung defor-
mations caused by respiratory movement to be aligned by 
deformable registration. For most deformable registration 
networks, it is time-consuming and difficult to analyze the 
influence of hyperparameters and search for the optimal reg-
ularization parameters. Therefore, we utilize the conditional 
module to assist in searching for the regularization param-
eters. As shown in Fig. 8, the abscissa of the curves is the 

different values of regularization parameters, and the ordi-
nate is the average dice scores calculated from the warped 
images and the fixed images. The dice scores vary slowly 
in the range where λ is 1 to 2 on both datasets. So, we will 
choose λ = 1.5 in the following experiment.

In addition, we also observed the Jacobian determinant 
of the deformation fields, as shown in Fig. 9. If the pixel 
color is close to green, it indicates that the deformation 
field here tends to shrink. The black part means that the 
deformation field in this region overlaps, which is detri-
mental to the maintenance of the topology. We can see that 
with the increment of λ, the overlap in the deformation 
field decreases gradually, which means the maintenance of 
the topology. Therefore, combined with the curve in Fig. 8, 
we take 1.5 as the value of λ in the experiments of BUB.

Besides, we also tested the influence of different inter-
vals d of control points on both datasets. The results in 
Table 2 show that when d = 8, the dice score will achieve 
the best value. The reason is that the larger values of d 
will enable the cubic B-spline model to perform larger 
deformation registration; however, it may cause an inabil-
ity to achieve fine registration. The smaller values of d will 
complete fine registration at the cost of large deformation 
registration. From Table 2, we can know that setting d 
to a value of 8 is an option that accommodates both fine 

Table 2  Comparison of the 
results of different intervals 
d on both datasets. Standard 
deviation is provided in the 
brackets. The best performances 
are shown in bold

d ChestX-ray8 Test12

MSE MI Dice MSE MI Dice

4 0.024 (0.018) 1.298 (0.213) 0.955 (0.018) 0.032 (0.035) 1.557 (0.142) 0.952 (0.041)
8 0.021 (0.020) 1.346 (0.204) 0.970 (0.023) 0.028 (0.037) 1.570 (0.138) 0.960 (0.054)
16 0.023 (0.018) 1.294 (0.205) 0.953 (0.016) 0.033 (0.033) 1.547 (0.136) 0.949 (0.050)
32 0.023 (0.019) 1.282 (0.205) 0.945 (0.020) 0.039 (0.031) 1.516 (0.126) 0.940 (0.042)

(a)(a) (b)(b) (c)(c) (d)(d) (e)(e) (f)(f) (g)(g)

(h)(h) (i)(i) (j)(j) (k)(k) (l)(l)

(b)(b)(b) ( )((ccc)) )( )(d)(d) ((((eee))) f(((ff)))ff (g(g)(g)

(m)(m)

Fig. 10  Visual deformable registration results of ChestX-ray8. a 
Fixed image. b Moving image. c Affine + SyN. d Affine + FFD. e 
Affine + RCN. f Affine + RRN. g Affine + BUB. h Subtraction image 

before registration. Sub-images (i–m) correspond to the subtraction 
images of the above algorithm in turn
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registration and large deformation registration. In sum-
mary, we set the hyperparameters in the experiments of 
BUB as λ = 1.5 and d = 8.

We can see from (g–i) subtraction images in Figs. 10 and 
11 that there is less black part below the lung caused by 
the structural difference in the subtraction images of our 
method. In addition, the grayscale of the ribs in the images 
is also uniform than other methods. It indicates that the 
images after registration of our methods match better with 
the fixed images. From Table 3, we can see that the perfor-
mance of BUB outperforms other methods on both datasets. 
In the ChestX-ray8 dataset, the dice of our proposed method 
increases by 0.84% compared to the second-best method. 
And in the Test12 dataset, it increases by 0.63%. Notably, 
FFD also provided a better registration result than other 
methods when dealing with large deformation. It proved that 

it is effective to apply FFD to the task of X-ray chest registra-
tion. In addition, BUB is also about 8 times faster than these 
two conventional methods in CPU time. When it comes to 
GPU time, our method is faster than 173 times the speed of 
them. It shows that our method can achieve deformable reg-
istration more quickly. Meanwhile, our method can achieve 
better results than conventional methods. Figure 12 shows 
the results of BUB for the data of two other patients.

CABN Registration Results

CCAB and BUB have shown their advantages in rigid regis-
tration and deformable registration respectively. Then, we cas-
cade CCAB and BUB into CABN and complete comparative 
experiments with other algorithms. The results in Table 4 and 
Figs. 13 and 14 show that compared with other algorithms, 

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

(b) (c) (d) (e) (f)f (g)

(m)

Fig. 11  Visual deformable registration results of Test12. a Fixed 
image. b Moving image. c Affine + SyN. d Affine + FFD. e Aff-
ine + RCN. f Affine + RRN. g Affine + BUB. h Subtraction image 

before registration. Sub-images (i–m) correspond to the subtraction 
images of the above algorithm in turn

Table 3  Comparison of 
different deformable registration 
methods. Standard deviation is 
provided in the brackets. The 
best performances are shown 
in bold

Methods ChestX-ray8
MSE MI Dice CPU time/s GPU time/s

Affine 0.032 (0.018) 1.038 (0.188) 0.922 (0.029) - -
Affine + SyN 0.033 (0.014) 1.317 (0.226) 0.945 (0.056) 2.300 (0.042) -
Affine + FFD 0.023 (0.016) 1.331 (0.196) 0.953 (0.030) 2.358 (0.109) -
Affine + RCN 0.024 (0.020) 1.323 (0.129) 0.951 (0.024) 0.781 (0.052) 0.030 (0.002)
Affine + RRN 0.025 (0.017) 1.313 (0.198) 0.942 (0.020) 0.541 (0.163) 0.022 (0.002)
Affine + BUB 0.021 (0.020) 1.346 (0.204) 0.961 (0.023) 0.284 (0.011) 0.012 (0.001)
Methods Test12

MSE MI Dice CPU time/s GPU time/s
Affine 0.038 (0.043) 1.235 (0.113) 0.923 (0.042) - -
Affine + SyN 0.034 (0.025) 1.553 (0.106) 0.947 (0.025) 2.245 (0.052) -
Affine + FFD 0.026 (0.026) 1.562 (0.192) 0.954 (0.030) 2.278 (0.143) -
Affine + RCN 0.034 (0.046) 1.560 (0.031) 0.949 (0.010) 0.840 (0.206) 0.031 (0.002)
Affine + RRN 0.035 (0.043) 1.547 (0.043) 0.950 (0.032) 0.457 (0.006) 0.023 (0.001)
Affine + BUB 0.028 (0.037) 1.570 (0.138) 0.960 (0.054) 0.280 (0.011) 0.013 (0.001)
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CABN can better handle large deformation and effectively 
reduce the difference between images. With the help of a sep-
arate rigid registration module, CABN outperforms both two 
datasets. The dice of CABN increases by 1.26% and 1.47% 
in the ChestX-ray8 and Test12 datasets, respectively, com-
pared to the second-best results. Figure 15 shows the results 
of CCAB for the data of two other patients.

Ablation Study

To confirm the universality of CCAB, we replaced the 
affine used in the pretreatment in non-rigid registration 
experiment with CCAB. As shown in Figs. 16 and 17, 
and Table 5, we can see that BUB still maintains a good 
registration result among these registration methods. 

Fig. 12  Visual deformable 
registration results of other two 
patients’ data. From left to right 
are respectively fixed images, 
affine results, and Affine + BUB 
results. The images in the 
second line correspond to the 
subtraction images of the above 
images in turn



1274 Journal of Digital Imaging (2023) 36:1262–1278

1 3

Table 4  Comparison of CABN 
with other methods. Standard 
deviation is provided in the 
brackets. The best performances 
are shown in bold

Methods ChestX-ray8
MSE MI Dice CPU time/s GPU time/s

Before 0.048 (0.017) 0.719 (0.206) 0.833 (0.076) - -
SyN 0.022 (0.019) 1.271 (0.197) 0.954 (0.024) 2.762 (0.034) -
FFD 0.023 (0.018) 1.266 (0.206) 0.940 (0.037) 2.803 (0.113) -
RCN 0.031 (0.010) 1.212 (0.214) 0.933 (0.033) 0.812 (0.036) 0.032 (0.006)
RRN 0.026 (0.010) 1.231 (0.217) 0.935 (0.031) 0.525 (0.020) 0.023 (0.008)
CABN 0.015 (0.011) 1.376 (0.219) 0.966 (0.024) 0.378 (0.014) 0.012 (0.001)
Methods Test12

MSE MI Dice CPU time/s GPU time/s
Before 0.048 (0.012) 0.916 (0.199) 0.876 (0.045) - -
SyN 0.026 (0.026) 1.492 (0.103) 0.940 (0.029) 2.489 (0.120) -
FFD 0.024 (0.020) 1.537 (0.091) 0.952 (0.019) 2.453 (0.152) -
RCN 0.027 (0.018) 1.483 (0.140) 0.944 (0.022) 0.863 (0.021) 0.032 (0.005)
RRN 0.029 (0.020) 1.473 (0.135) 0.943 (0.028) 0.512 (0.015) 0.028 (0.010)
CABN 0.020 (0.014) 1.642 (0.149) 0.966 (0.029) 0.284 (0.011) 0.013 (0.001)

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Fig. 14  Visual deformable registration results of Test12. a Fixed image. b Moving image. c SyN. d FFD. e RCN. f RRN. g CABN. h Subtraction 
image before registration. Sub-images (i–m) correspond to the subtraction images of the above algorithm in turn

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (k) (l) (m)

(b) (c) (d) (e) (f)f (g)

(j)

Fig. 13  Visual deformable registration results of ChestX-ray8. a Fixed image. b Moving image. c SyN. d FFD. e RCN. f RRN. g CABN. h Sub-
traction image before registration. Sub-images (i–m) correspond to the subtraction images of the above algorithm in turn
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Comparing these results with Figs. 10 and 11 and Table 3, 
we can find that replacing the traditional affine method 
with CCAB can not only reduce the time required for reg-
istration, but also better help to improve the registration 
accuracy as a pre-processing operation before the deform-
able registration. The dice of the results also increase 
0.97% and 0.57% in average, compared to the combina-
tion of affine and BUB as shown in Table 3. Therefore, our 
method CABN outperforms other traditional methods and 
deep learning methods in dealing with large deformation 
of lung X-ray.

Discussion

The registration of X-ray chest radiographs often faces 
the problem that the position and shape of the lungs in the 
two images are very different and it is difficult to register. 
Generally, for these large deformations, the fairly method 
is to deal with rigid deformation and non-rigid deforma-
tion in cascade. We proposed corresponding networks for 
the two tasks.

In rigid deformation registration, we choose affine based 
on the traditional registration toolbox ANTs and Elastix, 

Fig. 15  Visual deformable 
registration results of other two 
patients’ data. From left to right 
are respectively fixed images, 
CCAB, and CABN result. The 
images in the second line corre-
spond to the subtraction images 
of the above images in turn
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Table 5  Comparison of 
different deformable registration 
methods. Standard deviation is 
provided in the brackets. The 
best performances are shown 
in bold

Methods ChestX-ray8
MSE MI Dice CPU time/s GPU time/s

CCAB 0.028 (0.015) 1.032 (0.204) 0.926 (0.028) - -
CCAB + SyN 0.023 (0.024) 1.350 (0.212) 0.958 (0.037) 2.200 (0.048) -
CCAB + FFD 0.017 (0.016) 1.370 (0.172) 0.963 (0.018) 2.376 (0.187) -
CCAB + RCN 0.022 (0.015) 1.348 (0.172) 0.956 (0.014) 0.808 (0.136) 0.025 (0.002)
CCAB + RRN 0.023 (0.014) 1.354 (0.138) 0.955 (0.023) 0.488 (0.013) 0.025 (0.018)
CCAB + BUB (CABN) 0.015 (0.011) 1.376 (0.219) 0.966 (0.024) 0.378 (0.014) 0.012 (0.001)
Methods Test12

MSE MI Dice CPU time/s GPU time/s
CCAB 0.030 (0.020) 1.256 (0.119) 0.928 (0.032) - -
CCAB + SyN 0.028 (0.041) 1.629 (0.111) 0.953 (0.029) 2.267 (0.081) -
CCAB + FFD 0.024 (0.023) 1.632 (0.092) 0.959 (0.037) 2.362 (0.161) -
CCAB + RCN 0.025 (0.010) 1.626 (0.128) 0.956 (0.019) 0.785 (0.021) 0.028 (0.004)
CCAB + RRN 0.029 (0.029) 1.621 (0.129) 0.953 (0.028) 0.487 (0.012) 0.027 (0.010)
CCAB + BUB (CABN) 0.020 (0.014) 1.642 (0.149) 0.966 (0.029) 0.284 (0.011) 0.013 (0.001)

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Fig. 16  Visualization results of different algorithms of ChestX-
ray8. a Fixed image. b CCAB. c CCAB + SyN. d CCAB + FFD. e 
CCAB + RCN. f CCAB + RRN. g CABN. h Subtraction image before 

registration. Sub-images (i–m) correspond to the subtraction images 
of the above algorithm in turn

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Fig. 17  Visualization results of different algorithms of Test12. 
a Fixed image. b CCAB. c CCAB + SyN. d CCAB + FFD. e 
CCAB + RCN. f CCAB + RRN. g CABN. h Subtraction image before 

registration. Sub-images (i–m) correspond to the subtraction images 
of the above algorithm in turn
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and GlobalNet and DLIR as comparative experiments. From 
the subtraction images in Figs. 5 and 6, we can see that the 
result of DLIR is obviously inaccurate. This is because its 
structure is to extract the features of the moving map and 
the fixed map separately and combine them at the end of 
the network. Although this makes it possible to deal with 
the case where the size of the two input images is inconsist-
ent, it cannot extract the correlation information between 
the images well. GlobalNet’s method of concatenating two 
images and extracting features using a single channel can 
achieve better registration results. However, this will lead 
to insufficient utilization of the internal information of the 
image. In contrast, CCAB can not only take advantage of 
the dual channel structure to extract the internal information 
of images, but also adds CCM to fuse the large-scale infor-
mation between images. The results are visually similar to 
those of the conventional affine methods. The quantitative 
data in Table 1 can also demonstrate that. In addition, our 
method outperforms the conventional methods in running 
time. Furthermore, we also performed ablation experi-
ments. We compared the two cases that choosing the affine 
based on the traditional method and choosing CCAB as the 
pretreatment before non-rigid registration. The experimen-
tal results show that choosing CCAB as the pretreatment 
can help the non-rigid deformation registration method to 
improve the accuracy.

In non-rigid deformation registration, we choose RRN 
and RCN, which are also good at handling large defor-
mation, and SyN and FFD, which are commonly used in 
conventional methods, as comparative experiments. As 
shown in Figs. 10 and 11, the visual results show that 
these results are approximately the same. However, when 
focusing on the lung contour, we can find that there are 
still structural differences between the fixed images and 
moved images of SyN, RRN, and RCN. When it comes 
to FFD and BUB, the black part of the lower side of the 
right lung is less, which means that the lung structures 
in the two images are more similar and the registration 
results are better. The quantitative data in Table 3 can also 
demonstrate that.

Then, we compare CABN with other algorithms. The 
experimental results of Table 4 and Figs. 13 and 14 have 
demonstrated that CABN can generate more accurate regis-
tration results. We have also completed the ablation experi-
ment. In the non-rigid deformation registration experiment, 
we use CCAB instead of affine to complete the preprocess-
ing operation. It can be found in Table 5 and Figs. 16 and 17 
that after the replacement, the visualization results and quan-
titative indicators are improved compared with those before 
the replacement, which indicates that the CCAB module has 
a wide range of applications and can be used for preprocess-
ing before non-rigid registration.

Conclusion

In this paper, we have proposed a deep learning–based fast 
registration network CABN on lung X-ray images. CABN 
which consists of CCAB and BUB provides a high degree 
of flexibility to model the lung motion. In BUB, we also 
introduce the conditional module to efficiently select regu-
larization parameters. This avoids the tedious operation of 
training different hyperparametric models multiple times. 
The experimental results show that CCM in CCAB can help 
extract and learn the relevant long-distance information 
among the fixed images and the moving images, which con-
tributes to more accurate registration results. The results 
have also demonstrated that BUB can effectively reduce 
the structural differences between the two images with the 
help of applying the idea of cubic B-splines. Through the 
cascade of CCAB and BUB, CABN can achieve more accu-
rate results compared with other conventional and deep 
learning registration methods which are good at dealing 
with large deformation.
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