Table 1.
The performance comparison between NHGNN-DTA and other SOTA models on the Davis dataset.a
| Method | MSE | CI | |
|---|---|---|---|
| DeepDTA | 0.261(0.007) | 0.878(0.002) | 0.63(0.015) |
| MT-DTI | 0.245 | 0.887 | 0.665 |
| GraphDTA | 0.229(0.005) | 0.893(0.002) | 0.685(0.016) |
| GEFA | 0.228 | 0.893 | |
| rzMLP | 0.205 | 0.896 | 0.709 |
| EnsembleDLM | 0.202(0.005) | 0.907(0.004) | |
| FusionDTA | 0.208(0.002) | 0.913(0.001) | 0.743(0.002) |
| MgraphDTA | 0.207(0.001) | 0.900(0.004) | 0.710(0.005) |
| NHGNN(Ours) | 0.196(0.004) | 0.914(0.002) | 0.744(0.003) |
Bold corresponds to the best performance for each metric, and underline indicates the second best. / indicates that the larger/smaller the metrics, the better the model performance.