Skip to main content
. 2023 May 30;39(6):btad355. doi: 10.1093/bioinformatics/btad355

Table 1.

The performance comparison between NHGNN-DTA and other SOTA models on the Davis dataset.a

Method MSE CI  rm2
DeepDTA 0.261(0.007) 0.878(0.002) 0.63(0.015)
MT-DTI 0.245 0.887 0.665
GraphDTA 0.229(0.005) 0.893(0.002) 0.685(0.016)
GEFA 0.228 0.893
rzMLP 0.205 0.896 0.709
EnsembleDLM 0.202(0.005) 0.907(0.004)
FusionDTA 0.208(0.002) 0.913(0.001) 0.743(0.002)
MgraphDTA 0.207(0.001) 0.900(0.004) 0.710(0.005)
NHGNN(Ours) 0.196(0.004) 0.914(0.002) 0.744(0.003)
a

Bold corresponds to the best performance for each metric, and underline indicates the second best. / indicates that the larger/smaller the metrics, the better the model performance.