Skip to main content
. 2023 May 30;39(6):btad355. doi: 10.1093/bioinformatics/btad355

Table 2.

The performance comparison between NHGNN-DTA and other SOTA models on the KIBA dataset.

Method MSE CI  rm2
DeepDTA 0.194(0.008) 0.863(0.005) 0.673(0.019)
MT-DTI 0.152 0.882 0.738
GraphDTA 0.139(0.008) 0.891(0.001) 0.725(0.018)
rzMLP 0.142 0.89 0.748
EnsembleDLM 0.138(0.003) 0.895(0.001)
FusionDTA 0.130(0.002) 0.906(0.001) 0.793(0.002)
MgraphDTA 0.128(0.001) 0.902(0.001) 0.801(0.001)
NHGNN(Ours) 0.124(0.002) 0.907(0.001) 0.807(0.002)

Bold corresponds to the best performance for each metric, and underline indicates the second best.