Table 4.
Scenario | Method | MSE | CI | |
---|---|---|---|---|
Cold drug | GraphDTA | 0.471 (0.047) | 0.713(0.002) | 0.342(0.007) |
GEFA | 0.464(0.032) | 0.721(0.003) | 0.346(0.006) | |
FusionDTA | 0.429(0.031) | 0.748(0.005) | 0.364(0.012) | |
MgraphDTA | 0.425(0.047) | 0.746(0.002) | 0.366(0.016) | |
NHGNN(Ours) | 0.385(0.029) | 0.756(0.007) | 0.400(0.015) | |
Cold target | GraphDTA | 0.469(0.089) | 0.610(0.035) | 0.368(0.057) |
GEFA | 0.462(0.091) | 0.636(0.037) | 0.362(0.052) | |
FusionDTA | 0.439(0.062) | 0.685(0.032) | 0.390(0.067) | |
MgraphDTA | 0.435(0.055) | 0.674(0.028) | 0.382(0.047) | |
NHGNN(Ours) | 0.382(0.071) | 0.732(0.041) | 0.452(0.054) | |
All cold | GraphDTA | 0.676(0.113) | 0.601(0.030) | 0.149(0.067) |
GEFA | 0.639(0.065) | 0.628(0.047) | 0.152(0.035) | |
FusionDTA | 0.587(0.086) | 0.641(0.023) | 0.193(0.053) | |
MgraphDTA | 0.590(0.094) | 0.626(0.028) | 0.182(0.012) | |
NHGNN(Ours) | 0.565(0.094) | 0.649(0.037) | 0.218(0.047) |
Bold corresponds to the best performance for each metric, and underline indicates the second best.