
RESEARCH ARTICLE
www.advancedscience.com

Metabolome-Based Genome-Wide Association Study of
Duck Meat Leads to Novel Genetic and Biochemical Insights

Dapeng Liu, He Zhang, Youyou Yang, Tong Liu, Zhanbao Guo, Wenlei Fan,
Zhen Wang, Xinting Yang, Bo Zhang, Hongfei Liu, Hehe Tang, Daxin Yu, Simeng Yu,
Kai Gai, Qiming Mou, Junting Cao, Jian Hu, Jing Tang, Shuisheng Hou,*
and Zhengkui Zhou*

Meat is among the most consumed foods worldwide and has a unique flavor
and high nutrient density in the human diet. However, the genetic and
biochemical bases of meat nutrition and flavor are poorly understood. Here,
3431 metabolites and 702 volatiles in 423 skeletal muscle samples are profiled
from a gradient consanguinity segregating population generated by Pekin
duck × Liancheng duck crosses using metabolomic approaches. The authors
identified 2862 metabolome-based genome-wide association studies
(mGWAS) signals and 48 candidate genes potentially modulating metabolite
and volatile levels, 79.2% of which are regulated by cis-regulatory elements.
The level of plasmalogen is significantly associated with TMEM189 encoding
plasmanylethanolamine desaturase 1. The levels of 2-pyrrolidone and
glycerophospholipids are regulated by the gene expression of AOX1 and
ACBD5, which further affects the levels of volatiles, 2-pyrrolidone and
decanal, respectively. Genetic variations in GADL1 and CARNMT2 determine
the levels of 49 metabolites including L-carnosine and anserine. This study
provides novel insights into the genetic and biochemical basis of skeletal
muscle metabolism and constitutes a valuable resource for the precise
improvement of meat nutrition and flavor.

1. Introduction

Meat is considered the postmortem skeletal muscle of vertebrate
animals,[1,2] has played a crucial role in human evolution and is
an important component of a healthy and balanced diet due to its
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highly abundant nutrients.[3] As a com-
plex food, meat displays various biochem-
ical properties that are largely determined
by a variety of metabolites, including both
hydrophilic and hydrophobic metabolites.[4]

Hydrophilic metabolites and lipids in skele-
tal muscle not only provide essential nutri-
tion but also, as flavor-precursor volatiles,
determine meat flavor.[5,6] Volatiles are es-
sential for good flavor in particular and
are generated through complex chemi-
cal reactions among various metabolites,
such as lipid autoxidation and the Mail-
lard reaction.[7,8] Recently, metabolome and
volatilome analyses have been widely ap-
plied in meat phenotype studies.[9–12] How-
ever, the meat metabolome, volatilome, and
their correlation have not been systemat-
ically studied, which hinders further re-
search and improvement of the nutrition
and flavor of the meat.[13,14]

In recent years, metabolomic anal-
ysis coupled with genome-wide as-
sociation studies (GWAS) has made
it possible to simultaneously screen
a large number of genetic loci

for important metabolic traits to understand the genetic basis
of metabolic diversity and its relevance to complex traits.[15] For
example, metabolic GWASs (mGWASs) on blood metabolites
have been carried out in humans, resulting in the identifica-
tion of a large number of genetic loci for metabolite concen-
trations and providing new insight into many disease-related
associations.[16–18] In plants, a series of studies have been carried
out on important crops and fruits, including rice,[19] maize,[20]

wheat,[21] tomato[22] and peach,[23] and have provided an in-
dispensable reference to help understand the genetic basis of
metabolomes and to facilitate breeding for enhanced nutritional
value. Thus, understanding the genetic basis of the metabolome
and volatilome in meat is essential to improve and enhance the
nutritional value and flavor of meat for consumers.

Roasted Pekin duck is a world-famous dish produced from
Pekin duck.[24] As an elite indigenous breed, Liancheng duck is
the most popular among local consumers due to its highly de-
licious flavor.[25] There are dramatic differences between Pekin
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duck and Liancheng duck in terms of nutrients and flavor (Fig-
ure S1, Supporting Information). Here, we constructed a large
Pekin duck (high meat yield and subcutaneous fat content) ×
Liancheng duck (low meat yield and subcutaneous fat content)
gradient consanguinity segregating population to profile metabo-
lites in raw meat and volatiles in cooked meat, as well as explored
their genetic and biochemical basis. Our study identified a num-
ber of QTLs affecting the levels of metabolites and volatiles and
provided novel insights into the genetic basis of skeletal muscle
metabolic traits. Moreover, our study provided powerful data for
meat quality improvement.

2. Results

2.1. Metabolite Profiling of Skeletal Muscle

We collected 423 individual breast muscle samples from a gradi-
ent consanguinity F3 segregating population generated by Pekin
duck × Liancheng duck crosses at 6 weeks of age (Figure 1a; Ta-
ble S1, Figure S2, Supporting Information). Based on the broadly
targeted profiling method using liquid chromatography–tandem
mass spectrometry (LC–MS/MS), we detected 3431 metabolic
features in total. Among them, 321 hydrophilic metabolites and
950 lipids were annotated. Amino acids, nucleotides, vitamins,
carbohydrates, and their derivatives comprised the main identi-
fied hydrophilic compounds. The annotated lipids contained 6
categories, including glycerophospholipids (GPs), glycerolipids
(GLs), sphingolipids (SPs), fatty acyls (FAs), sterol lipids (STs),
and prenol lipids (PRs) (Table 1; Figure S3a,b, Tables S2,S3, Sup-
porting Information). Furthermore, volatile compounds were
produced from the same meat samples and investigated using
gas chromatography-high resolution mass spectrometry com-
bined with the solid-phase microextraction technique (SPME-
GC-HRMS). A total of 702 volatile features were detected. The
153 annotated volatiles consisted of 11 classes, including alde-
hydes, ketones, alcohols, hydrocarbons, acids, furans, phenols,
esters, sulfur-containing compounds, nitrogen-containing com-
pounds, and others (Table 1; Figure S3c, Table S4, Supporting
Information).

For the broad variations in hydrophilic metabolites, lipids, and
volatiles, 38.08%, 54.00%, and 57.26% had coefficients of vari-
ation greater than 50%, respectively (Figure S4, Supporting In-
formation). The broad-sense heritability (H2) was greater than
0.5 for 25.43% hydrophilic features, 15.16% lipids, and 14.67%
volatile features. A total of 2.54% of the features had heritability
over 0.9 (Figure S4, Supporting Information). These results sug-
gested that genetic variations affected the levels of metabolites
and volatiles.

According to partial least squares discriminant analysis (PLS-
DA) based on the total feature contents, seven lines from the 423
individuals showed continuously distributed clusters in line with
the consanguinity relationship (Figure 1c; Figure S5, Supporting
Information), and we found that the levels of 829 metabolites
and volatiles (20.06%) showed increasing or decreasing trends
from R1 to R7 (Among them, 367 with increasing trends and 462
with decreasing trends, Table S5, Figure S6, Supporting Informa-
tion). Then the discriminant features between Pekin duck (n =
30) and Liancheng duck (n = 30) were screened, including 145
hydrophilic metabolites, 144 lipids, and 180 volatiles (|log2fold-

change| > 1 and FDR < 0.05, Table S6, Figure S7, Supporting
Information). Based on the trend analysis and differential analy-
sis, a total of the overlapped 174 molecules were selected as the
potential compounds with nutrition or flavor values for Peking
duck and Liancheng duck. (Table S7, Supporting Information).

In addition, the deposition rules of the total metabolic fea-
tures at seven different developmental stages (1 day, 1–6 weeks)
were explored. Most of the metabolites, such as lysophos-
phatidylethanolamines and triglycerides (TGs), preferentially
accumulated in Pekin duck, while organic acids and their
derivatives and sphingomyelins (SMs) had higher concentra-
tions in Liancheng duck. Different metabolic patterns could be
attributed to the specific breed characteristics between Pekin
duck and Liancheng duck samples (Tables S8–S10, Supporting
Information).

The relationship between the metabolome in raw meat and the
volatilome in cooked meat has not been clearly and systematically
studied to date. To address this issue, metabolites in raw meat
and volatiles in cooked meat were profiled, and their correlations
were investigated. The results showed that GPs were the main
metabolites that were highly correlated with volatiles. GPs had
both positive (r > 0.3, P < 0.05) and negative (r < −0.3, P < 0.05)
influences on the volatile levels since GPs could produce
volatiles, and also retain volatiles due to the hydrophobic and hy-
drophilic forces between the GPs and volatiles. In addition, GLs,
including TGs and diglycerides (DGs), had limited effects on the
volatile levels (Figure 1d, Table S11, Supporting Information).
PC(19:0_18:2), PE(18:2_16:0), and PE(19:0_18:2) (r = 0.31, 0.30,
and 0.29, respectively) were positively correlated with the 3-octen-
2-one level, which was generated through the autoxidation of
linoleic acid (C18:2) during the heating procedure.[26] Likewise,
PE(18:1_20:3) was highly correlated with heptanal (r = 0.26)
since eicosatrienoic acid (C20:3) could undergo autoxidation and
thermal degradation[27] (Figures S8,S9, Supporting Informa-
tion). For the hydrophilic metabolites, only a few were correlated
with the volatiles. Valylmethionine and glutamylmethionine con-
taining methionine had significant correlations with methional
(r = 0.41, 0.39) since methional was generated through the
Strecker degradation of methionine[28] (Figure S8, Supporting
Information).

Furthermore, a systematic correlation between metabolites
and volatiles was investigated. We found that the levels of hy-
drophilic metabolites (betaine, N-acetylglycine, N-methylalanine)
and lipids (HexCer (d18:1/18:0), HexCer (d18:1/18:1), HexCer
(d18:1/20:1)) were significantly higher in Liancheng duck than in
Pekin duck, positively correlated (r > 0.35, P < 0.05) with volatiles
such as tetramethyl-2-heptanone, ethyl acetate and 2-pyrrolidone
and negatively correlated with undecanone, capric acid, and
caprylic acid (r < −0.35, P < 0.05). Interestingly, hydrophilic
metabolites (N-acetyl-L-histidine, nicotinic acid-adenine dinu-
cleotide) and lipids (PC (15:0_16:0), PE (17:1_18:1)) had sig-
nificantly higher levels in Pekin duck, negatively correlated
with tetramethyl-2-heptanone, ethyl acetate and 2-pyrrolidone
(r < −0.35, P < 0.05) and positively correlated with undecanone,
capric acid, and caprylic acid (r > 0.35, P < 0.05) (Figure S10,
Supporting Information). The analysis not only identified the
differential metabolites and volatiles between Pekin duck and
Liancheng duck but also contributed to the study of flavor-related
pathways.
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Figure 1. Meat metabolome profile and correlation for the Pekin duck × Liancheng duck gradient consanguinity segregating population. a) Gradient
consanguinity design used for the generation of a large segregating duck population for the genetic and biochemical basis of metabolites and volatiles.
b) PCA divided 423 individuals into six independent clusters based on SNPs. c) PLS-DA analysis of 423 individuals shows continuously distributed
clusters of the 7 lines based on the levels of metabolites and volatiles. d) A heatmap depicting Pearson’s correlation between secondary categories of
metabolites and volatiles. The red box represents a Pearson’s correlation greater than 0.3, and the blue box represents a Pearson’s correlation less than
−0.3. Three rectangles are annotated on the bottom left.
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Table 1. Summary of hydrophilic metabolites, lipids, and volatiles in meat.

Amino acids and
derivatives

Nucleotides and
derivatives

Organic acid and
derivatives

Amines and
cholines

Coenzyme and
vitamins

Carbohydrates
and derivatives

Hydrophilic metabolites
2, 481

105 56 46 18 17 15

Benzene and derivatives Esters Heterocyclic
compounds

Others Unknown

14 12 9 29 2160

Lipids 950 Glycerophospholipids
(GPs)

Glycerolipids
(GLs)

Sphingolipids (SPs) Fatty acyls (FAs) Sterollipids (STs) Prenollipids
(PRs)

395 365 86 78 23 3

Volatiles702 Ketones Aldehydes Hydrocarbons Sulfur-containing
compound

Esters Acids

27 25 22 16 15 9

Nitrogen-containing
compound

Furans Alcohols Phenols Others Unknown

8 9 8 3 11 549

Table 2. Summary of genome-wide significant associations identified in mGWAS.

Item Hydrophilic
metabolites

Lipids Volatiles

Number of traits 427 75 171

Number of lead SNPsa) 1696 126 1040

Number of locib) 475 67 521

SNPs above 10% of the variation 342 35 391

Maximum explained variation(%) 29.7 59.2 21.1

Explained variation per SNP(%) 9.5 10.3 9.9

a)
The SNPs with the lowest P value in a defined region;

b)
Adjacent lead SNPs separated by less than 300 kb were considered as a cluster.

2.2. Genetic Basis of Metabolites and Volatiles in Skeletal Muscle

We generated sequencing data for 423 individuals from 7 gra-
dient consanguinity segregating populations generated by Pekin
duck × Liancheng duck crosses at 6 weeks with a mean coverage
depth of 5×. These data were used to identify variations at the
whole-genome level. A total of 8665026 SNP datasets were gen-
erated. Principal component analysis (PCA) results showed that
the 423 individuals could be divided into six independent clus-
ters, indicating that their genetic relationship was consistent with
the gradient consanguinity segregating populations (Figure 1b).

We then performed mGWAS using the 4133 metabolite and
volatile feature phenotypes in 423 ducks based on a mixed lin-
ear model (MLM). A Bonferroni correction of P = 8.94 × 10−8

was employed as the genome-wide threshold for all trait asso-
ciations, and a total of 2862 signals corresponding to 1063 loci
for 673 metabolites were detected. Among them, 1696 signals
corresponded to 427 hydrophilic metabolic features, 126 signals
corresponded to 75 lipids, and 1040 signals corresponded to 171
volatile features (Table S12–S15, Supporting Information). A to-
tal of 16.28% of the metabolites detected (673 out of 4133) had
at least one significant association, with an average of 4.4 asso-
ciations per metabolite. In general, these signals showed large
effects when explaining the variation: up to 29.65% (N-methyl-L-
glutamate), 59.17% (PC(14:0_22:6)), and 21.13% (2-pyrrolidone)

for hydrophilic metabolites, lipids, and volatiles, respectively,
with an average of 9.7% (Table 2; Tables S12–S14, Supporting In-
formation).

Manhattan plots of the significant signals that were detected
repeatedly are also illustrated, including 51 signals correspond-
ing to amino acids and their derivatives, GPs, TGs, and other
known metabolites, as well as 190 signals corresponding to cur-
rently unknown metabolites (Figure 2, Table S16, Supporting In-
formation). Genome-wide analysis of the significant loci identi-
fied a significant deviation from a random distribution across the
29 autosomes (𝜒2 = 186.4, P < 2.2 × 10−16), suggesting that these
significant regions contained major genes controlling the levels
of large sets of metabolites. A total of 137 potential mGWAS hot
spots (signal number> 7, permutation test, P< 0.01) were identi-
fied and located on chromosomes 2, 7, and 28 (Figure S11a, Table
S17, Supporting Information).

To explore whether the genetic divergence between the Pekin
duck and Liancheng duck results in changes in metabolite con-
tents, we scanned the genome for regions with extreme diver-
gence in allele frequency (top 1%) in a 10-kb sliding window on
autosomes, showing that 52.14% (85 of 163) of diverse regions
overlapped with mGWAS signals (Figure 2; Figure S11b, Table
S18, Supporting Information). These results indicated that the
levels of breed-specific metabolites and volatiles often changed
alongside the genetic divergence, supporting the opinion that
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Figure 2. Manhattan plots of mGWAS results with the genetic association. The strength of association for known (top) and unknown (bottom) metabo-
lites and volatiles is indicated as the negative logarithm of the P value for the MLM. All metabolite and volatile SNP associations with P values below
8.94 × 10−8 (horizontal dashed line in all Manhattan plots) are plotted against genome location in intervals of 1 Mbp. The bars in the middle panel
represent the overlapped regions for mGWAS signals and selective signals. Triangles represent metabolites and volatile SNP associations with P values
below 1.0 × 10−20.

metabolites are regarded as a bridge between the genome and
phenome.[16]

Based on our mGWAS results, we searched for candidate
genes utilizing the following principles: i) LD analysis for signif-
icant loci, ii) gene expression, and iii) prior knowledge. We were
able to identify 48 candidate genes modulating metabolites and
volatiles important for muscle physiological or nutritional traits
(Table 3; Figure S12, Tables S19,S20, Supporting Information).
In summary, we identified a large set of mGWAS signals in the
meat metabolome and volatilome whose levels were under com-
plex genetic regulation.

2.3. TMEM189, a Key Gene that Regulates the Synthesis of
Plasmalogens

Plasmalogens, which contain a characteristic vinyl ether-linked
alkyl chain at the sn-1 position of the glycerol backbone,[29] have
long been reported to maintain the cell membrane and have
potential in therapeutic strategies for neurodegenerative and car-
diometabolic diseases.[30,31] In general, plasmenylethanolamine
(PE-P) accounts for more than half of the total plasmalogens in
muscle.[32] The levels of PE(P-18:1_18:2) showed an increasing
trend from R1 to R7 (Figure 3a,b). Moreover, the PE(P-18:1_18:2)
level was significantly associated (P = 6.4 × 10−16) with an SNP
(7366333 bp) on chromosome 21 spanning a QTL interval from
7.20 to 7.55 Mbp (Figure 3c). The lead SNP with the highest
association with PE (P-18:1_18:2) content explained 15.40% of
the total variance (Figure 3d).

Then, we defined the causal region by calculating pairwise LD
within this QTL surrounding the lead SNP (Chr21: 7366333 bp).
Seventy SNPs spanning a region from 7.33–7.43 Mbp were highly
correlated (pairwise r2 > 0.4; Figure 3e). To further narrow the
QTL, we characterized the recombination events in the candi-
date region and identified three recombinant breakpoints that di-
vided the 423 ducks into twelve haplotypes (Figure 3f). Only the
haplotypes in block 4 (Chr21:7376251-7376302 bp) located on the

TMEM189 gene could absolutely distinguish the levels of PE (P-
18:1_18:2) (Figure 3f).

TMEM189 encodes plasmanylethanolamine desaturase 1
(PEDS1).[29] PEDS1 is a key enzyme in the biosynthesis of plas-
malogens, introducing the vinyl ether double bond and gener-
ating PE-P[33] (Figure 3h). Notably, TMEM189 was highly and
specifically expressed in both adipose tissue and breast muscle
(Figure S13a, Supporting Information). Then, we performed a
Western blot analysis of TMEM189 in the breast muscles of in-
dividuals at 6 weeks with high PE(P-18:1_18:2) contents and low
PE(P-18:1_18:2) contents (n = 3, respectively). A higher protein
expression of TMEM189 was observed in individuals with high-
PE(P-18:1_18:2) contents than those with low-PE(P-18:1_18:2)
contents, resulting in the differences in PE(P-18:1_18:2) levels
(Figure 3g; Figure S13b, Supporting Information). The gene cod-
ing for the plasmalogen biosynthesis enzyme in livestock has not
yet been fully identified. Our study supports that genetic variation
in TMEM189 affects the levels of PEDS1 protein expression reg-
ulating the amount of PE(P-18:1_18:2) in muscle, which could
possibly be used as a dietary supplement to prevent or treat neu-
rodegenerative diseases.

2.4. Identification of a 2-Pyrrolidone Synthesis-Controlling Gene

2-Pyrrolidone was identified as a potential characteristic volatile
distinguishing Pekin duck and Liancheng duck. This metabo-
lite gives off a maple and popcorn-like smell when heated.[34] 2-
Pyrrolidone was present in both the hydrophilic metabolome and
volatilome, and the correlation coefficient was 0.76 (Figure 4a,b).

According to mGWAS, the levels of 2-pyrrolidone in the hy-
drophilic metabolome and volatilome were significantly associ-
ated with QTLs (4.56–5.23 Mbp) on chromosome 7 (Figure 4c).
The lead SNP (Chr7: 4810144 bp) with the highest association
with 2-pyrrolidone levels explained 28.90% and 21.11% of the
total variance (Figure S14a,b, Supporting Information). Interest-
ingly, we found that 2-pyrrolidone levels showed an increasing
trend from R1 to R7 with the increasing T allele frequency at
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Table 3. Summary of 48 genes assigned from mGWAS results.

Metabolite Class -LOG10(P) Region Candidate
gene

Description

Citric acid Hydrophilic
metabolites

10.98 Chr1:41.40-
41.20Mb

KLF12 Activator protein-2 alpha is a developmentally-regulated
transcription factor

Cer(d18:1/20:0) Lipids 11.56 Chr1:51.95-
52.05Mb

TGDS A member of the short-chain dehydrogenases/reductases (SDR)
superfamily

L-Cystathionine Hydrophilic
metabolites

9.66 Chr1:80.20-
80.40Mb

CBSL Cystathionine beta-synthase-like protein

LPC(O-20:0) Lipids 9.22 Chr1:134.15-
135.69Mb

FAR2 Fatty Acyl-CoA Reductase 2

2’-Deoxycytidine
5’-diphosphate

Hydrophilic
metabolites

9.05 Chr1:156.20-
156.40Mb

FGD6 FYVE, RhoGEF And PH Domain Containing 6

Benzofuran,2-methyl Volatiles 9.42 Chr1:161.00-
162.50Mb

SYT1 Synaptotagmin 1

TG(16:0_16:0_17:0) Lipids 9.09 Chr1:172.75-
173.10Mb

PNPLA8 Patatin Like Phospholipase Domain Containing 8

Methylparaben Hydrophilic
metabolites

9.03 Chr1:190.40-
191.20Mb

MAGI2 Membrane Associated Guanylate Kinase, WW, and PDZ Domain
Containing 2

Pantetheine Hydrophilic
metabolites

10.25 Chr2:0.20-0.30Mb SMARCD3 SWI/SNF-Related Matrix-Associated Actin-Dependent Regulator

2-(4-
Hydroxyphenyl)ethanol

Hydrophilic
metabolites

9.87 Chr2:7.50-7.70Mb DPP6 Dipeptidyl Peptidase Like 6

PC(14:0_22:6) Lipids 76.78 Chr2:16.80-
16.89Mb

ACBD5 Acyl-CoA Binding Domain Containing 5

Histidine Hydrophilic
metabolites

11.41 Chr2:42.40-
42.50Mb

GADL1 Glutamate Decarboxylase Like 1

PC(17:1_20:4) Lipids 16.10 Chr2:46.00-
46.80Mb

COL15A1 Collagen Type XV Alpha 1 Chain

2-Decanone Volatiles 9.28 Chr2:70.00-
72.50Mb

CDH12 Cadherin 12

PE(24:0_18:1) Lipids 9.11 Chr2:76.56-
76.63Mb

CDH6 Cadherin 6

TG(16:0_16:2_16:3) Lipids 9.68 Chr2:100.60-
101.20Mb

CDH7 Cadherin 7

LPC(24:0/0:0) Lipids 10.13 Chr2:104.34-
104.53Mb

MYL2 Myosin regulatory light chain 2

DG(16:0_19:1) Lipids 9.56 Chr2:153.60-
153.75Mb

TSNARE1 Predicted to be an integral component of the membrane

PC(15:0_16:1) Lipids 11.01 Chr3:16.90-
17.05Mb

CSTL1 Cystatin-like

Glutathione reduced
form

Hydrophilic
metabolites

10.17 Chr3:21.29-
21.30Mb

LIN9 Lin-9 DREAM MuvB Core Complex Component

Uridine
5-monophosphate

Hydrophilic
metabolites

10.08 Chr3:33.45-
33.90Mb

GLO1 Glyoxalase I

DG(18:0_20:3) Lipids 9.84 Chr3:33.25-
33.40Mb

ZFAND3 Zinc Finger AN1-Type Containing 3

TG(14:0_14:1_16:1) Lipids 9.18 Chr3:82.60-
82.70Mb

TPBG Trophoblast Glycoprotein

2-Methylguanosine Hydrophilic
metabolites

9.54 Chr4:10.20-
10.40Mb

GRID2 Glutamate Ionotropic Receptor Delta Type Subunit 2

PA(18:2_18:2) Lipids 10.14 Chr4:10.90-
11.10Mb

CCSER1 Coiled-Coil Serine Rich Protein 1

N-Methyl-L-glutamate Hydrophilic
metabolites

29.97 Chr4:25.70-
26.20Mb

AADAT Aminoadipate Aminotransferase

Nicotinamide
Mononucleotide

Hydrophilic
metabolites

16.78 Chr4:60.80-
60.90Mb

BST1 Bone Marrow Stromal Cell Antigen 1

(Continued)

Adv. Sci. 2023, 10, 2300148 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2300148 (6 of 17)



www.advancedsciencenews.com www.advancedscience.com

Table 3. Continued.

Metabolite Class -LOG10(P) Region Candidate
gene

Description

Punicic Acid Hydrophilic
metabolites

9.91 Chr5:5.00-5.10Mb MDGA2 MAM Domain Containing Glycosylphosphatidylinositol Anchor
2

4-Acetamidobutyric
acid

Hydrophilic
metabolites

11.69 Chr5:23.60-
24.30Mb

FLRT2 Fibronectin Leucine Rich Transmembrane Protein 2

6-O-methylguanine Hydrophilic
metabolites

8.94 Chr6:25.70-
25.80Mb

ZCCHC24 Zinc Finger CCHC-Type Containing 24

p-
Chlorophenylalanine

Hydrophilic
metabolites

10.00 Chr6:28.40-
28.70Mb

NCOA4 Nuclear Receptor Coactivator 4

2-Pyrrolidone Hydrophilic
metabolites

29.16 Chr7:4.71-4.80Mb AOX1 Aldehyde Oxidase 1

1-Acetylindole Hydrophilic
metabolites

10.25 Chr7:5.90-6.00Mb ANKRD44 Ankyrin Repeat Domain 44

L-carnosine Hydrophilic
metabolites

11.99 Chr7:37.40-
37.50Mb

CARNMT1 Carnosine N-Methyltransferase 1

(R)-(-)-2-phenylglycine Hydrophilic
metabolites

15.85 Chr8:1.00-1.20Mb BICC1 BicC Family RNA Binding Protein 1

3-Octen-2-one Volatiles 9.39 Chr8:6.25-6.35Mb LEPROT Leptin Receptor Overlapping Transcript

Sarcosine Hydrophilic
metabolites

9.16 Chr8:12.00-
12.35Mb

BEND5 BEN Domain Containing 5

Cer(d18:0/16:0) Lipids 14.47 Chr8:27.38-
27.40Mb

FMO5 Flavin Containing Dimethylaniline Monoxygenase 5

2,3-Pentanedione Volatiles 9.33 Chr11:1.10-
1.20Mb

PAQR5 Progestin And AdipoQ Receptor Family Member 5

L-Serine Hydrophilic
metabolites

10.09 Chr14:15.95-
16.05Mb

LCP2 Lymphocyte Cytosolic Protein 2

L-Proline Hydrophilic
metabolites

10.58 Chr15:5.50-
5.65Mb

ELFN1 Extracellular Leucine Rich Repeat And Fibronectin Type III
Domain Containing 1

cis-Citral Hydrophilic
metabolites

15.08 Chr15:15.90-
17.80Mb

EMP2 Epithelial Membrane Protein 2

SM(d18:1/12:0) Lipids 10.46 Chr20:2.20-
2.24Mb

FBN3 Fibrillin 3

PE(P-18:0_20:3) Lipids 13.62 Chr21:7.67-
7.76Mb

ADNP Neuroprotective factor

PE(P-18:1_18:2) Lipids 15.19 Chr21:7.20-
7.55Mb

TMEM189 Plasmanylethanolamine Desaturase 1

4-Heptanone Volatiles 9.49 Chr21:10.35-
10.45Mb

NEK6 Transferase

Guanidinoethyl
sulfonate

Hydrophilic
metabolites

29.02 Chr22:2.19-
2.23Mb

AGMAT Agmatinase

TG(18:0_18:1_20:3) Lipids 9.18 Chr25:0.50-
0.70Mb

ST3GAL4 ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 4

the lead SNP (Chr7: 4810144 bp; Figure 4d). These data indicate
that this allele frequency plays an important role in 2-pyrrolidone
content due to the genetic divergence between the Pekin duck
and the Liancheng duck. To narrow the candidate region, we
examined the lead SNP closely by calculating pairwise LD be-
tween the SNPs within the QTL (Chr7:4.56–5.23 Mbp) surround-
ing the lead SNP. Fifty-nine SNPs spanning a region from 4.56 to
5.00 Mbp were highly correlated (pairwise r2 > 0.6; Figure 4e). Ad-
ditionally, this QTL contained 3 annotated genes (AOX1, SGO2,
and SPATS2L) (Figure 4e). AOX1 encodes aldehyde oxidase. It

has been reported that the 2-pyrrolidone content decreases when
aldehyde oxidase is deficient.[35,36]

To further determine the candidate gene, we compared the
expression of 3 candidate genes and 2-pyrrolidone levels in the
skeletal muscle of Pekin ducks and Liancheng ducks at seven de-
velopmental stages (1 day and 1–6 weeks). Only AOX1 expres-
sion in Liancheng ducks was higher than that in Pekin ducks
at 1 and 2 weeks. The 2-pyrrolidone levels were correspondingly
higher at 1 and 2 weeks (Figure S14c, Supporting Information).
Then, we used qRT-PCR to measure the AOX1 gene expres-
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Figure 3. Genetic regulation of plasmalogen levels. a) Structure and MS/MS spectrum of PE(P-18:1_18:2). b) Violin plot of the levels of PE(P-18:1_18:2),
which showed an increasing trend from R1 to R7. c) Manhattan plots of mGWAS for PE(P-18:1_18:2). d) Box plot for PE(P-18:1_18:2) content, plotted
as a function of genotypes at SNP Chr21: 7366333 bp. e) Regional plots for the loci ranging from 7.20 Mbp to 7.55 Mbp associated with PE(P-18:1_18:2)
content. All genotyped SNPs are color-coded according to their pairwise LD values based on the lead SNP. SNPs are colored based on the strength
of LD values (r2 values) considering the most strongly associated SNP and the other SNPs in the region. f) Recombination event analyses are shown
in schematic form in this plot. Red bars refer to chromosomal segments originating from Pekin ducks, purple bars refer to segments originating from
Liancheng ducks, and orange bars refer to segments originating from heterozygotes. H1-9 refer to nine recombinant types. The left box plot refers to PE(P-
18:1_18:2) content. The numbers of individuals are given in brackets. Box plots denote median (centerline), 25–75th percentile (limits), minimum and
maximum values without outliers, and outliers (gray dots). g) Western blot analysis showing TMEM189 protein levels between high-PE(P-18:1_18:2)
content individuals (n = 3) and low-PE(P-18:1_18:2) content individuals (n = 3). The expression level of 𝛽-Tubulin was used as a loading control.
Western blots show representative data from experiments performed three times. h) TMEM189 encodes plasma ethanolamine desaturase (PEDS1),
which introduces the vinyl ether double bond in PE-P.

sion on 213 F3 individuals and examined the correlation with 2-
pyrrolidone content. These results shown that AOX1 gene expres-
sion was significantly correlated with the levels of 2-pyrrolidone
(r = 0.63, P = 6.23 × 10−25), suggesting that the higher ex-
pression of AOX1 in Liancheng ducks led to increased levels
of 2-pyrrolidone (Figure 4f, Table S21, Supporting Information).
In addition, 2-pyrrolidone could be generated through direct
volatilization when heated (Figure 4g). These results indicated
that 2-pyrrolidone is highly stable and can be directly used as a
molecular marker in metabolome-assisted breeding for flavor.

2.5. Glycerophospholipids and their Autoxidation-Induced
Volatiles are Regulated

Lipids are important aroma precursors.[37] The autoxidation and
thermal degradation of lipids are the main pathways for aroma
formation in meat and can produce aldehydes, ketones, and
other volatile compounds during the heating process.[7] The con-
version of volatiles from lipids has been reported and discussed
previously.[38] However, the genetic basis of this process is still
largely unknown. Interestingly, we discovered that five GPs
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Figure 4. Genetic regulation of the levels of 2-pyrrolidone a) Structure and EI–MS spectrum of 2-pyrrolidone. b) The correlation of 2-pyrrolidone (hy-
drophilic metabolites) and 2-pyrrolidone (volatiles). c) Manhattan plots of mGWAS for 2-pyrrolidone (hydrophilic metabolites, orange dot) and 2-
pyrrolidone (volatiles, blue dot). d) 2-Pyrrolidone (hydrophilic metabolites) content change corresponding to allele frequencies at a locus on Chr7:
4810144 bp in R1–R7. e) Regional plots for the QTL ranging from 4.30 to 5.10 Mbp associated with 2-pyrrolidone content. All genotyped SNPs are color-
coded according to their pairwise LD calculated based on the lead SNP. SNPs are colored based on the strength of LD values (r2 values) considering
the most strongly associated SNP and the other SNPs in the region. f) Relationship between AOX1 gene expression and 2-pyrrolidone content in 213
individuals (r = 0.63, P = 6.23 × 10−25). g) The integrated metabolic networks of the 2-pyrrolidone biosynthesis pathway.

containing very-long-chain fatty acids (VLCFAs, PC(14:0_22:6),
PE(14:0_22:6), PC(14:0_20:5), PC(14:0_20:4), and PE(20:4_14:0))
and volatile decanal were significantly associated and shared
QTL hotspots on Chr2:16 Mbp (Figure 5a).

To further narrow the QTL, we examined recombination
events in the shared QTL region. Four recombination break-
points were identified and divided the 423 ducks into 5 hap-
lotypes according to 56 SNPs. Identity-by-descent (IBD) analy-
sis indicated that the genotypes in block 4 on Chr2: 16880032-
16881763 bp could distinguish the levels of 5 GPs and decanal.
Block 4 was upstream of ACBD5 and considered the smallest

candidate region (Figure 5b). Moreover, this region showed a
large genetic divergence between Pekin ducks and Liancheng
ducks (Figure S15, Supporting Information). It was reported
that ACBD5 was involved in peroxisomal VLCFA 𝛽-oxidation
and preferentially bound very-long-chain fatty acyl-CoAs (VLC-
CoAs).[39–41]

Then, we found that ACBD5 expression in Liancheng ducks
was significantly higher than that in Pekin ducks at 5 weeks
of age and was accompanied by a lower level of 5 GPs in
Liancheng ducks (Figure 5c). To investigate functional variations
at the ACBD5 locus, we found that a tri-allele short tandem
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Figure 5. Identification of shared QTL for key genes regulating the levels of 5 GPs and decanal. a) Manhattan plots of mGWASs for 5 GPs and decanal.
b) Recombination event analyses are shown in schematic form in this plot. Red bars refer to chromosomal segments originating from Pekin ducks,
purple bars refer to segments originating from Liancheng ducks, and orange bars refer to segments originating from heterozygotes. H1-5 refer to the
five recombinant types. The left box plot refers to PE(20:4_14:0) content. The right box plot refers to decanal content. The numbers of individuals are
given in brackets. Box plots denote median (centerline), 25–75th percentile (limits), minimum and maximum values without outliers, and outliers (gray
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repeats (→C, →CCCCGT, →CCCCGTCCCGT) at position
Chr2:16865736 in the ACBD5 promoter region could be classi-
fied into three haplotypes (Figure 5d, Table S22, Supporting In-
formation). We performed a BLAST search of the sequences sur-
rounding Chr2:16865736 (→C, →CCCCGT,→CCCCGTCCCGT)
(40 bp upstream and 40 bp downstream), and we found that this
locus was conserved among birds (Figure 5e). Interestingly, Hap
3 showed lower contents of the 5 GPs than Hap 1 and Hap 2
(Figure 5f). Moreover, we also found lines with low GP contents
had increased ACBD5 expression and contained 10 bp inserts
while lines with high GP contents contained 5 bp inserts or no
inserts (Figure 5g, Table S23, Supporting Information).

To further determine whether variation in the promoter af-
fected gene expression, we compared the transcriptional activity
of the promoters of HAP1, HAP2, and HAP3 using a dual lu-
ciferase reporter gene assay. Hap3_pro exhibited 1.85-fold higher
activity than Hap2_pro, resulting in the observed higher expres-
sion of Hap3 than Hap2. This was consistent with the observed
differences in gene expression of ACBD5 among three haplo-
types (Figure 5h).

These results indicated that ACBD5 was a candidate gene reg-
ulating the levels of these 5 GPs by transporting VLC-CoAs into
the peroxisome for 𝛽-oxidation. Afterward, these VLCFAs were
subsequently incorporated into the membrane.[41,42] Lipids could
be oxidized to volatiles such as decanal through peroxidation and
degradation during heating (Figure 5i). This is a typical example
of the genetic regulation of lipids and its further influence on the
volatiles in meat.

2.6. Identification of Synthesis-Controlling Genes for Carnosine
and Related Metabolites

Carnosine, an animal-specific metabolite, is considered to be an
important antioxidant, pH buffer, and neuromodulator.[43] How-
ever, its biosynthetic route is controversial. mGWAS identified
two significant signals (Chr2, 7) for 49 metabolites, including
8 annotated metabolites, such as carnosine, anserine, and histi-
dine carnosine, as well as 31 unknown metabolites (Figure 6a,b).
Moreover, we found that the levels of 49 metabolites showed a de-
creasing trend from R1 to R7 (Figure 6a, Table S24, Supporting
Information).

Using IBD analysis, we discovered the smallest candidate re-
gions, including block 3 (Chr2: 42242000 bp–42261000 bp) lo-
cated on the GADL1 gene and block 4 (Chr7: 37472000 bp–
37497000 bp) located on the CARNMT2 gene (Figure 6c,d), which
could affect each correlated metabolite level. These two blocks
showed a large genetic divergence between Pekin ducks and
Liancheng ducks (Figure S16, Supporting Information). Addi-
tionally, by evaluating the interactions between the two small-
est candidate regions, the effect of the PK haplotypes at block
3 on increasing the amounts of carnosine and related metabo-

lites was found to be primarily dependent on the PK haplo-
types at block 4, suggesting the joint genetic control of carno-
sine and related metabolite contents and that these two blocks
may act sequentially in the biosynthesis of carnosine and re-
lated metabolites (Figure 6i). GADL1 has been reported to be
involved in 𝛽-alanine and carnosine production in mammalian
tissues.[44] CARNMT2 encodes carnosine N-methyltransferase 2
and has been reported to convert carnosine to anserine.[45] We
further used qRT-PCR to measure the GADL1 and CARNMT2
gene expression on 206 and 208 F3 individuals, respectively, and
then examined the correlation between the mRNA expression of
GADL1and CARNMT2 and the levels of carnosine and related
metabolites. GADL1 expression was significantly correlated with
the L-carnosine level (r= 0.61, P= 2.27× 10−22) while CARNMT2
expression was significantly correlated with the anserine levels
(r = 0.56, P = 2.39 × 10−18) (Figure 6e,f, Tables S25,S26, Support-
ing Information). In addition, based on the investigation of gene
expression and the levels of carnosine and related metabolites
in breast muscles at seven stages (1 day, 1–6 weeks), the expres-
sion levels of GADL1 and CARNMT2 were significantly higher in
Pekin ducks and further led to higher levels of carnosine and re-
lated metabolites (Figure 6g,h). These results suggested that both
GADL1 and CARNMT2 are responsible for the accumulation of
carnosine and related metabolites.

mGWAS can facilitate identifying and annotating metabo-
lites detected by theoretically linking the metabolites to func-
tionally related genes.[19,46] In our study, we examined the candi-
date regions for GADL1 and CARNMT2 and determined whether
they could possibly enable the annotation of additional unknown
metabolites. We plotted the 49 metabolite traits through their
chromatographic retention time and corresponding precursor
m/z (Figure S17, Table S27, Supporting Information). These
unannotated metabolites shared a retention time region with
histidine and its derivatives, suggesting that those unidentified
metabolites could possibly be amino acids and their analogs
with similar polarities. Additionally, the same QTLs for those
unknown metabolites were also located on the GADL1 and
CARNMT2 genes. The shared genetic regulation further allowed
us to predict that these unknown metabolites are histidine and
its derivatives. Seven additional metabolites were annotated and
verified by high-resolution mass spectrometry (Figure S18, Sup-
porting Information). All the above data indicated that a class of
metabolic pathways was controlled by a few large-effect loci in the
skeletal muscle metabolome.

3. Discussion

Meat quality is a broad and complex term that covers various
attributes such as texture, hygiene, nutrition, and flavor.[47,48] Va-
rieties of metabolites perform indispensable and prominent roles
in maintaining and promoting meat quality.[49,50] In this study, it

dots). c) Five changed GPs (n = 5) and the corresponding differentially expressed gene ACBD5 (n = 3). Data represent the mean ± SEM. d) Structural
variations in the three ACBD5 haplotypes. e) Conserved alignment of the sequences surrounding Chr2:16865736 (→C, →CCCCGT, →CCCCGTCCCGT)
in birds. f) The relative content of PC(14:0_22:6) in three haplotypes (n = 294, 76 and 46, respectively), data represent the mean ± SEM. g) ACBD5 gene
expression of the three haplotypes (n = 10, 16 and 15, respectively), data represent the mean ± SEM. h) Promoter activity tests for three haplotypes.
This shows that HAP3 (10 bp inserts) had higher promoter activity than HAP2 (5 bp inserts) and HAP1. Data represent the mean ± SEM. * P < 0.05, **
P < 0.01, *** P < 0.001. (i) The hypothesis that ACBD5 regulates 5 GPs to affect decanal content.
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Figure 6. The genetic regulation of the levels of carnosine and related metabolites and metabolic pathways. a) Heatmap of the levels of carnosine and
49 related metabolites detected in this study that showed a decreasing trend from R1 to R7. b) Manhattan plots of mGWAS for carnosine and 49 related
metabolites. Recombination event analyses on Chr2 (c) and Chr7 (d) are shown in schematic form in this plot. Red bars refer to chromosomal segments
originating from Pekin ducks, purple bars refer to segments originating from Liancheng ducks, and orange bars refer to segments originating from
heterozygotes. H1-7 refers to the seven recombinant types on Chr2, and H1-6 refers to the six recombinant types on Chr7. The left box plot refers to
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was found that 568 metabolites and volatiles were correlated with
7 meat quality traits (water loss, lightness (L*), redness (a*), yel-
lowness (b*), shear force, pH24h, and crude fat; |r| > 0.3, P < 0.05)
(Figures S19–S21, Supporting Information). These metabolites
could provide both macronutrients and micronutrients, function
as flavor precursors and determine unique meat flavors, and fa-
cilitate meat processing through complex chemical reactions.[51]

Currently, rapidly developing metabolomics techniques enable
us to determine this complex meat quality issue. Metabolomics
approaches make it possible to decompose complex meat quality
phenotypes into specific metabolic traits with substructure
and chemical class information, broadening and deepening
our understanding of meat and meat quality. Currently, meat
metabolic research has always placed much emphasis on iden-
tifying the different metabolites and volatiles between different
varieties.[52–54] In this study, we identified 174 important metabo-
lites and volatiles in 7 gradient consanguinity segregating
populations generated by Pekin duck × Liancheng duck crosses
at 6 weeks (Table S7, Supporting Information). Those metabo-
lites and volatiles mostly determine the nutrition and flavor of
duck meat. However, the genetic and biochemical bases underly-
ing the metabolites and volatiles were not explored. In this study,
we provide the first mGWAS results to understand the genetic
and biochemical basis of metabolites and volatiles in duck
meat.

mGWAS is a powerful tool for performing association analysis
between a large set of metabolites and genetic variants to reveal
the genetic basis of metabolic traits.[15] In general, genetic varia-
tions in primary metabolites tend to be controlled by a large num-
ber of small-effect loci.[55–57] To better detect small-effect genetic
loci modulating metabolite content, we specifically designed a
two-breed gradient segregation population to improve the power
and accuracy in mapping small-effect and closely linked QTLs. Fi-
nally, we detected 1063 significant loci regulating metabolite and
volatile contents, which greatly enhanced our knowledge of the
genetic basis of the meat metabolome. Moreover, we found that
52.14% of extreme genetic divergence regions between the Pekin
duck and Liancheng duck overlapped with mGWAS signals, and
these data could provide in-depth insight into the dissection of
complex traits in animals. Integrating these results, the build-up
of a meat metabolome database could facilitate in-depth research
on meat.

Throughout the history of animal breeding, phenotype-
targeted selection has been the common method. High through-
put molecular breeding has huge potential to accelerate meat
quality improvement. In this study, we identified 48 candidate
genes modulating metabolites and volatiles, important for mus-
cle physiological or nutritional traits. Those results would be
of great importance for potential marker-assistant breeding to
improve duck meat quality. However, some issues still need to
be investigated: 1) the accurate quantitation of these interested

metabolites and volatiles in duck meat. 2) The relationship be-
tween the genetic regulation of metabolites and volatiles with the
growth rates of ducks. 3) How do these metabolites and volatiles
affect human sensory evaluation.

4. Conclusion

In summary, our results presented a comprehensive
metabolomics analysis of meat and enhanced our under-
standing of the genetic basis of muscle metabolic traits. A
valuable roadmap has been created to associate metabolites with
genetic variations. We identified abundant essential genes un-
derlying metabolites, increased the knowledge of the nutritional
components in muscle, and developed animal meat quality
breeding strategies.

5. Experimental Section
Animal and Sample Collection: The study focused on a large gra-

dient consanguinity segregating population generated by Pekin duck
× Liancheng duck crosses containing a total of seven lines (R1, R2, R3,
R4, R5, R6, and R7) as follows. R1 is a Pekin duck purebred line. R7 is
a Liancheng duck purebred line. In the R2 and R3 lines, the F1 gener-
ation was produced from PK1♂ (patriline of Pekin duck), PK2♂ (matri-
line of Pekin duck), and Liancheng duck♀. The F2 generation was pro-
duced from PK1♂, PK2♂ and F1 generation♀. The F3 generation was ob-
tained by natural mating of the F2 generation, which was expected to
show ≈75% of the genome obtained from the Pekin duck and ≈25% of
the genome obtained from the Liancheng duck. In the R4 and R5 lines,
the F1 generation was produced from PK1♂ (patriline of Pekin duck),
PK2♂ (matriline of Pekin duck), and Liancheng duck♀. The F2 genera-
tion was obtained by natural mating of the F1 generation, and the F3
generation was obtained by natural mating of the F2 generation, which
was expected to show ≈50% of the genome obtained from Pekin duck
and ≈50% of the genome obtained from Liancheng duck. In the R6 line,
the F1 generation was produced from PK♂ and Liancheng duck♀. The F2
generation was produced from the F1 generation♀ and Liancheng duck♀.
The F3 generation was obtained by natural mating of the F2 generation,
which was expected to show ≈25% of the genome obtained from the
Pekin duck and ≈75% of the genome obtained from the Liancheng duck
(Figure S2, Supporting Information).

A total of 423 gradient consanguinity segregating population ducks (30,
74, 75, 75, 75, 64, and 30 ducks in R1, R2, R3, R4, R5, R6, and R7), along
with 35 Pekin ducks and 35 Liancheng ducks, were used in this study (Ta-
ble S1, Supporting Information). All eggs were incubated using a normal
procedure, and all ducks were reared in cages under continuous lighting
using standard conditions of temperature, humidity, and ventilation. All
ducks were fed the same corn- and soybean meal-based diet, which met
the nutrition recommendations of the National Research Council (NRC,
1994). Feed and water were provided ad libitum during the experiment
(Table S28, Supporting Information).

For all of the ducks, blood was obtained from the wing vein and was
rapidly frozen at −20 °C. Following a 12-h overnight fast, a slaughter exper-
iment was performed on 423 ducks 42 days after birth. The breast muscle

the L-carnosine content. The right box plot refers to other metabolite contents. The numbers of individuals are given in brackets. Box plots denote the
median (centerline), 25–75th percentile (limits), minimum and maximum values without outliers, and outliers (gray dots). e) Relationship between
GADL1 gene expression and L-carnosine content in 206 individuals (r = 0.61, P = 2.27 × 10−22). f) Relationship between CARNMT2 gene expression
and anserine content in 208 individuals (r = 0.56, P = 2.39 × 10−18). g,h) L-Carnosine content changes corresponding to differentially expressed GADL1
and CARNMT2. Data represent the mean ± SEM, as analyzed by Student’s t-test, * P < 0.05, ** P < 0.01, *** P < 0.001. i) The integrated metabolic
networks of carnosine and related metabolite metabolism pathways.

Adv. Sci. 2023, 10, 2300148 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2300148 (13 of 17)



www.advancedsciencenews.com www.advancedscience.com

was collected from the left side (1 cm from the upper and left edges of the
breast muscle) and immediately snap-frozen using liquid nitrogen (Figure
S2, Supporting Information).

In RNA-seq, hydrophilic metabolites and lipids samples of breast mus-
cle at seven developmental stages, another 10 ducks (5 Pekin ducks and
5 Liancheng ducks) were randomly selected and slaughtered at days 1, 7,
14, 21, 28, 35, and 42 after birth. The breast muscle was collected from
the left side (1 cm from the upper and left edges of the breast muscle)
and immediately snap-frozen using liquid nitrogen (Figure S2, Support-
ing Information).

All experiments with ducks were performed under the guidance of eth-
ical regulation from the Institute of Animal Science, Chinese Academy of
Agricultural Sciences (NO. IAS-2022-114), Beijing, China.

Hydrophilic Metabolite Profiling: The lyophilized muscle samples were
crushed using a mixer mill (MM 400, Retsch) with zirconia beads for 1 min
at 30 Hz. The crushed sample (80 ± 2 mg) was accurately weighed. Sam-
ples were extracted overnight at 4 °C with 1 mL of 70% aqueous methanol
and centrifuged at 12 000 rpm for 10 min at 4 °C. The extracts were cleaned
up using a CNWBOND Carbon-GCB SPE cartridge (250 mg, 3 mL; AN-
PEL, Shanghai, China) and filtered (SCAA-104, 0.22 μm pore size; ANPEL,
Shanghai, China) before analysis.

Hydrophilic metabolites were analyzed using an LC‒ESI‒MS/MS sys-
tem (HPLC, Shim-pack UFLC Shimadzu CBM30A system, MS, Applied
Biosystems 6500 QTRAP) equipped with an ESI Turbo Ionspray interface
controlled by Analyst 1.6.3 software (ABSciex).

The LC analysis conditions were as follows: column, Waters ACQUITY
UPLC HSS T3 C18 (1.8 μm, 2.1 mm × 100 mm); mobile phase, A: water
(0.04% acetic acid), B: acetonitrile (0.04% acetic acid); gradient program,
5% B at 0 min, 95% B at 11.0 min, 95% B at 12.0 min, 5% B at 12.1 min,
5% B at 15.0 min; flow rate, 0.35 mL min−1; column temperature, 40 °C;
and injection volume, 2 μL.

The MS parameters were set as follows: source temperature, 550 °C;
negative ion spray voltage (IS), (+) 5500 V and (−) 4500 V; gas I (GSI),
gas II (GSII), and curtain gas (CUR) were set at 55, 60, and 35 psi, respec-
tively; and the collision gas (CAD) was medium. Instrument tuning and
mass calibration were performed with 10 and 100 μmol L−1 polypropy-
lene glycol solutions in QQQ and LIT modes, respectively. The QQQ scans
were acquired as multiple reaction monitoring (MRM) experiments with
the collision gas (nitrogen) set to 5 psi. The declustering potential (DP)
and collision energy (CE) for individual MRM transitions were determined
with further DP and CE optimization. A specific set of MRM transitions was
monitored for each period according to the metabolites that were eluted
within this period.

Using this method, a hydrophilic metabolite library was constructed by
measuring a total of 68 representative samples (7, 11, 12, 12, 8, 12, and 6
ducks in R1, R2, R3, R4, R5, R6, and R7). Two thousand four hundred and
eighty-one hydrophilic metabolite features that were found to be stable
after performing quality control were detected.

Lipid Profiling: After the sample was thawed, 20 ± 1 mg of powder
from each sample was weighed and extracted overnight at 4°C. Then, 1 mL
of lipid extraction solution (methyl tert-butyl ether: methanol = 3:1) was
added to the homogenized centrifuge tube to extract the lipids. The steel
ball was removed, and the mixture was swirled for 2 min. Then, 200 μL of
water was added, and the mixture was swirled for 15 min and centrifuged
at 12000 rpm at 4°C for 10 min. Next, 300 μL of supernatant was pipet-
ted, concentrated, and stored at -80°C. Before LC‒MS/MS analysis, the
dried supernatant was dissolved in 200 μL of mobile phase B (acetoni-
trile/isopropanol, 10/90, 0.1% acetic acid, and 10 mmol/L ammonium
formate) and then stored at -80°C. The analysis was performed using an
LC‒ESI‒MS/MS system (HPLC, Shim-pack UFLC Shimadzu CBM30A sys-
tem, MS, Applied Biosystems 6500 QTRAP) equipped with an ESI Turbo
Ionspray interface controlled by Analyst 1.6.3 software (ABSciex).

The LC analysis conditions were as follows: column, Thermo Accu-
core C30 (2.6 μm, 2.1 mm×100 mm); mobile phase, A: acetonitrile/water
(60/40, V/V, 0.1% formic acid, 10 mmol L−1 ammonium formate), B: ace-
tonitrile/isopropanol (10/90, V/V, 0.1% formic acid, 10 mmol L−1 ammo-
nium formate); gradient program, 20% B at 0 min, 30% B at 2.0 min, 60%
B at 4 min, 85% B at 9 min, 90% B at 14 min, 95% B at 15.5 min, 95% B at

17.3 min, 20% B at 17.5 min, 20% B at 20 min; flow rate, 0.35 ml min−1;
temperature, 45°C; and injection volume, 2 μL.

The ESI source operation parameters were as follows: an ion source,
turbo spray; source temperature 500°C; ion spray voltage (IS) (+) 5500 V
and (-) 4500 V; ion source gas I (GSI), gas II (GSII), and CUR were set
at 45, 55, and 35 psi, respectively; and the CAD was medium. Instrument
tuning and mass calibration were performed with 10 and 100 μmol L−1

polypropylene glycol solutions in QQQ and LIT modes, respectively. QQQ
scans were acquired as MRM experiments with the collision gas (nitrogen)
set to 5 psi. DP and CE for individual MRM transitions were performed
with further DP and CE optimization. A specific set of MRM transitions
was monitored for each period according to the metabolites eluted within
this period.

Using this method, a lipid library was constructed by measuring a total
of 81 representative samples (7, 11, 12, 12, 8, 12, and 6 ducks in R1, R2,
R3, R4, R5, R6, and R7). Nine hundred and fifty lipid features that were
found to be stable after performing quality control were detected.

Volatile Profiling: The HS-SPME procedure was the selected extraction
mode. To ensure faster extraction, the vial was agitated during the extrac-
tion period. SPME was directly performed in a TriPlus RSH autosampler
(Thermo Fisher Scientific, Bremen, Germany).

Samples were prepared as follows: Prior to the assay, the muscles were
thawed in a refrigerator at 4 °C for 12 h, vacuum packed in a plastic steam-
ing bag and cooked in a thermostated water bath at 80 °C for 30 min. Once
the cooking process was finished, the packaged meat was removed from
the water bath and submerged in ice-cold water for 1 h. Once removed
from the package, the cooked meat was ground to powder in liquid nitro-
gen to retain the highest amount of volatiles. A minced sample (3 g) was
introduced into a 20 mL glass vial. Then, the internal standard (IS), 10 μL of
2-methyl-3-heptanone solution (0.05 μg μL−1), was added. The vials were
immediately closed with a magnetic cap fitted with a PTFE-silicone sep-
tum. The sample vial was incubated at 55 °C for 20 min and extracted at
55 °C for 40 min using a 50/30 μm DVB/CAR/PDMS fiber (Supelco, Inc.,
Bellefonte, PA, USA). Once done, the extraction fiber was automatically
injected into the injector and desorbed at 250 °C for 3 min. Between the
consecutive analyses, the fiber was conditioned in the other injector port
at 270 °C for 10 min.

Analyses were carried out on a Q-Exactive Orbitrap mass analyzer
equipped with a TriPlus RSH autosampler and Trace 1310 GC (Thermo
Fisher Scientific, Bremen, Germany).

The chromatographic conditions were set as follows: a 60 m × 0.25 mm
i.d. × 0.25 μm film thickness, VF-WAX ms (Agilent, Santa Clara, CA)
column was used. Helium (99.9999%) with a constant flow rate of
1 mL min−1 was used as the carrier gas. The injector temperature was set
at 250 °C. The split ratio was set as 5:1. The oven temperature was initially
kept at 40 °C for 2.0 min, increased to 230 °C at a rate of 4 °C min−1, and
held for 5 min. Both transfer line 1 and transfer line 2 were set at 250 °C.

MS was performed using electron impact ionization (EI) at 70 eV, op-
erating in full scan mode at a resolving power of 60 000 full width at half
maximum. The scan range was from 30 to 400 m z−1 with an automatic-
gain-control target value of 1E6. The ion source and transfer line tempera-
tures were set at 280 and 250 °C, respectively. TraceFinder 4.1 software was
used to analyze the data (Thermo Fisher Scientific, Les Ulis, France). Dur-
ing testing, a blank sample and a QC sample were added every 14 samples
to ensure the instrument’s stability. Volatiles were identified in accordance
with mass spectra and linear retention indices from NIST17 (v2.3), Wiley9,
and a domestic library built with authentic reference standards. For iden-
tification purposes, the HRF scores should be higher than 95; the match
factor based on the MS pattern should be higher than 750; and the differ-
ence in the retention index should be less than 20 for the domestic library
and within 50 for the NIST library.

Variant Discovery and Genotyping: Genomic DNA was obtained from
whole blood samples collected from the brachial veins of ducks and iso-
lated using the standard phenol/chloroform extraction method. The quan-
tity and quality of genomic DNA were assessed by Nanodrop and agarose
gel electrophoresis. After the examinations, eligible DNA samples from
the 423 individuals were generated into paired-end libraries using stan-
dard procedures. In addition, the average insert size was 500 bp, and
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the read length was 150 bp. All libraries were sequenced on an Illumina
HiSeq X-Ten platform to an average raw read sequence coverage of 5×. The
150-bp paired-end raw reads were mapped to the duck reference genome
(GCA_0 038 50225.1) with Burrows–Wheeler alignment (BWA aln)[58] us-
ing the default parameters. The paired reads that were mapped to the exact
same position on the reference genome were identified with MarkDupli-
cates in Picard[59] to avoid any influence on variant detection. After map-
ping, SNP calling was performed exclusively using the GATK[60] Haplo-
typeCaller module (version 3.5), and the output was further filtered us-
ing VCFtools[61] (version 0.1.15). SNPs were filtered based on the follow-
ing criteria: 1) 3 × <mean sequencing depth (overall included individu-
als) <30 ×, 2) SNPs had to have a minor allele frequency > 0.05, 3) the
maximum missing rate was < 0.1, and 4) SNPs had only two alleles. The
identified SNPs were further classified by SnpEff[62] based on the gene an-
notation of the reference genome. A total of 423 ducks were genotyped,
and 8665026 SNPs were prepared for subsequent analysis.

Principal Component Analysis: PCA was performed based on all SNPs
using EIGENSOFT software (version 4.2).[63,64] The gradient consanguin-
ity segregating population was clearly separated into six groups by the first
principal component. PLS-DA was performed based on the levels of 3431
metabolites and 702 volatiles using SIMCA (version 14.1).

Heritability Estimation and Coefficient of Variation: The broad-sense
heritability (H2) of each metabolite and volatile was estimated using the
following formula, H2 = var(G)/var(G) + var(E), implemented in GCTA[65]

v1.26.0, where var(G) and var(E) are the variances derived from genetic
and environmental effects. The coefficient of variation values were calcu-
lated for each metabolite as follows: s/m, where s and m are the standard
deviation and mean of each metabolite, respectively.

Genome-Wide Association Analysis and Linkage Disequilibrium: A total
of 8665026 SNPs for 423 ducks were used to perform the genome-wide
association analysis. The relative content of metabolites and volatile com-
pounds was log2 calculated as phenotypic values. Population structure
and cryptic relationships were considered to minimize false positives and
increase statistical power. The mixed linear model program EMMAX[66]

was used for the association analysis. The first three PCA values (eigen-
vectors) derived from whole genome SNPs, as well as sex, were set as fixed
effects in the mixed model to correct for population stratification. The ran-
dom effect was a kinship matrix estimated based on the identity-by-state
algorithm among all individual whole-genome SNPs. The whole-genome
significance cutoff as the Bonferroni test threshold was defined, and the
association threshold was set as 0.01/total SNPs (total SNPs: 8665026;
−log10 (P) = 8.938). Linkage disequilibrium (LD) analyses were performed
based on the R2 value between the SNPs within 2 Mbp of the lead SNP
(MAF > 0.05) within the region using PLINK[67] (version 1.90).

Recombinant Event Analysis: The fine-mapped analyses were per-
formed using IBD analysis. To conduct this analysis, the filtered SNPs
reached a standard allele frequency difference (ΔAF) of >0.6 between
Pekin ducks and Liancheng ducks, according to previous genotyping re-
sults. In the candidate region, recombination breakpoints were identified
across the filtered SNPs, and the individuals in each population were sub-
sequently classified by using the recombination breakpoints.

mGWAS Hotspot Analysis: The whole genome was divided into 1 Mbp
partitions to investigate the distribution of significant signals along the
genome. Then, the number of significant signals in each segment were
counted. A permutation test was used to assess the statistical significance
of the deviation compared to the observed significant signal distribution
per segment from the expectation assuming a uniform distribution.

All the signals were randomly assigned to each 1 Mbp segment of the
genome, and the resulting number of significant signals in each segment
was counted. After 10 000 permutations, with P < 0.01, the cutoff for sig-
nificant signals in each 1 Mbp segment by chance alone was 7, and a large
number of regions were regarded as hot spots.

Genome Scanning for Divergent Regions: To detect the regions with ge-
netic divergence, the FST value among 30 Pekin ducks and 30 Liancheng
ducks were calculated using a 20 kb window with a 10 kb step across the
whole genome using Vcftools[61] (version 0.1.15). Windows with the top
1% were selected as the candidate genetic divergence region. The candi-
date region was detected by searching the regions with high FST values

and high differences in genetic diversity (𝜋 ln ratio). First, among 30 Pekin
ducks and 30 Liancheng ducks, the FST values for each SNP site and 𝜋

ln ratio in sliding 5 kb windows were calculated with a 2.5 kb step using
vcftools (version 0.1.15).

Transcriptome Analysis: The breast muscle tissue was lyophilized in liq-
uid nitrogen, dissolved in TRIzol reagent, and prepared for subsequent li-
brary construction. All extracted RNA quality and quantity were assessed
by Nanodrop and agarose gel electrophoresis. RNA samples were re-
verse transcribed to cDNA with PrimerScript RT Master Mix (RR036A,
Takara, Dalian, China) following the manufacturer’s instructions. Forty-
two library preparations were sequenced on an Illumina X-Ten platform,
and 150-bp single-end reads were generated. The average output was
6 Gb per library. Sequencing adaptors and low-complexity reads were re-
moved by Trimmomatic[68] version 0.36 software in the initial data filter-
ing step. Then, clean data were mapped to the duck reference genome
(GCA_0 038 50225.1) using TopHat[69] version 2.0.11 software. Read
counts per gene were obtained by running HTSeq[70] version 0.6.1 soft-
ware. The counts per million mapped sequence read (CPM) for each gene
were calculated by edgeR[71] version 3.20.9 packages.

Quantitative PCR Analysis: qPCR was conducted for AOX1, GADL1,
CARNMT2 and 3 haplotypes of the ACBD5 gene. Primers were designed
with Primer 5 software. The primer sequences were listed in Table S29
(Supporting Information). Breast muscle tissues from gradient consan-
guinity segregating population were collected. Complementary DNA syn-
thesis from total RNA and two-step quantitative PCR were performed us-
ing the Applied Biosystems QuantStudio system. All samples were as-
sayed in at least three technical replicates. The collected data were ana-
lyzed using the 2−ΔΔCt method,[72] and all the results were normalized to
the duck 𝛽-actin gene.

Western Blot Analysis for TMEM189: Frozen breast muscle (≈30 mg)
was weighed and minced the samples in liquid nitrogen. Afterward, 300 μL
RIPA-proteinase K inhibitor (Beijing Solarbio Science & Technology, Bei-
jing, China) was added for protein extraction. The BCA protein quantifica-
tion kits (Thermo Fisher Scientific, Waltham, MA) were used for the quan-
titation of proteins in breast muscles. Protein samples (33 μg) were sep-
arated on 4–20% Bis-Tris SurePAGETM gels (Genscript, Nanjing, China)
and electro-transferred to PVDF membranes (Pall, Pensacola, FL, Amer-
ica). Then, the membranes were blocked with 5% nonfat milk (BD Difco,
Sparks, MD, USA) for 2 h at room temperature and incubated overnight at
4 °C with primary antibodies against TMEM189 (1:1000, ABclonal, Wuhan,
China) and 𝛽 -Tubulin (1:5000, Huaxingbio, Beijing, China). After washing
with 1 × TBST three times, the membranes were incubated at room tem-
perature for 1 h with appropriate secondary antibodies (1:5000 dilution,
goat anti-rabbit, Solarbio). Subsequently, the blot bands were visualized
with an ECL reagent (Beijing Lan Y Science & Technology). The optical
densities of the blot bands were analyzed using Tanon Gis 1D software
(Tanon Sciences & Technology, Beijing, China). Finally, the protein expres-
sion was normalized by 𝛽-tubulin and calibrated with the CON value.

Luciferase Reporter Assay: Three haplotypes of the ACBD5 gene (HAP1,
HAP2. HAP3) and their 50 bp upstream and 50 bp downstream were gen-
erated via PCR and cloned into the pGL3 enhancer vector; these fragments
included HAP1 (100 bp), HAP2 (105 bp), HAP3 (110 bp). The Xhol and
HindIII enzyme sites were selected as the insertion sites of PCR products.
Duck embryo fibroblasts cell were plated at a density of 1 × 105 per well
in 48-well plates 1 day before transfection and were cultured under adher-
ent conditions in high-glucose DMEM (HyClone) +10% FBS (fetal bovine
serum, Gibco). Cells were transfected with 220 ng (per well) of serial plas-
mids containing different segments of the three haplotypes sequence and
20 ng (per well) of the pRL- TK Renilla Luciferase plasmid using Lipofec-
tamine 8000 (Invitrogen). Luciferase activities were determined by using
the Dual-Luciferase Reporter Assay System (Promega), according to the
manufacturer’s instructions. Luciferase bioluminescence measurements
were performed with a Veritas Microplate Luminometer (Promega). All of
the experiments were conducted in triplicate, and the firefly luciferase ac-
tivity was normalized to the Renilla luciferase activity of each sample.

Statistical Analysis: Data were presented as the mean ± standard error
of the mean. Statistical analyses were performed in R 3.6.3. Pearson cor-
relation analysis was used to determine the pairwise correlations between
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metabolites and volatile compounds. For gene expression, the significance
of the values among the groups was compared by using Student’s t-test.
The P values from the tests mentioned above were adjusted using FDR
correction (BH method) for multiple testing. The filtering criteria for sta-
tistical significance were P < 0.05 and FDR < 0.05.
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Supporting Information is available from the Wiley Online Library or from
the author.
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