
Noise Suppression with Similarity-based Self-Supervised Deep 
Learning

Chuang Niu,

Mengzhou Li,

Fenglei Fan,

Weiwen Wu,

Xiaodong Guo,

Qing Lyu,

Ge Wang

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

Abstract

Image denoising is a prerequisite for downstream tasks in many fields. Low-dose and 

photon-counting computed tomography (CT) denoising can optimize diagnostic performance at 

minimized radiation dose. Supervised deep denoising methods are popular but require paired 

clean or noisy samples that are often unavailable in practice. Limited by the independent noise 

assumption, current self-supervised denoising methods cannot process correlated noises as in 

CT images. Here we propose the first-of-its-kind similarity-based self-supervised deep denoising 

approach, referred to as Noise2Sim, that works in a nonlocal and nonlinear fashion to suppress 

not only independent but also correlated noises. Theoretically, Noise2Sim is asymptotically 

equivalent to supervised learning methods under mild conditions. Experimentally, Nosie2Sim 

recovers intrinsic features from noisy low-dose CT and photon-counting CT images as effectively 

as or even better than supervised learning methods on practical datasets visually, quantitatively and 

statistically. Noise2Sim is a general self-supervised denoising approach and has great potential in 

diverse applications.
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I. Introduction

Computed tomography (CT) reconstructs cross-sectional or volumetric images from many 

X-ray projections taken at different angles, and is a widely used diagnostic tool around 

the world. As an emerging CT technology, photon-counting CT (PCCT) is being actively 

developed with major advantages including rich tissue contrast, high spatial resolution, low 

radiation dose, and tracer-enhanced K edge imaging [1]. In the medical CT field, radiation 
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dose must be minimized according to the ”As Low As Reasonably Achievable” (ALARA) 

guideline [2]. Not surprisingly, reduced radiation dose will degrade the CT image quality 

and affect the diagnostic performance. In particular, PCCT uses multiple energy windows 

and much reduced detector sizes. As a result, each line integral measurement can only 

be made with a significantly lower number of x-ray photons. Over the past decade, great 

efforts have been made on low-dose CT (LDCT) reconstruction, also known as LDCT 

denoising, which has now a boosted momentum due to the recent FDA-approval of the 

PCCT technology [1].

Image denoising is to recover signals hidden in a noisy background. Since noise is a 

statistical fluctuation governed by quantum mechanics, denoising is generally achieved 

by a mean/averaging operation. For example, local averaging methods include Gaussian 

smoothing [3], anisotropic filtering [4], [5], neighborhood filtering [6]–[8], and transform 

domain processing [9]. On the other hand, nonlocal averaging methods use various nonlocal 

means with Gaussian kernel based weighting [10] or via nonlocal collaborative filtering in 

a transform domain [11]. Impressively, the nonlocal methods usually outperform the local 

methods, as images usually consist of repeated features or patterns that can be leveraged 

over a field of view to recover signals coherently. Over the past several years, the area of 

image denoising has been dominated by deep convolutional neural networks (CNNs) [12]. 

Different from the traditional methods that directly denoise an image based on an explicit 

model, the deep learning approach optimizes a deep neural network using training data, and 

then uses the trained model to predict a denoised image, usually achieving better results with 

much less inference time than the traditional denoising methods.

The mainstream deep denoising methods [13] require paired and registered noise-clean 

images to train the networks, denoted as Noise2Clean. However, such noise-clean image 

pairs can be hardly obtained in real-world applications. Especially for CT denoising tasks 

[14]–[17], it is impractical to scan the same patient twice to obtain paired training samples 

in a clinical setting. Although simulation tools [18], [19] can generate such paired training 

samples, it is very challenging to simulate realistic noise for real patients in many cases. 

Just taking CT as an example, after a modern CT reconstruction process, image noises are 

determined by many factors including imaging parameters/protocols, reconstruction steps, 

and objects being imaging, and hence much more difficult to simulate than in the case of 

naïve FBP reconstruction. Also, photon-counting CT is emerging as the next generation of 

CT technology but noise simulation for photon-counting data is much more complicated 

than the Poisson-Gaussian model successfully used for current-integrating CT. To relax 

the requirement of paired noise-clean samples, Noise2Noise [20] was proposed to train 

a denoising network with paired noise-noise images that share the same content but are 

instantiated with independent noises. It has been proved that Noise2Noise-based training 

can optimize a network to approach the Noise2Clean quality under the assumption of 

zero-mean noise. Some recent methods [21]–[27] heuristically adapted Noise2Noise for 

LDCT denoising by simulating paired noisy samples. However, the required collection 

of paired noisy images is still expensive in many scenarios and subject to potential 

mismatches between simulated and real noisy pairs. On the other hand, another important 

direction is the use of unpaired clean images as the targets to train the denoising model 

based on the generative adversarial network (GAN) [17]. Indeed, for LDCT denoising 
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various excellent unpaired learning methods were proposed, such as weakly-supervised 

progressive denoising [28], Cycle-Free CycleGAN [29], IdentityGAN and GAN-CIRCLE 

[30], AdaIN-Based Tunable CycleGAN [31]. Recently, self-supervised or unsupervised 

learning methods without using any extra annotations have achieved great progress in 

various domains [32]–[36], and extensive efforts [37]–[46] were also made to develop 

self-supervised learning methods for image denoising. Along this direction, Noise2Void [37] 

and Noise2Self [38] were proposed to predict each center pixel from its local neighbors, 

achieving promising results using single noisy images under the assumption of independent 
noises among neighbor pixels. However, these unsupervised deep denoising methods cannot 

suppress correlated or structured noises. Since most noises, especially CT image noises, 

are correlated, a general unsupervised denoising approach is highly desirable to unleash the 

power of deep learning for effective suppression of both independent and correlated noises, 

which is the holy grail of denoising methods.

Similarity including symmetry is ubiquitous in the physical world, naturally reflected in the 

image domain, featured by repeated or recursively embedded structures, edges, textures, etc., 

and plays an important role in modern science, engineering and medicine [47]. However, 

there is currently no general approach to utilize similar features in images for deep learning-

based denoising. As the first effort to utilize similarity for unsupervised deep denoising, 

the initial version of our Noise2Sim method was shared on arXiv [48]. Here we present 

our Noise2Sim approach as the general framework for similarity-based optimization of a 

deep denoising network using intrinsically-registered sub-images. Importantly, the theorem 

is proved that under mild conditions the deep denoising network trained with Noise2Sim is 

asymptotically equivalent (with respect to the limit of the number of training samples) to 

that trained in the supervised learning mode. Given the equivalency between Noise2Clean 

and Noise2Sim, the proposed unsupervised learning approach can, in principle, suppress 

both independent and correlated noises as effectively as the supervised deep denoising 

methods [15], [49].

The emphasis of this paper is on the general self-supervised deep denoising approach and 

its practical application in LDCT and PCCT imaging where image noises are correlated and 

practically paired samples are usually not available. Extensive experiments on 3D LDCT 

images and 4D PCCT images consistently show the superiority of Noise2Sim over both 

the traditional denoising methods and the state-of-the-art deep denoising networks. Note 

that in this study we only focus on suppressing LDCT noise in the image domain, and the 

dual-domain unrolling algorithms [50] are not compared. Furthermore, we demonstrated the 

effectiveness of Noise2Sim on denoising 2D images with independent noises in Appendix 

A2. A recent study has shown that Noise2Sim can be successfully applied to other domains 

as well [51]. The source code, pre-trained models, and all data used in this study have been 

made publicly available on the project page http://chuangniu.info/projects/noise2im/, where 

the Python package “noise2sim” can be easily installed through Pip and source.
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II. Methods

A. Theoretical Framework

A noisy image xi can be decomposed into two parts: xi = si + ni, which is generated from 

the joint distribution p s, n = p s p n ∣ s , where si and ni are the clean signal and associated 

noise respectively. Note that this additive notation is notation-wise convenient without loss 

of generality, since a given noise sample can be practically decomposed into a real signal 

plus a noise component although the intrinsic noise model is not additive, as long as the 

conditions for the Noise2Sim theorem are satisfied. A deep denoising method learns a 

network function to recover the clean signal si from the noisy signal xi, i.e., yi = f xi; θ , 

where f denotes the network function with a vector of parameters θ to be optimized. In 

a supervised training process (Noise2Clean), each noisy image xi is associated with the 

corresponding clean image si as the target. Let θc be the network parameters optimized with 

paired noise-clean data, we have

θc = argmin
θ

1
Nc

∑
i = 1

Nc

f si + ni; θ − si 2
2, (1)

where Nc is the number of images, and the mean squared error (MSE) is used as the 

loss function [20], [37]. Among all denoising methods, the supervised deep denoising 

methods generally achieve the best results but they are handicapped when paired images are 

unavailable.

The ubiquitous similarity in the physical world leads to the well-known popularity of similar 

patches, slices, volumes and tensors embedded within and across high-dimensional images. 

In this study, patches in 2D images, slices/patches in 3D images, and volumes in 4D images 

are regarded as sub-images. The similarity between sub-images is measured by a general 

function S T xi , T x̂i , where T  is a transform of a sub-image, S is a metric to measure 

the similarity between two sub-images. In practice, T  and S may take different forms, 

depending on domain-specific priors. In principle, it would be an ideal strategy to match 

every sub-image up with all possible similar sub-images. Based on this fact, we propose 

Noise2Sim, a general unsupervised denoising approach for training a deep network without 

collecting paired noisy or clean target data. The key idea behind Noise2Sim is to replace 

paired clean or noisy targets with the similar targets for training the denoising network, 

such that noises are suppressed to enhance signals faithfully. Given noisy high-dimensional 

images only, we first search and construct a set of similar sub-images, denoted by xi = si + ni

and x̂i = si + δi + n̂i, where δi is the difference between the clean signal components in similar 

sub-images, and ni and n̂i are two different noise realizations. The similar sub-images are 

searched in a nonlocal way; e.g., searching patches/slices within the whole image and even 

across different images. Let θs be the vector of network parameters to be optimized with the 

constructed similar data by minimizing the following loss function:

θs = argmin
θ

1
Ns

∑
i = 1

Ns

f si + ni; θ − si + δi + ni 2
2, (2)
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where Ns denotes the total number of all possible pairs of noisy similar images. First of all, 

we present the following theorem to justify our Noise2Sim approach:

Noise2Sim Theorem.—Given three sets of independent observations 

si + ni i = 1
Ns , n̂i i = 1

Ns and δi i = 1
Ns , i . e . , ∀u, v, u ≠ v, each of these variable pairs 

su + nu, sv + nv , n̂u, n̂v , δu, δv , n̂u, sv + nv , and δu, sv + nv  is independent, if the conditional 

expectation ∀i, E n̂i ∣ si + ni = 0 and E δi ∣ si + ni = 0, then the parameters θs optimized in 

Eq. (2) are asymptotically equivalent (with respect to the limit of the number of training 

samples) to θc in terms of minimizing the supervised loss in Eq. (1).

Proof.: Let yi: = f si + ni; θ , expanding the loss function in Eq. (2) and removing the terms 

that do not involve θ, we have

θs = argmin
θ

1
Ns

∑
i = 1

Ns

yi − si + ni + δi 2
2

= argmin
θ

1
Ns

∑
i = 1

Ns

yi − si 2
2 − 2ni

Tyi − 2δi
Tyi .

(3)

Since ∀u, v, u ≠ v, each of these variable pairs su + nu, sv + nv , n̂u, n̂v , δu, δv , n̂u, sv + nv , 

and δu, sv + nv  is independent, then ∀u, v, u ≠ v, each of these two variable pairs 

(n̂u
T su + nu , n̂v

T sv + nv ) and δuT su + nu , δvT sv + nv  is independent; please see Appendix A1 

for details. As yi = f si + ni; θ  and f ⋅ ; θ  is deterministic, then any two variables in each 

of these two sets {n̂i
Tyi}i = 1

Ns
 and {δi

Tyi}i = 1
Ns  are independent. Since the CT numbers or HU 

values for patients are within a universal finite interval, usually between [−1000, 3000], 

any distribution of CT numbers will have finite mean and variance, i.e., the variances ∀i, 
V ar(n̂i

Tyi) and V ar(δi
Tyi) are finite, According to the weak law of large numbers [52] we have

lim
Ns ∞

1
Ns

∑
i = 1

Ns

(ni
Tyi − E[ni

Tyi])
P 0

lim
Ns ∞

1
Ns

∑
i = 1

Ns

δi
Tyi − E δi

Tyi
P 0,

(4)

where 
P

 means converging in probability. Given E n̂i ∣ si + ni = 0 and E δi ∣ si + ni = 0, we 

have

E[n̂i
Tyi] = E[E n̂i ∣ yi

Tyi] = E[E n̂i ∣ si + ni
Tyi] = 0

E[δi
Tyi] = E[E δi ∣ yi

Tyi] = E[E δi ∣ si + ni
Tyi] = 0,

(5)

where the first equivalences for both equations in (5) are detailed in Appendix A1, and 

the second equivalences for both equations in (5) are due to the fact that yi = f si + ni; θ  is 

deterministic. Hence, the following equations hold true:
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lim
Ns ∞

1
Ns

∑
i = 1

Ns

2ni
Tyi

P 0 lim
Ns ∞

1
Ns

∑
i = 1

Ns

2δi
Tyi

P 0. (6)

Given Eqs. (3) and (6) and as Ns = Nc ∞, we have

argmin
θ

1
Ns

∑
i = 1

Ns

yi − si + ni + δi 2
2

= argmin
θ

1
Nc

∑
i = 1

Nc

yi − si 2
2 .

(7)

That is, θs and θc are asymptotically equivalent (with respect to the limit of the number 

of training samples) in terms of minimizing the supervised loss function defined in Eq. 

(1). Note that it is assumed here that the same optimization process is used with the same 

random seed. □

Noise2Sim vs current deep denoising methods.—Given two practical conditions, 

zero-mean conditional noise (ZCN), i.e., E n̂ ∣ s + n = 0, and zero-mean conditional 

discrepancy (ZCD), i.e., E δi ∣ si + ni = 0, the self-supervised Noise2Sim learning can be 

regarded as a surrogate of the supervised learning without collecting paired training samples, 

promising a wide range of applications. During training, Noise2Sim searches and constructs 

similar sub-images in a non-local manner, while the existing self-supervised methods [37], 

[38] construct training samples using local pixels only. Noise2Sim enjoys superiority over 

these self-supervised deep denoising methods as their training samples can be regarded as a 

subset of those for Noise2Sim, as analyzed in the Appendix A2.

Noise2Sim vs traditional non-local mean methods.—The traditional non-local 

mean (NLM) method independently processes each pixel in each image via a weighted 

average of non-local similar pixels. In other words, only its own similar pixels contribute 

to suppressing noise at the reference pixel in a linear manner. Noise2Sim is different from 

NLM in two aspects. First, Noise2Sim optimizes a non-linear neural network function to 

suppress image noises nonlinearly, which is more powerful than linear averaging. Second, 

instead of separately processing each set of similar pixels, Noise2Sim collaboratively 

leverages all sets of similar pixels in all training images to learn a denoising network, which 

is then deployed for the denoising task. Thanks to the high capacity of nonlinear neural 

networks, all sets of similar pixels instead of a single similar set contribute to recovering 

each specific pixel.

Suppression of both independent and correlated noises.—Since there is no 

limitation on the types of noises within sub-images in the theorem, Noise2Sim in principle 

can suppress both independent and correlated noises as effectively as the supervised deep 

denoising methods in the limiting case. Also, it is worth mentioning that there are no 

specific assumptions on the noise distribution. Hence, Noise2Sim can be adapted to process 
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different noise distributions. Next, we mainly focus on correlated noises in CT applications 

by searching similar sub-images with the ZCN and ZCD conditions well approximated. The 

suppression of independent noises in 2D images are introduced in Appendix A2.

B. Suppression of Correlated CT Noises.

Zero-mean conditional noise.—One condition for the Noise2Sim theorem is ZCN. It 

is well known that CT noise in the image domain is spatially structured, which varies 

with the scanning protocol parameters, reconstruction steps, patient conditions, scanner 

hardware factors, etc. Geometrically, each detector row mainly contributes to one or several 

consecutive slices, and different detector rows are subject to independent noise realizations. 

As a result, there is a much weaker noise correlation between different slices (especially 

when the slices are well separated) than within the same slice. Thus, the ZCN condition is 

practical for CT noises, i.e., E n̂i ∣ si + ni = E n̂i = 0, where the expectation of CT noises is 

reasonably assumed to be zero [53].

Zero-mean conditional discrepancy.—The other condition for the Noise2Sim theorem 

to be valid is ZCD. Different from the noise component, the distribution of the discrepancy 

component δi is not clear. Nevertheless, searching for intrinsically similar sub-images leads 

to vary small values of δi, meaning that the ZCD condition can be well approximated. For 

medical CT imaging, the same organ or tissue in a patient usually has the similar Hounsfield 

unit (HU) values and structures, meaning that similar sub-images (patches/slices) can be 

searched and the ZCD condition can be well approximated as demonstrated in Section III-C.

Independent observation.—In CT applications, si + ni, si + n̂i + δi i = 1
Ns  represent a set 

of paired similar slices from all patient scans, where n̂i and δi represent the corresponding 

noise and discrepancy components respectively in the searched similar slices. Although the 

slices from the same patient could be somehow correlated, the slices that are far away from 

each other in the same patient and the slices from different patients should be independent. 

Then, these observations can be split into multiple sub-sets so that each set is independently 

observed, i.e., each of these pairs su + nu, sv + nv , n̂u, n̂v , δu, δv  is independent, where u an 

v are used to index different paired slices. Also, it is reasonable to assume the noise and 

discrepancy components of one slice are independent to another independent slice, i.e., 

each of these two pairs n̂u, sv + nv  and δu, sv + nv  is independent. It can be regarded as 

that multiple sub-sets of observations are simultaneously used to optimize Eq. (3), where 

the independence assumption is practical for each sub-set. Thus, the proof for Noise2Sim 

Theorem still holds true.

Construction of similar training set.—The volumetric CT image consists of two 

in-plane dimensions and one through-slice dimension, as shown in Fig. 1 (a). Given the itℎ

reference slice as input, a similar slice can be randomly selected from the (i − k)tℎ to (i + k)tℎ

slices, where k defines the searching range of similar slices, and used as the target during 

training. Similarly, a PCCT image tensor is of four dimensions, including three spatial 

dimensions (in-plane and through slice), and a channel dimension, as shown in Fig. 1 (b). 

Thus, the itℎ slice for PCCT is a 3D tensor (two spatial and one spectral), and a similar 
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tensor is also randomly selected from the (i − k)tℎ to (i + k)tℎ multi-channel slices. However, 

it cannot be guaranteed that the pixels/vectors at the same location in different neighboring 

slices are always similar to each other, especially when the structures are longitudinally 

changed. According to the Noise2Sim theorem, these dissimilar parts will compromise the 

zero-mean conditional discrepancy condition, and thus should be excluded from training 

samples. Here we propose to identify dissimilar pixels between similar slices, which are 

indicated by the dissimilar mask in Fig. 1 and excluded in computing the loss.

Specifically, we denote a pair of similar LDCT or PCCT images as xi, xj ∈ RH × W × C, 

where H, W , C denote height, width, and channel of CT images, C = 1 for LDCT images, 

and i, j are the slice indices, j ∈ i − k, i + k . For each pair of vectors xi u, v, : , xj u, v, : ∈ RC

at the same spatial location u, v , we use their associated patches to determine their 

similarity. The patches of these two vectors are denoted by P i u, v , P j u, v ∈ RS × S × C

that are centered at u, v  with the patch size S × S. We define the distance map d ∈ RH × W

between xi and xj as

dij u, v = ∥ P i u, v − P j u, v ∥2 . (8)

where ∥ ⋅ ∥2 denotes L2 norm. Then, the dissimilar mask mij is computed as

mij(u, v) = 1 dij u, v > dtℎ

0 otherwise (9)

where dtℎ is a predefined threshold.

Loss function.—Finally, the loss function is

L = 1
Ns

∑
i, j

f xi; θ − xj ⊙ mij 2
2, (10)

where ⊙ denotes the element-wise multiplication. In the Noise2Sim theorem, the 

equivalency between Noise2Sim and Noise2Clean is demonstrated under the MSE loss 

function. The MSE loss function will drive the network to output the mean value of the 

noise distribution so that two zero-mean conditions are required. We can also use the L1 

loss function to optimize the network, which tends to predict the median value of the noise 

distribution. If the median of the noise distribution is closer to zero, L1 loss function will 

achieve better results, as empirically demonstrated in the LDCT denoising experiments.

III. Experiments and Results

A. Datasets

1) Low-dose CT Images: In the main text, we used the publicly available Mayo dataset 

for the Low Dose CT (LDCT) Grand Challenge1. We used eight patients data for training 

1 https://www.aapm.org/grandchallenge/lowdosect/ 
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and the other two for testing. Specifically, the training dataset consists of 4800 512 × 512 

slices, and the testing dataset consists of 1136 512 × 512 slices. To test the generalizability 

of different methods, we used two real scans of an anthropomorphic phantom from FDA2. 

Specifically, we used five volumetric data including 1) a low-dose (25mA) volume with b40f 
kernel and a normal-dose (200mA) volume with b40f kernel, 2) a low-dose (25mA) volume 

with b60f kernel and two normal-dose (200mA) volumes with b40f kernel, where these two 

normal-dose volumes contain the same contents but different noise realizations. Each of 

these volumes contain 408 slices with the image size of 512 × 512.

2) Photon-counting Micro-CT Images: For evaluating the performance of the 

proposed method on PCCT data, we have scanned a chicken leg phantom and a live 

mouse animal model for quantitative and qualitative experiments, respectively. The scans are 

performed on a commercial photon-counting micro-CT scanner (MARS, MARS Bioimaging 

Ltd., Christchurch, New Zealand) with a cone beam circular scanning geometry. The source 

is operated at 80kVp/50μA with 1.96mm Al filtration. There are 3 photon-counting detector 

(PCD) chips stitching side by side each with 128 × 128 pixels and 5 useful thresholds 

under the charge summing mode forming 5 effective energy bins, and the pixel size is 

0.11 × 0.11mm2. Two lateral translations have been performed during the scan to cover 

the 40mm-diameter field of view, and 1440 views are collected for one rotation at each 

translation. The 5 energy bins are 7–20, 20–30, 30–47, 47–73 and >73 in keV. Due to the not 

negligible amount of bad pixels, iterative method is used for reconstruction. Specifically, the 

reconstructions are performed with 0.1mm isotropic voxels and with simultaneous algebraic 

reconstruction (SART) algorithm for 200 iterations. The resultant volume is of size 550 × 

550 × 130 for each energy bin, and 5 bins in total.

For the quantitative experiment, a chicken leg with bones is placed in a plastic tube for 

consecutive scans of normal dose (300ms exposure for each view) and low dose (100ms 

exposure for each view). For the qualitative experiment, a live mouse bearing a tumor 

model and injected with blood pool contrast agent (ExiTron nano 12000, NanoPET, Berlin, 

Germany) is scanned with 300ms exposure for each view under anesthesia with isoflurane. 

Note that iterative reconstruction technique has inherent denoising effect, and usually the 

effect is strong at a small iteration number and gradually diminishes as the iteration number 

increases. On the other hand, the resolution gets enhanced (the image becomes sharper) 

together with the noise along with the increase of iteration. Hence, for merely SART 

reconstruction 200 iterations are empirically used to obtain a good balance between noise 

and resolution (references in Fig. 6). For better performance with hybrid use of SART and 

Noise2sim, the PCCT images are first reconstructed with 600 iterations (inputs in Figs. 

6 and 7) to best reserve the resolution and then go through the network to suppress the 

increased noise to obtain the final clean high-resolution images.

In addition, we scanned a dead mouse on another MARS spectral CT system, which 

includes a micro x-ray source and a flat-panel PCD as well. This flat-panel PCD is larger 

and has 660×124 pixels. The emitting x-ray spectrum at 120kVp is divided into the five 

energy bins: [7.0 32.0], [32.1 43], [43.1 54], [54.1 70] and [70 120]. The distances between 

2 https://wiki.cancerimagingarchive.net/display/Public/Phantom+FDA 
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the source to the PCD and object are 310 mm and 210 mm, respectively. In this study, we 

collected 5,760 views with a translation distance 88.32mm for helical scanning. The number 

of views for one circle is 720. The voxel size in each energy channel was set to 0.1 × 

0.1 × 0.1mm3. All reconstructed images were performed using the filtered back-projection 

method. The reconstruction volume is of 667 × 394 × 394 × 5, i.e., the slice size is 394 × 

394, 667 slices in total, and 5 energy channels in use.

All photon-counting datasets scanned in this study are publicly available on our project page 

http://chuangniu.info/projects/noise2im/.

B. Implementation Details

In all our experiments, we used a UNet with the depth of 2 [54] with a residual connection 

as the denoising network in Noise2Sim, which is the same as that used in [37]. In RED-

CNN [14] and MAP-NN [15], specified network architectures are designed for LDCT 

denoising. We used the same data augmentation strategy as in [37], including random 

cropping followed by random 90°-rotation and mirroring. The Adam [55] algorithm was 

coupled with the cosine learning rate schedule [56], with the initial learning rate 0.0005. 

We empirically set the patch size s = 7 and the threshold dtℎ = 30 in HU. Our method was 

implemented on the PyTorch3 deep learning platform. The codes have been made available 

at https://github.com/niuchuangnn/noise2sim.

C. Empirical estimation of ZCN and ZCD conditions

In Section II, we have analyzed the feasibility of the ZCN and ZCD conditions assumed 

by the Noise2Sim theorem. Here we aim to practically estimate the values of different loss 

terms, i.e., 1
Ns

∑i = 1
Ns ∥ yi − si ∥2

2 − 2n̂i
Tyi − 2δi

Tyi in Eq. (3) on the Mayo LDCT dataset, where the 

first term represents the supervised loss, the second and third terms respectively represent 

the practical values of the ZCN and ZCD conditions. Specifically, yi is the denoised image 

predicted by the Noise2Sim model, which was pre-trained with the original Noise2Sim loss 

using noisy LDCT images only, si is the normal-dose CT image, n̂i = x̂i − ŝi denotes the noise 

component of the similar LDCT image x̂i, ŝi is the similar NDCT image, and δi = si − ŝi is 

the difference image between two similar NDCT images. The values of the loss terms over 

different training epochs are drawn in the Fig. 2. It can be seen that the practical ZCN and 

ZCD conditions have a very tiny effects on the total loss relative to the supervised loss, 

and the their values are basically consistent during training. These results demonstrate that 

the ZCN and ZCD conditions can be piratically well approximated, and minimizing the 

Noise2Sim loss is essentially minimizing the supervised loss.

D. Noise2Sim for LDCT denoising

We first evaluated Noise2Sim on the commonly used Mayo clinical dataset containing 

LDCT and NDCT image pairs, demonstrating that Noise2Sim without using any annotation 

is comparable to and sometimes even better than supervised learning methods. Popular 

supervised deep LDCT denoising methods RED-CNN [14] and MAP-NN [15] were selected 

3 https://pytorch.org/ 
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for comparison. Noise2Clean that is the plain supervised version of Noise2Sim serves as 

the baseline. CycleGAN model was selected as the baseline unpaired learning model. Also, 

we selected BM3D [11] and Nosie2Void [37] for comparison, which are the most popular 

traditional denoising method and the representative unsupervised deep denoising method 

respectively. Note that BM3D has the best performance among the traditional denoising 

methods as demonstrated in [14] for LDCT denoising. Both visual results and quantitative 

Structural Similarity Index (SSIM) and Peak signal-to-noise ratio (PSNR) results were used 

to evaluate the denoising performance.

The quantitative results in Table I show that Noise2Sim achieves PSNR measures 

comparable to and better SSIM values than the supervised learning methods. Indeed, our 

paired t-Test indicates that the p values are less than 0.001 for the zero average difference 

hypothesis; that is, the mean results from different methods are significantly different. 

Therefore, the mean results can be reliably used to compare different methods. The above 

results suggest that even if the paired training samples are not available, deep neural 

networks can sill be optimized and applied to improve LDCT quality up to the state-of-

the-art supervised performance. Additionally, we evaluated the effects of three factors on 

Noise2Sim, including dissimilar pixels, loss functions, and training sets, which are detailed 

in Section II. The default learning setting, denoted by Noise2Sim, identifies and excludes 

dissimilar pixels in training samples, uses the mean squared error (MSE) loss function, and 

performs training and testing on separate datasets. In Table I, we tested three variants of 

Noise2Sim, i.e., Noise2Sim- that includes dissimilar pixels, Noise2Sim-L1 that uses the 

L1 loss function, and Noise2Sim* that trains the denoising model using the LDCT images 

in the testing dataset. The denoising performance of Noise2Sim- is evidently worse than 

Noise2Sim as the zero-mean conditional discrepancy condition required by the Nosie2Sim 

theorem is violated if the dissimilar pixels are not excluded. On the Mayo dataset, the L1 

loss works better than the MSE loss, and the difference between the L1 and L2 losses is 

analyzed in Section II. Since Noise2Sim requires neither paired noisy nor paired/unpaired 

clean samples, we also evaluated the Noise2Sim performance for training and testing on a 

single testing set directly, denoted by Noise2Sim*, with the results summarized in Table I. 

Noise2Sim* achieved slightly better results than Noise2Sim likely due to that there is no 

generalizability issue for our training and testing on the same testing dataset. In this setting, 

we might not need to collect a large number of extra training samples. However, in this 

case the time required for denoising covers both training and testing stages, thus being much 

longer than directly applying the pre-trained model. In practice, either training strategy for 

Noise2Sim can be selected according to specific application requirements.

The visual results in Fig. 3 also illustrate that Noise2Sim is better than the supervised 

methods in preserving structural details, as indicated by the zoomed ROIs in the yellow 

bounding boxes, in reference to the normal-dose CT image. Clearly, the supervised methods 

tend to remove noises aggressively while Noise2Sim tries to preserve informative details. 

As a weakly-supervised learning model trained on unpaired normal-dose CT images, 

CycleGAN suppresses CT image noise with the overall appearance of the resultant images 

similar to the NDCT images. However, CycleGAN tends to shift the HU values and 

sometimes generates fake structural details as shown in Fig. 3. Our results show that 
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Noise2Void does not work for structured CT noises, and the BM3D results are either over-

smoothed or compromised with structured artifacts. In contrast, Noise2Sim has significantly 

better performance in reducing structured noises and preserving content structures.

E. Controllability of Noise2Sim with denoising levels

The similarity parameter k defined in Section II allows us to control the extent to which 

image noise is removed. As shown in Fig 4, more noise can be suppressed with a larger 

parameter k. A larger k increases the noise independence of similar training samples so 

that noise can be suppressed more aggressively, as implied by the Noise2Sim theorem. On 

the other hand, the denoising results may be harmed if k is too large, as the zero-mean 

conditional discrepancy assumed by the Noise2Sim theorem may be compromised. The 

statistical results in Fig 4 shows that k = 2 achieves the best trade-off between noise 

independence and feature similarity. The parameter k can be adjusted according to specific 

downstream tasks. If image quality can be quantitatively modeled, such as with a neural 

network and/or a Gram matrix [57], k could be automatically optimized. More practically, 

several levels of denoising images can be simultaneously presented to radiologists, and thus 

the best image quality can be determined with the human expertise in loop. Note that the 

denoising level is not controlled on-the-fly using Noise2Sim. In fact, different denoising 

levels can be achieved by training several denoising models. Since the denoising model is 

relatively small, multiple models can be trained and deployed in parallel.

F. Effects of Threshold and Patch size

As described in Section II-B, we introduced two hyperparameters including the threshold 

dtℎ and patch size S in computing the similarity. Here we empirically evaluated their effects 

on low-dose CT denoising, and the results are reported in Tables II and III. The results 

show that the denoising performance was evidently degraded when dtℎ = 0; i.e., all dissimilar 

pixels were included during the training process. Other values (10 ~ 60) close to the default 

value (30) had a tiny impact on the results. On the other hand, the denoising results for 

the patch size of 3 × 3 was clearly worse than that for larger values, with 7 × 7 patch size 

achieving the best results.

G. Generalizability of Noise2Sim on LDCT datasets

We further evaluated Noise2Sim on real LDCT scans of the FDA anthropomorphic phantom 

[58], demonstrating that Noise2Sim performs better than the supervised learning methods 

that transfer from the simulated to real data. Since we can hardly obtain paired LDCT 

and NDCT images in the clinical scenario, we applied the supervised learning models that 

trained on the Mayo dataset to processing the real LDCT images in the FDA dataset. For 

this purpose, Noise2Sim was trained and tested using the same LDCT images in the FDA 

dataset. Specifically, we used two low-dose (25mA) phantom scans that were reconstructed 

with different kernels denoted by b40f and b60f, resulting in different noise patterns 

respectively. To quantify the denoising performance, we used the corresponding normal-dose 

(200mA) phantom scans as targets. Because the normal-dose images reconstructed with 

the b40f kernel still contain noises, we first processed the normal-dose images by training 

the Noise2Noise model with the paired noisy images and used the denoised noraml-dose 
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image as the reference. Table IV shows that Noise2Sim achieves the best results on both 

two phantoms in terms of PSNR and SSIM among all the supervised and unsupervised 

learning methods. Particularly, the supervised learning models cannot work well when being 

transferred to denoising real LDCT images that are reconstructed with a totally different 

kernel b40f. The b40f phantom images denoised using different methods is visualized in Fig. 

5. These results show that supervised learning models suffer from severe generalizability 

issues when there is a shift in distributions between training and testing samples. In contrast, 

Noise2Sim can be directly optimized in the target domain without suffering from the 

generalizability issue. Surprisingly, Noise2Sim can recover underlying structures despite 

strong noises, while these structures can be hardly seen in the original LDCT images. 

These strongly demonstrate the effectiveness of the proposed unsupervised deep denoising 

approach, which has a great potential to improve the LDCT image quality and diagnostic 

performance.

H. Noise2Sim for PCCT denoising

As an emerging CT imaging technology, an x-ray photon-counting detector records 

individual x-ray photons as well as their energy levels. By the nature of the photon-counting 

mechanism, this technique is free of electronic noise and provides a much higher resolution 

compared to that of conventional energy integrating detectors [59]. The x-ray energy 

information can be used to extract chemically specific information and facilitate beam 

hardening correction, metal artifact reduction, tissue characterization and K-edge imaging 

[60], [61]. On the other hand, the refinement of spatial resolution and the division of photons 

into narrow energy bins significantly raise the image noise in individual energy channels, 

demanding powerful denoising methods that remove image noise while preserving fine 

features.

To evaluate the effectiveness of Noise2Sim on denoising PCCT images, we scanned a 

chicken drumstick at low- and normal-dose setting respectively and reconstructed them into 

PCCT image volumes using the state-of-the-art MARS spectral CT system. Although the 

low-dose and normal-dose PCCT images of the same object are available, it is still hard to 

directly apply supervised learning methods for PCCT image denoising since different scans 

were not in perfect registration. Thus, we first used a registration tool to align the low-dose 

and normal-dose PCCT volumes so that the supervised leaning method (Noise2Clean) can 

be applied. Then, the quantitative results were calculated for comparison. For this purpose, 

we still selected the unsupervised BM3D method as the baseline. Fig. 6 shows that our 

proposed unsupervised leaning method outperforms BM3D and even the supervised learning 

method in terms of both the quantitative and qualitative results. BM3D requires manually 

tuning the prior parameter of standard deviation (std) for each bin to achieve decent results. 

Despite these tedious tuning steps, BM3D still produced either over-smoothed features 

(the 4st bin with the std of 0.2) or structured artifacts (the 5th bin with std of 0.5). The 

reason seems that BM3D could either blindly remove high-frequency components including 

some fine structures in the transform domain according to the patch similarity to address 

a large standard deviation prior or preserve some large structured noises to reflect a small 

standard deviation prior. On the other hand, due to the imperfect alignment of low-dose 

and normal-dose training samples, the performance of a supervised learning method may 
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be degraded. In contrast, Noise2Sim intrinsically registers similar training samples and can 

be then applied to produce excellent denoising results without tuning the hyperparameter in 

a bin-specific fashion. Particularly, Noise2Sim is able to faithfully recover the underlying 

structures interfered by strong noises, as shown in the last row of Fig. 6, which is visually 

even better than the reference image.

Finally, we applied Noise2Sim to a PCCT image volume of a live mouse scanned on the 

MARS spectral CT system. In this case, only a single normal-dose scan was available so 

that the supervised leaning method cannot be applied. Fig. 7 shows this challenging case in 

the 5th bin, where structures can be hardly observed in the original noisy image. BM3D can 

only recover a rough contour of the spine. In contrast, Noise2Sim can accurately recover the 

spine and other organs. Also, more comparison results can be found in Fig. 8, showing that 

the proposed method is consistently better than BM3D in terms of different denoising levels 

on PCCT images.

IV. Discussion and Conclusion

In the Noise2Sim method, the key is to find similarity-based training samples satisfying 

the ZCN and ZCD conditions from noisy data without any labels. Specific to the 

dimensionality of involved images, several efficient searching algorithms have been 

evaluated for suppressing noises in this study. Since here we focus on unsupervised learning, 

the commonly used UNet [54] architecture and the Euclidean distance were applied for 

similarity measurement. Clearly, the denoising performance should be better with a more 

advanced network design, more accurate similarity measurement, and a more sophisticated 

loss function.

As a general unsupervised denoising approach, Noise2Sim can be adapted to many other 

domains, not limited to CT images. In the general spirit of Noise2Sim, deeper analysis 

of domain-specific data can help fully leverage similar data features and achieve superior 

performance. As far as LDCT denoising is concerned, the imaging performance may 

be improved using a dual domain denoising network with similarity matches in both 

the sinogram and image domains synergistically. Moreover, due to its simplicity and 

efficiency, our proposed approach could be also incorporated into the classic model-based 

reconstruction algorithms [50], [62], [63] as an element or a constraint to regularize the CT 

image reconstruction process.

In conclusion, we have presented a novel similarity-based self-supervised learning denoising 

approach only using noisy images with neither clean nor noisy paired labels. To our 

best knowledge, our proposed denoising approach is the first-of-its-kind to suppress 

structured noises in the self-supervised deep learning fashion. Theoretically, we have 

proved the Noise2Sim theorem that the similarity-based self-supervised learning method 

is asymptotically equivalent to the supervised learning methods under mild conditions. 

Also, we have applied the Noise2Sim approach in the important applications to denoise 

3D low-dose CT and 4D photon-counting micro-CT images. Our experimental results have 

demonstrated the superiority of the Noise2Sim approach in comparison with existing model-
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based and deep learning denoising methods. Potentially, the Noise2Sim approach can be 

adapted to various domains for practical denoising performance.
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Appendix

A1. Theoretical Analysis

Independence.

Given four variables X1, X2, Y 1, Y 2, if each of these pairs X1, X2 , Y 1, Y 2 , X1, Y 2 , Y 1, X2  is 

independent, then we can we have

P X1, X2, Y 1, Y 2

= P X1 ∣ X2, Y 1, Y 2 P X2 ∣ Y 1, Y 2 P Y 1 ∣ Y 2 P Y 2

= P X1 ∣ Y 1 P X2 ∣ Y 2 P Y 1 P Y 2

= P X1, Y 1 P X2, Y 2

(A1)

Thus, X1Y 1 and X2Y 2 are independent. Corresponding to the theorem proof in Section II, let 

X1 : = su + nu, X2 : = sv + nv, Y 1 = n̂u, Y 2 = n̂v, then the variables n̂u
T su + nu  and n̂v

T sv + nv  are 

independent. If we let Y 1: = δu and Y 2: = δv, then the variables δu
T su + nu  and δv

T sv + nv  are 

independent.

Expectation equivalence.

Given two variables X and Y , then we have

E XTY =
x y

xTyfXY(x, y)dxdy

=
x y

xTyfX ∣ Y(x ∣ y)fY(y)dxdy

=
x y

xTyfX ∣ Y(x ∣ y)fY(y)dxdy

=
y x

xfX ∣ Y x ∣ y dx
T

yfY(y)dy

= E[E[X ∣ Y ]TY ]

(A2)

Corresponding to Eqs. (5), if we let X: = n̂i or X: = δi and Y : = yi, then the first equivalences 

hold true.
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A2. Suppression of independent noises in 2D images

Fig. A1. 
Noise2Sim training process on 2D images with independent noise. Step 1 is to search for a 

set of k similar pixels for each pixel in the original noisy image, and form k most similar 

images, which is also referred to as nearest images. In the original noisy image, the yellow 

and green points respectively denote the reference pixel X u, v  and its k nearest pixels 

Xj u, v , j = 1, ⋯, k, and the corresponding boxes present the patches respectively centered 

at these involved pixels that are used to compute the similarity between center pixels. The 

kth nearest image is formed by replacing all pixels in the original noisy image with their 

kth nearest pixels. Step 2 is to construct a pair of similar images as the input and the 

target to train a deep neural network. Each similar image is independently constructed by 

replacing every pixel X u, v  in the original noisy image with the pixel randomly selected 

from N u, v = X u, v , X1 u, v , ⋯, Xk u, v , which are pre-computed in Step 1.

In the case of 2D images corrupted by independent noise, we design an efficient two-step 

algorithm to construct a large set of similar images from noisy images only. As introduced 

in Section II-A, the similar training set is defined as xi, x̂i ∣ S T xi , T x̂i , where T  is 

a transformation function for sub-images, and S is a function to measure between two 

sub-images. Here the similar sub-images are constructed by replacing each and every 

original pixels with the searched similar pixels, where the similarity between two pixels 

are measured by their surrounding patches. For simplicity, here T  is the identity function 

that means no transformations are applied to image patches, and one can also use other 

transformations to reduce the variance of similarity estimation caused by noises [11]. For 

the similarity estimation S, we adopt the k − NN strategy that each pixel is matched with k
nearest similar pixels in terms of the Euclidean distance between their surrounding patches.
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Fig. A2. 
Visual comparison of denoising results on different datasets, where G25 means Gaussian 

noise with Std = 25, and P30 means Poisson noise with λ = 30. The PSNR and SSIM values 

are included.

Specifically, let us describe this process in detail at the pixel-level. For each reference pixel 

x u, v  with its coordinates u, v  in a given noisy image x, we compute its k nearest pixels 

over the whole image. The distance between two pixels x u1, v1  and x u2, v2  is defined as 

the Euclidean distance between their associated patches; i.e., ∥ S u1, v1 − S u2, v2 ∥2, where 

S u, v  denotes a square patch defined by the pre-defined patch size and the center pixel 

x u, v . Thus, each position in the image has a set of k + 1 similar pixels (+1 means the 

reference pixel included), denoted as N u, v = x u, v , x1 u, v , ⋯, xk u, v , where xj u, v
denotes the j-th nearest pixel relative to x u, v . As shown in Fig. A1, the yellow and green 

dots denote the reference pixel and its nearest pixels, and the boxes are the associated 

patches. Based on these similar pixel sets, a similar noisy image can be constructed by 

replacing every original pixel x u, v  with a similar one randomly selected from N u, v . 

Then, a pair of similar images are independently constructed in each iteration.

Noise2Sim can be regarded as a non-local version of Noise2Void leveraging both local and 

global similarity information, while Noise2Void only uses neighbor pixels to construct a 

target. Therefore, Noise2Sim enjoys principled superiority over Noise2Void.

Furthermore, Noise2Sim was evaluated on the commonly used BSD68 and KODAK images 

corrupted by Gaussian and Poisson noises. All implementations on 2D images can be found 

at http://chuangniu.info/projects/noise2im/. Consistent to the known limitations discussed in 

[37], some grainy structures cannot be recovered well in Noise2Void denoised images, as 

shown in the zoom-in regions of the last row in Fig. A2. In contrast, our Noise2Sim images 

well preserve structural subtleties, as self-similarities are fully utilized in the training stages.
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Fig. 1. 
Noise2Sim training process on LDCT and PCCT. The similar volumes along the slice 

direction are selected to construct training samples, where the dissimilar vectors identified in 

a mask image are excluded during training. For PCCT, different colors denote different bins, 

so both inputs and targets are multi-channel slices from multiple energy bins.
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Fig. 2. 
Values of different loss terms. The zoomed-in green box shows the detailed values of the 

ZCN and ZCD terms.
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Fig. 3. 
Superior/comparative Noise2Sim results on the Mayo LDCT dataset. The yellow ROIs 

indicate that detail structures are better preserved using Noise2Sim than other methods in 

reference to the normal-dose CT image. The display window is [−160, 240] in Hounsfield 

unit (HU), along with PSNR and SSIM values.
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Fig. 4. 
Controllable Noise2Sim results with different denoising levels on the Mayo dataset. The 

numbers in yellow and black are calculated for the individual case. The numbers in black are 

respectively the mean and standard deviation values over the test dataset (1136 slices). The 

second row shows the corresponding ROIs in the yellow bounding boxes. The yellow arrows 

indicate that structural details are enhanced via image denoising.
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Fig. 5. 
Generalizability results of Noise2Sim on the FDA dataset, significantly better than those 

from other denoising methods. The LDCT image was obtained with 25mA and b40f kernel. 

The N2Noise reference image was obtained with 200mA and processed with the paired 

Noise2Noise method. The display window is [−160, 240] HU, along with PSNR and SSIM 

values.
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Fig. 6. 
Qualitative and quantitative results of Noise2Clean, BM3D, and Noise2Sim on 4D photon-

counting CT images. (a)-(e) and (d)-(m) respectively show denoising results from the 4th 

and 5th energy bins. (f)-(h) show the corresponding profiles along the green line in (a). 

The PSNR and SSIM results over the test dataset are reported for each method including 

both mean and standard deviation values over the test dataset (40 slices), and the best mean 

results are underlined. Yellow arrows indicate a small bone structure, with the counterparts 

in (f)-(h) emphasized within the black circles.
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Fig. 7. 
Visualization of the denoised PCCT images of a live mouse. (a) shows the live mouse with a 

boxed area to be scanned. (b), (c), and (d) are respectively the input, BM3D and Noise2Sim 

results of a slice in the 2th bin. (f), (g), and (h) are the input, BM3D and Noise2Sim results 

of a slice in the 5th bin. (i), (j), (k) are the 3D rendered images in the 5th bin, where the 

rendering function of voxel value v.s. opacity and voxel value v.s. color map are given in (e).
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Fig. 8. 
Noise2Sim and BM3D results on the died mouse dataset. The first and second rows 

respectively present Noise2Sim and BM3D results of different denoising levels in the 5th 

bin.
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TABLE II

The denoising results Using different values of dth in HU. Here all other settings were set to the default values, 

and L1 loss function was used.

dth 0 10 20 30 40 50 60

PSNR 27.58 28.32 28.38 28.38 28.37 28.37 28.33

SSIM 89.52 90.43 90.48 90.45 90.39 90.32 90.38
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TABLE III

The denoising results using different values of S in pixels. Here all other settings were set to the default values, 

and L1 loss function was used.

dth 3×3 5×5 7×7 9×9 11×11

PSNR 27.10 28.26 28.38 28.34 28.32

SSIM 89.33 90.41 90.45 90.24 90.23
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