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RET biology
The rearranged during transfection (RET) gene is 
a protooncogene that is located on chromosome 
10. It encodes for a receptor tyrosine kinase that 
initiates a cellular signaling cascade leading to cell 
proliferation and growth. The RET receptor is 
composed of three distinct parts: an extracellular 
domain, a transmembrane domain, and an intra-
cellular domain. The extracellular domain 
includes four cadherin-like domains, a calcium-
binding site, and a cysteine-rich region. The intra-
cellular domain features a tyrosine kinase enzyme, 
which can have variable isoforms of the c-terminal 
tail due to alternative splicing.1–4 Ligand binding 
to the RET co-receptors leads to the activation of 
multiple downstream cellular signaling pathways 
including RAS/MAPK/ERK, PI3K/AKT, and 
JAK/STAT; all with resulting increase in cellular 
proliferation and differentiation.5–9

RET fusions
RET can be aberrantly activated by mutations and 
chromosomal rearrangements (Figure 1); both of 

which has been linked to the process of oncogen-
esis in different tumor types.2 Initial discoveries 
were made in patients with thyroid cancer who 
had multiple endocrine neoplasia syndrome, but 
later evidence suggested a role of RET  alterations 
in other sporadic cancers as well.10–14 RET muta-
tions are relatively more frequent, but RET fusion-
positive cancers represent a distinct molecular 
entity that defines a unique clinical subtype.15,16

In a study including 96,324 samples from AACR 
Project GENIE, 223 RET fusions (0.23%) were 
identified. Nearly half of RET fusions (54.3%) 
were identified in patients with non-small cell 
lung cancer (NSCLC). The second most com-
mon tumor type with frequent RET fusions was 
papillary thyroid cancer (22.8%). Frequently 
encountered fusion partners were KIF5B, 
CCDC6, and NCOA4 .16

In disease-specific analysis, RET fusions are esti-
mated to occur in 2% of NSCLC patients.15,17–22 
Such prevalence might be perceived as infre-
quent, but the fact that lung cancer is estimated 
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to hit nearly a quarter million new patients a year 
in the United States alone makes the number of 
patients who might benefit from targeted treat-
ment substantial.23 RET fusion-positive cancers 
usually present with distinct clinicopathological 
characteristics including young age, never smok-
ers, early nodal metastasis, and poorly differenti-
ated histology.15 A study by Drilon et  al.24 also 
suggested that RET-rearranged lung cancers 
commonly present with brain metastasis (present 
in 25% of patients with stage IV at the time of 
diagnosis with a lifetime prevalence of 46%) and 
have suboptimal response to multikinase inhibi-
tor (MKI) therapy. In NSCLC samples with RET 
fusion, co-occurring alterations were found in 
KRAS, SETD2, PBRL4, EZH1, and RRAGC 
genes.16 In addition to NSCLC, RET fusions 
have also been implied as part of the molecular 
profile in various other tumor types.17

Detection of RET fusions
There are multiple methods that can be used to 
detect RET fusions which vary in their advantages 
and disadvantages.25 For example, immunohisto-
chemistry has been long used as a cheap technol-
ogy for the detection of RET aberrations but is 
limited by its low sensitivity and specific-
ity.15,19,20,26,27 Fluorescence in situ hybridization 

(FISH) can be used to achieve higher sensitivity 
and specificity, but it cannot identify fusion part-
ners unless the specific fusion partner probe is 
used.15,26 Polymerase Chain Reaction (PCR) is 
another alternative that can inform about the exact 
fusion partner, but it can only evaluate specimens 
based on known molecular profile which is used to 
select the used primers and limits its ability to dis-
cover new or unknown partners.19,26,28–31

Therefore, next-generation sequencing emerges 
as the optimum tool for the detection of RET 
fusion variants, given its high sensitivity and spec-
ificity as well as its ability to overcome most of the 
previously mentioned limits. The cost will remain 
a challenging concern, especially in low-resource 
settings but it will hopefully be cheaper with wider 
applications of genomic testing and more 
advances in technologies that will characterize the 
era of personalized cancer medicine.3,31

One promising approach is the use of liquid 
biopsy for the detection of RET fusions.25 This 
has gained lots of interest in the past decade given 
its minimally invasive nature. In a study by Rich 
et al.,32 analysis of cell-free DNA (cfDNA) from 
32,989 samples collected from patients with 
diverse cancers revealed the presence of 176 RET 
alterations (mostly fusions) in 170 patients 

Figure 1.  RET fusions can lead to ligand-independent activation of the RET pathway, which leads to 
downstream signaling of multiple other cellular pathways associated with cellular proliferation and survival.
RET, Rearranged during Transfection.
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(0.5%). In NSCLC, this is particularly important 
given the challenges of obtaining repeated tissue 
samples. Liquid biopsy in that setting can allow 
for the detection of originally present RET fusions 
at baseline samples and emerging fusions during 
longitudinal monitoring, which offers patients a 
chance for real-time assessment of therapeutic 
targetability in an era with the expanded availabil-
ity of targeted therapy.33,34

Development of RET inhibitors: A historical 
perspective
Treatment of RET-altered cancers has been quite 
challenging since response rates to chemotherapy 
were relatively low. Moreover, limited response 
and progression-free survival (PFS) benefit has 
been shown with immunotherapy, possibly due to 
low levels of Programmed Death Ligand 1 (PDL1) 
expression and low mutation burden.35 The first 
potential for targeting RET alterations came his-
torically from studies that were done on MKIs.2 
Cabozantinib and vandetanib have emerged, 
among other MKIs, in that regard as key players 

with evidence of their activity in RET-altered can-
cers. For example, an objective response rate 
(ORR) of 28% was observed with cabozantinib in 
patients with previously treated RET fusion-posi-
tive NSCLC.36 Vandetanib has also demonstrated 
an ORR of 17% in a similar patient population. 
Nevertheless, the wide spectrum of toxicities pri-
marily attributed to nonselective inhibition of 
tyrosine kinases including non-target ones was 
quite devastating. Moreover, the durability of the 
response was also another concern.2,37

With that in mind, further efforts have led to the 
introduction of more selective RET-targeting 
agents.38,39 So far, two agents, selpercatinib and 
pralsetinib, have shown promising results in treat-
ing RET-driven cancers. Data from clinical trials 
suggested a potential for both drugs in RET fusion-
positive cancers and led to their inclusion in stand-
ard of care treatment guidelines40 (Table 1). This 
review will primarily focus on selpercatinib and its 
activity in RET fusion-positive cancers starting 
with NSCLC and expanding beyond that to tis-
sue-agnostic activity.

Table 1.  Summary of data on FDA and EMA-approved selective RET inhibitors in RET fusion-positive solid tumors.

Drug Clinical trial FDA indication EMA indication Data

Selpercatinib LIBRETTO-001, 
NCT03157128

Adult patients with locally advanced or metastatic solid 
tumors with a RET gene fusion that have progressed on 
or following prior systemic treatment or who have no 
satisfactory alternative treatment options

ORR = 43.9%41

Adult patients with locally advanced or metastatic NSCLC 
with a RET gene fusion

Advanced RET fusion-
positive NSCLC not 
previously treated 
with a RET inhibitor

ORR = 84% and 61% 
in untreated and 
previously treated 
patients42,43

Adult and pediatric patients 12 years of age and older 
with advanced or metastatic thyroid cancer with a RET 
gene fusion who require systemic therapy and who are 
radioactive iodine-refractory (if radioactive iodine is 
appropriate)

Advanced RET fusion-
positive thyroid cancer 
who require systemic 
therapy following 
prior treatment with 
sorafenib and/or 
levatinib

ORR = 79%44

Pralsetinib ARROW, 
NCT03037385

Adult patients with metastatic RET fusion-positive NSCLC Adult patients with 
RET fusion-positive 
advanced NSCLC not 
previously treated 
with a RET inhibitor

ORR = 70% and 61% 
in untreated and 
previously treated 
patients45

Adult and pediatric patients 12 years of age and older 
with advanced or metastatic RET fusion-positive thyroid 
cancer who require systemic therapy and who are 
radioactive iodine-refractory (if radioactive iodine is 
appropriate)

ORR = 89%46

EMA = European Medicines Agency; FDA = Food and Drug Administration; NSCLC, non-small cell lung cancer; ORR, objective response rate; RET, Rearranged during 
Transfection.
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Selpercatinib

Mechanism of action and preclinical data
Selpercatinib is a selective small molecule inhibi-
tor of RET kinase via ATP competitive mecha-
nism. Preclinical studies have shown that 
selpercatinib possesses high selective potency 
against different RET alterations, including 
fusions and mutations.47,48

Clinical development in NSCLC
Evidence in favor of using selpercatinib in RET 
fusion-positive NSCLC came from the 
LIBRETTO-001 trial. LIBRETTO-001 was an 
open-label phase 1–2 clinical trial including 
patients with advanced or metastatic solid tumors 
who harbor RET alterations (fusions and muta-
tions). Patients in the phase 2 portion received 
160 mg twice daily and were allowed to continue 
treatment beyond progression per investigator’s 
evaluation of clinical benefit.

A total of 247 patients with heavily pretreated and 
69 patients with treatment naïve RET fusion-pos-
itive NSCLC were included as part of 
LIBRETTO-001. ORR was 61% (95% Cl: 55–
67) in pretreated patients—including 18 patients 
with complete response, and 84% (95% CI: 73–
92) in previously untreated patients – including 
four patients with complete response. The median 
PFS was 24.9 months (95% CI: 19.3–not reached) 
and 22 months (95% CI: 13.8–not reached) in 
previously treated and previously untreated 
patients, respectively.42,43 Intracranial activity was 
quite impressive in 22 patients with measurable 
central nervous system (CNS) metastasis who 
showed an ORR of 82% (95% CI: 60–95)—
including 23% complete responses. In 80 patients 
with NSCLC and intracranial disease, the median 
intracranial PFS was 13.7 months (95% CI: 10.9–
not reached).49 In an updated analysis including 
106 patients with baseline intracranial disease, 
intracranial ORR was 85% (95% CI: 65–96) with 
a median PFS of 19.4 months (95% CI: 13.8–not 
reached). The calculated probability of CNS pro-
gression in brain metastasis-free patients who 
received selpercatinib was only 0.7% at 2 years.43 
Based on results from the NSCLC cohort analysis 
in LIBRETTO-001, selpercatinib received its 
FDA approval for treatment of metastatic RET 
fusion-positive NSCLC in 2020.50

Since LIBRETTO-001 was a single-arm study, 
an effort to explore the comparative effectiveness 

of selpercatinib by pooling patient-level data from 
matched patients in real world, pemetrexed/plati-
num arm of the KEYNOTE-189 trial, and doc-
etaxel arm of REVEAL trial. PFS was significantly 
longer for selpercatinib (median not reached) ver-
sus pemetrexed and platinum in KEYNOTE-189 
(median 12 months) and docetaxel (median 
9 months) using targeted maximum likelihood 
estimation.51

Selpercatinib maintained its efficacy in NSCLC 
and tolerable safety profile when tested in different 
patient populations and different disease settings. 
For example, in a population with Japanese patients 
(n = 44 previously treated and 4 previously 
untreated), the ORR was 55.4%. Another study 
(LIBRETTO-321; NCT04280081) included 
Chinese patients with RET-altered cancers. In 47 
patients with RET fusion-positive NSCLC, ORR 
was 69.2% (95% CI: 48.2–85.7).52 Beyond clinical 
trials, in a real-world retrospective study, selper-
catinib was demonstrated to achieve an ORR of 
68% and a disease control rate of 92% in 50 patients 
with RET fusion-positive NSCLC. This was quite 
interesting given the inclusion of 14 patients (28%) 
who had a performance status of ⩾2 who would 
classically be excluded from clinical trials.53

Clinical development beyond NSCLC
In addition to NSCLC, the initial FDA approval for 
selpercatinib included patients with advanced or 
metastatic RET mutant medullary thyroid carci-
noma and patients with advanced or metastatic RET 
fusion-positive thyroid cancer; based on reports with 
promising results in those other two other cohorts of 
LIBRETTO-001.44 For example, the RET fusion-
positive thyroid cancer group showed an ORR of 
79% (95% CI: 54–94).44 This cohort had patients 
with variable thyroid cancer histologies including 
papillary, poorly differentiated, hurthle cell, and ana-
plastic carcinomas.44 Interestingly, selpercatinib use 
has been demonstrated to enhance radioactive 
iodine uptake in RET-rearranged thyroid cancer, 
probably via a drug-induced histological redifferen-
tiation.54,55 An updated report was published for 
other cohorts of LIBRETTO-001 and was the basis 
for the tissue-agnostic approval in 2022.50 In 45 
patients with RET fusion-positive non-lung and 
non-thyroid cancers (12 pancreatic cancer, 10 colon 
cancer, 4 salivary gland cancer, 3 sarcoma, 3 cancer 
of unknown primary, 2 breast cancer, 2 skin cancer, 
2 cholangiocarcinoma, 2 xanthogranuloma, 1 carci-
noid syndrome, 1 ovarian cancer, 1 pulmonary car-
cinosarcoma, 1 rectal neuroendocrine tumor, and 1 
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small intestinal cancer), the ORR was 43.9% (95% 
CI: 28.5–60.3)—including two patients with com-
plete response (Figure 2). The median PFS assessed 
by independent reviewers was 13.2 months (95% 
CI: 7.4–26.2).41

Drug-induced toxicities
Despite having a tolerable toxicity profile, the use 
of selpercatinib has been linked to the occurrence 
of multiple toxicities that can be quite distinct. 
For example, chylous effusions have been 
described in patients treated with selpercatinib.56 
Hypersensitivity reactions have also been reported 
in selpercatinib-treated patients regardless of 
prior use of immunotherapy.57 Other common 
adverse events include fatigue, hypertension, 
rash, dry mouth, nausea, abdominal pain, diar-
rhea, constipation, edema, and headache.50

Resistance to selpercatinib
Multiple mechanisms of acquired resistance, 
which commonly limits the durability of response 
with tyrosine kinase inhibitors, are also being 
increasingly reported with selpercatinib. While 
selpercatinib can structurally evade the gatekeeper 
mutations of RET by wrapping around the tyrosine 
kinase,58 resistance to first-generation RET inhibi-
tors, including selpercatinib, has been reported to 
occur as a result of acquired mutation at the non-
gatekeeper sites; namely, solvent front and hinge 

sites of RET kinase; including RET Y806 and RET 
G810 mutations.58,59 These form the basis for the 
design of second-generation RET inhibitors. For 
example, Solomon et al. demonstrated using 
cfDNA samples from a patient with CCDC6–RET 
NSCLC with prior dramatic response to selper-
catinib the emergence of RET G810C mutation at 
the time of progression.59,60 In addition to G810 
mutations, other RET-independent resistance 
mechanisms have also been reported in RET 
inhibitor-treated patients including amplifications 
of MET and KRAS genes.61,62 NTRK3 fusion as a 
mechanism of resistance has also been reported in 
RET fusion-positive lung cancer.63

Different approaches have been suggested to 
overcome such resistance including combination 
with other targeted agents, for example, crizo-
tinib.61 Moreover, second-generation drugs are 
currently being explored in early-phase trials and 
will hopefully delay the emergence of these muta-
tions with a benefit in expanding PFS.

Clinical trials with selpercatinib in multiple 
settings and future perspectives
The tissue-agnostic approval of selpercatinib was a 
landmark in biomarker-driven precision oncology. 
However, multiple studies are currently ongoing to 
explore the expanded potential of selpercatinib in 
RET fusion-positive cancers (Table 2). These are 
primarily focused on testing in different disease 

Table 2.  Examples of ongoing clinical trials for selpercatinib in RET fusion-positive cancers.

Clinical trial Phase Setting Population

LIBRETTO-432 3 Adjuvant Patients with early-stage NSCLC after curative intent surgery or 
radiation therapy

NCT04759911 2 Neoadjuvant Patients with thyroid cancer

LIBRETTO-431 3 Advanced Patients with advanced or metastatic RET fusion-positive 
nonsquamous NSCLC

Lung-MAP 2 Advanced Patients with RET fusion-positive recurrent or metastatic NSCLC

ORCHARD 2 Advanced Patients with advanced NSCLC who progressed after treatment 
with first-line osimertinib

FINPROVE 2 Advanced Patients with advanced solid tumors that harbor a RET alteration

LIBRETTO-121 1/2 Advanced Pediatric patients with advanced solid tumors and primary CNS 
tumors not including lung cancer that harbor a RET alteration

Pediatric-MATCH 2 Advanced Pediatric patients with RET-altered cancers

NSCLC, non-small cell lung cancer; RET, Rearranged during Transfection.
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settings and patients’ populations. For example, a 
phase 3 trial (LIBRETTO-432; NCT04819100) is 
investigating the use of selpercatinib in the adjuvant 
setting compared to placebo when given to patients 
with early-stage NSCLC after curative intent sur-
gery or radiation therapy.64 In the neoadjuvant set-
ting, NCT04759911 is a phase 2 trial that is 
evaluating preoperative selpercatinib in patients 
with thyroid cancer and RET alterations.65

In the advanced and metastatic setting, 
LIBRETTO-431 (NCT04194944) continues to 
evaluate the efficacy of selpercatinib in patients 
with advanced or metastatic RET fusion-positive 
non-squamous NSCLC. Patients are randomized 
to receive either selpercatinib or standard plati-
num-based and pemetrexed-based therapy with or 
without pembrolizumab as first-line treatment.60 
Selpercatinib is also tested as part of the Lung-
MAP lung cancer Master Protocol which is an 
umbrella trial that includes patients with advanced 
NSCLC for the purpose of testing various therapeu-
tic regimens including selpercatinib. For example, 

phase 2 Lung-MAP (NCT05364645) investigates 
carboplatin and pemetrexed with or without selper-
catinib in patients with RET fusion-positive recur-
rent or metastatic NSCLC. Another arm of 
Lung-MAP evaluates selpercatinib as a single-agent 
in the same disease setting.66 Selpercatinib is also 
being studied as part of the phase 2 platform study 
(ORCHARD; NCT03944772) in patients with 
advanced NSCLC who progressed after treatment 
with first-line osimertinib.67 This is also the case in 
the phase 2 Finnish trial (FINPROVE) which 
includes patients with advanced solid tumors that 
harbor a RET alteration.68

In the pediatric patient population, LIBRETTO-121 
(NCT03899792) is a phase 1/2 trial evaluating 
selpercatinib in patients with advanced solid tumors 
and primary CNS tumors, not including lung can-
cer, that harbors a RET alteration. Moreover, the 
phase 2 pediatric MATCH trial (NCT04320888; 
NCT03155620) is studying selpercatinib in RET-
altered cancers in the pediatric patient population 
(⩽21 years).

Figure 2.  Pan-cancer efficacy of selpercatinib in RET fusion-positive solid tumors.
RET, Rearranged during Transfection.
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Conclusion
Selpercatinib has led to a paradigm change in the 
management of RET fusion-positive solid tumors 
including NSCLC and thyroid cancer. Its current 
tissue-agnostic approval highlights the potential it 
has in different tumor types. Multiple studies are 
ongoing with the aim of exploring selpercatinib 
use in other disease settings and different patients’ 
populations.
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