Table 3.
Results without DIVA.
| Data set | Train acc | Test acc | Balanced acc | Precision | Recall | F1 | Auc |
|---|---|---|---|---|---|---|---|
| Classification and Regression Tree | 65.40 | 61.69 | 61.44 | 0.60 | 0.59 | 0.59 | 0.62 |
| Logistic Regression | 69.86 | 60.47 | 60.37 | 0.58 | 0.59 | 0.58 | 0.63 |
| Linear Discriminant Analysis | 71.55 | 58.66 | 58.60 | 0.56 | 0.57 | 0.56 | 0.60 |
| Artificial Neural Networks | 69.11 | 56.70 | 59.96 | 0.56 | 0.63 | 0.56 | 0.65 |
| K Nearest Neighbor | 75.80 | 59.09 | 59.14 | 0.57 | 0.56 | 0.56 | 0.61 |
| Support Vector Machine (RBF) | 62.74 | 57.71 | 58.84 | 0.60 | 0.49 | 0.51 | 0.66 |
| Support Vector Machine (Linear) | 72.50 | 59.46 | 59.33 | 0.57 | 0.57 | 0.56 | 0.61 |
| Gaussian Naïve Bayes | 57.35 | 54.26 | 55.66 | 0.51 | 0.81 | 0.62 | 0.61 |
| Random Forest | 100.00 | 58.88 | 59.61 | 0.61 | 0.53 | 0.51 | 0.66 |
| Extreme Gradient Boosting | 100.00 | 57.52 | 57.28 | 0.54 | 0.51 | 0.52 | 0.63 |
| Averaged | 75.43 | 58.08 | 58.75 | 0.57 | 0.59 | 0.55 | 0.63 |