Skip to main content
. 2023 Jun 9;14:1164433. doi: 10.3389/fpsyt.2023.1164433

Table 3.

Results without DIVA.

Data set Train acc Test acc Balanced acc Precision Recall F1 Auc
Classification and Regression Tree 65.40 61.69 61.44 0.60 0.59 0.59 0.62
Logistic Regression 69.86 60.47 60.37 0.58 0.59 0.58 0.63
Linear Discriminant Analysis 71.55 58.66 58.60 0.56 0.57 0.56 0.60
Artificial Neural Networks 69.11 56.70 59.96 0.56 0.63 0.56 0.65
K Nearest Neighbor 75.80 59.09 59.14 0.57 0.56 0.56 0.61
Support Vector Machine (RBF) 62.74 57.71 58.84 0.60 0.49 0.51 0.66
Support Vector Machine (Linear) 72.50 59.46 59.33 0.57 0.57 0.56 0.61
Gaussian Naïve Bayes 57.35 54.26 55.66 0.51 0.81 0.62 0.61
Random Forest 100.00 58.88 59.61 0.61 0.53 0.51 0.66
Extreme Gradient Boosting 100.00 57.52 57.28 0.54 0.51 0.52 0.63
Averaged 75.43 58.08 58.75 0.57 0.59 0.55 0.63