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Abstract

Surgical activity recognition and prediction can help provide important context in many Robot-

Assisted Surgery (RAS) applications, for example, surgical progress monitoring and estimation, 

surgical skill evaluation, and shared control strategies during teleoperation. Transformer models 

were first developed for Natural Language Processing (NLP) to model word sequences and soon 

the method gained popularity for general sequence modeling tasks. In this paper, we propose the 

novel use of a Transformer model for three tasks: gesture recognition, gesture prediction, and 

trajectory prediction during RAS. We modify the original Transformer architecture to be able to 

generate the current gesture sequence, future gesture sequence, and future trajectory sequence 

estimations using only the current kinematic data of the surgical robot end-effectors. We evaluate 

our proposed models on the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) 

and use Leave-One-User-Out (LOUO) cross validation to ensure generalizability of our results. 

Our models achieve up to 89.3% gesture recognition accuracy, 84.6% gesture prediction accuracy 

(1 second ahead) and 2.71mm trajectory prediction error (1 second ahead). Our models are 

comparable to and able to outperform state-of-the-art methods while using only the kinematic data 

channel. This approach can enabling near-real time surgical activity recognition and prediction.

I. INTRODUCTION

Yang et al. defined autonomy levels for medical robots on a scale from 0 to 5, ranging from 

no autonomy to full automation which requires no human input [1]. The highest level of 

fully automated Robotic-Assisted Surgery (RAS) is still far from reality due to technical 

challenges, regulatory, legal, and ethical concerns. A more achievable short-term goal may 

be to envision a higher level of assistance offered by surgical robots - Robot-Enhanced 

Surgery (RES) - where collaborative and adaptive robot partners can leverage surgeon 

strengths and help overcome possible motor limitations [2]. Recent research developments 

are enabling this new class of assistive surgical robots with contributions to predict surgeon 

intent [3], perceive surgical states perception [4], measure expertise levels [5], estimate 
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procedural progress [6], monitor surgeon’s stress levels [7] and provide novel guidance 

through audio, augmented reality, and haptic channels [8]–[11].

The first step for these RES applications is often to perceive the current activities of surgical 

task and to predict the future surgical activities based on current activities. Segmentation 

and recognition can be used to decompose a surgical tasks, for example, suturing, into 

a sequence of surgical gestures (e.g., reaching needle, position needle), and perform 

surgical skill evaluation based on the executed sequence of gestures [12]. Padoy and Hager 

introduced a collaborative control method which could assist the surgeon by recognizing 

the completion of manual subtasks and automated the remaining ones on a da Vinci 

surgical robot [13]. Moreover, the gesture recognition can also be used to trigger appropriate 

information displays on either surgeon console monitor or trainer monitor.

Another important aspect is anticipating or predicting the operator’s intent and robot 

movements. The prediction of robotic surgical instrument’s trajectory can potentially 

contribute to preventing collision between instruments or with obstacles; therefore, enabling 

a method to prevent these dangerous adverse events during RAS. The prediction of 

surgeon’s movements or the trajectory of surgeon side manipulators can help generate 

reference trajectories to develop haptic feedback methods to improve surgical training 

outcomes.

Surgical activity recognition and prediction are both time-series sequence modeling 

problems. Recurrent Neural Networks (RNN) have been widely used for time-series 

modeling problems, for example, Gated Recurrent Units (GRU) [14] and Long-Short-Term-

Memory (LSTM) networks [15]. These techniques were initially aimed to solve NLP 

problems [14], [16], but they can be easily used for solving other real-world problems such 

as stock price prediction and human activity recognition [17], [18].

Bahdanau et al. first introduced attention in machine translation where the output will focus 

its attention on a certain part of a sequence [19]. Although the attention mechanism has been 

widely studied, such attention mechanisms are primarily used in conjunction with a RNN 

[20]. The Transformer model has gained popularity after being published by Vaswani et al. 

[21]. Unlike attention-based RNN, the key feature of the Transformer model is its novel 

attention mechanism which avoids recurrence and only relies on attention to draw global 

dependencies between model input and output. It replaces the recurrent layers commonly 

used in encoder-decoder architectures with multi-head attentions. According to Vaswani 

et al., it is believed that Transformer can be trained significantly faster than RNN-based 

architectures during translation tasks.

Contributions:

In this paper, we propose the use of Transformer model for surgical activity recognition 

and prediction. Our method relies only on kinematic data from the surgical robot and has 

comparable if not better performance than state-of-the-art surgical activity recognition and 

prediction methods.
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II. BACKGROUND

A. Prior Work in Surgical Activity Recognition

Surgical activity recognition from robot kinematic data has been studied over the last 

decade. With developments in machine learning techniques, especially deep learning, 

the methods for surgical activity recognition have evolved from Hidden Markov Models 

(HMMs) [22] and Conditional Random Fields (CRFs) [12] to more complex deep learning 

models such as LSTM neural networks [6], [23]–[25]. LSTM is an appropriate tool for 

time-series sequence modeling due to its inherent structure to “memorize” and “forget” 

certain points within a sequence of data. In addition to robot kinematic data, surgical 

video which directly embeds surgical activity information, was also introduced to surgical 

activity recognition based on the development of Convolutional Neural Networks (CNN) 

and computer visions [26]. Qin et al. recently proposed Fusion-KVE which uses Temporal 

Convolution Networks (TCN) [27] and LSTM to process multiple data sources, such as 

kinematic data and video for surgical gesture estimation [4].

B. Prior Work in Surgical Activity Prediction

Time-series prediction is another popular topic in deep learning, especially LSTM. For 

example, LSTM has gained its popularity in stock price prediction [17], [28], weather 

forecasting [29], etc. The use of LSTM is relatively limited in the surgical activity 

prediction literature. Qin et al. introduced daVinciNet which can simultaneously predict 

the instrument paths and surgical states in robotic-assisted surgery [3]. The daVinciNet 

method uses kinematics, vision and events data sequences as an input and uses an LSTM 

encoder-decoder model as well as a dual-stage attention mechanism to extract information 

from input sequence and therefore, making predictions seconds in advance [20].

C. Transformer Applications

Although the Transformer model was first designed for machine translation problems, it 

has been studied recently in other time-series modeling problems. Wu et al. employed a 

Transformer-based approach to forecasting time-series data and used influenza-like illness 

(ILI) forecasting as a case study. They showed that the results produced by the approach 

were favorably comparable to the state-of-the-art [30]. Giuliari et al. used Transformer 

Network and the larger Bidirectional Transformer (BERT) to predict the future trajectories 

of the individual people in the scene [31].

These studies give us the confidence that the Transformer model, currently the state-of-the-

art in NLP tasks, could have promising performance on time-series modeling. Therefore, 

inspired by the recent development and validation of Transformer model, we move a step 

forward to using Transformer model in RAS applications, i.e., gesture recognition, gesture 

and trajectory prediction.

III. DATASET

The JIGSAWS dataset contains three types of surgical tasks (Knot tying, Needle passing and 

Suturing) completed by eight subjects in a benchtop setting using a da Vinci Surgical System 
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[32], [33]. For each trial, the kinematic data of the two surgeon-side manipulators (MTMs) 

and two patient-side manipulators (PSMs), as well as synchronized video data, are saved. 

For each manipulator, the time-series kinematic data includes the end-effector position (3), 

rotation matrix (9), linear velocity (3), angular velocity (3) and gripper angle (1), resulting 

in 19 features in total for each end-effector. In addition, a key distinguishing feature of the 

JIGSAWS dataset is annotated gestures which are synchronized with the kinematic data. 

The dataset specified a common vocabulary compromised of 15 gestures (Table I [33]). We 

also labeled the unannotated data as “0′s”, resulting in 16 classes in gestures. We used 39 

suturing trials for model evaluation, and used all 38 kinematic features of two MTMs or 

PSMs.

IV. METHOD

We formulate the surgical activity recognition and prediction tasks as a supervised machine 

learning tasks. We take advantage of the Transformer encoder-decoder model - a model 

widely used in natural language processing, to process historical information all at once, 

aiming at better satisfying the requirement of real-time Robot-Enhanced Surgery.

Though the three tasks of gesture recognition, gesture prediction and trajectory prediction 

share a similar Transformer model architecture, there are slight differences in the input and 

output format according to their different objectives. We define an observation window with 

size T obs and a prediction window with size T pred. The gesture recognition task would take 

the input of the current kinematic data K  within the t + 1 to t + T obs window to generate the 

gesture labels G  for the same window. The gesture prediction task would take the input 

of the current kinematic data within the t + 1 to t + T obs, as well as the current gesture labels 

(t + 1 to t + T obs window) estimated by the first task, to predict the future time-series gestures 

labels within the t + T obs + 1 to t + T obs + T pred window. The trajectory prediction task, we will 

use the current kinematic data within the t + 1 to t + T obs window, together with the current 

gesture labels within the t + 1 to t + T obs window (from task 1) and the future gesture labels 

within the t + T obs + 1 to t + T obs + T pred window (from task 2), to predict the future time-series 

end-effector trajectory P  within the time window of t + T obs + 1 to t + T obs + T pred.

A. Transformer Model

Our proposed Transformer model resembles the original Transformer architecture which 

consists of an Encoder and a Decoder [21]. We made modifications on the original 

Transformer architecture based on our needs, for example, removing the embedding layers 

which was designed for machine translation tasks (Fig 1 and Table II). For each trial, we 

used a sliding window (Window size: T obs = 1 second, stride: S = 1 sample) to organize the 

kinematic data into frames.

a) Encoder: The Encoder consists of a positional encoding layer, a stack of N identical 

encoder layers, and an output layer. The encoder dimension denc is determined by the number 

of features of encoder input sequence denc =  38 for gesture recognition and prediction, 

denc = 54 for trajectory prediction). In order to make use of the order of the encoder input 

sequence, positional encoding is used to encode sequential information in the encoder input 
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sequence by element-wise addition of the encoder input sequence with a positional encoding 

vector. Then, the resulting sequence is fed into encoder layers. Each encoder layer has 

two sub-layers: a multi-head self-attention mechanism, and a fully connected feed-forward 

network. The encoder layer is be repeated for N times. Finally, the data is passed through 

a fully connected output layer to map the data from encoder dimension denc to decoder 

dimension ddec.

b) Decoder: Similarly, the Decoder consists of a positional encoding layer, a stack of 

N identical decoder layers, and an output layer. The decoder dimension ddec is determined 

by the number of features of decoder input sequence ddec = 16 for gesture recognition 

and prediction, ddec = 22 for trajectory prediction). The decoder input will be discussed 

in following sections. After positional encoding, the sequence is fed to decoder layers. 

The decoder layer has an additional multi-head attention layer between the multi-head self-

attention mechanism and the fully connected feed-forward network. The added multi-head 

attention layer performs the attention over the output of the encoder stack. Finally, the 

sequence passes a fully connected layer with a dimension of dout to generate the results. We 

also employed the look-ahead masking on the decoder input sequence to ensure that the 

prediction of a time-series data point will only depend on previous data points.

B. Training and Testing

Transformer model has three important hyperparameters that can significantly affect the 

model performance: Number of Encoder/Decoder Layers (N in Figure 1), Number of 

Encoder Heads ℎenc , Number of Decoder Heads ℎdec . The hyperparameters were tuned 

using grid search. We shuffled the data frames of all 39 suturing trials in JIGSAWS and 

splitted the training/testing set by 70/30 split for grid search purposes.

a) Gesture Recognition: Gesture recognition can be treated as “translating” 

from current kinematic data to current gestures. During training, the encoder input 

sequence consisted of all 38 current kinematic features of either MTMs or PSMs 

Ki, i = t + 1, t + 2, …, t + T obs . The decoder ground-truth (output) sequence consisted of all 

16 gesture classes (current gestures) of the input time steps (Gi,  i = t + 1, t + 2, …, t + T obs). 

Following the teacher forcing procedure, the decoder input sequence was the shifted-right 

ground-truth sequence Gi, i = t, t + 1, …, t + T obs − 1 , as shown in Fig 2a. During testing and 

inference, shown in Fig 2b, the first instance in decoder input was a randomized vector R. 

Then, for each inference step, the predicted value Ĝi from decoder output was added to the 

decoder input sequence recurrently for the next inference step.

b) Gesture Prediction: Similar to gesture recognition, the encoder input 

sequence consisted of all 38 current kinematic features of either MTMs or PSMs 

Ki, i =  t + 1, t + 2, …, t + T obs). The decoder ground-truth (output) sequence consisted of all 

16 gesture classes of the future time steps Gi, i = t + T obs + 1, t + T obs + 2, …, t + T obs + T pred . 

The decoder input sequence consisted of the current gesture classes 

Gi, i = t + 1, t + 2, …, t + T obs .
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During testing and inference, since the inputs of Encoder and Decoder were known: current 

kinematic data K from t + 1 to t + T obs and current gesture data G from t + 1 to t  +  T obs, 

respectively, the inference did not have any recurrence. Both inputs can be fed into the 

model at the same time. In both gesture recognition and gesture prediction, cumulative 

categorical cross-entropy loss is used for the discrepancies between the model output and the 

ground-truth gesture label.

c) Trajectory Prediction: The encoder input sequence consisted of the concatenation of 

all 38 current kinematic features and the one-hot vector of the 16 gesture class, of PSMs 

Ki, Gi ,  i = t + 1,  t + 2, …, t + Tobs . The decoder ground-truth (output) sequence consisted of 

6 position dimensions x, y, z of both left and right end-effectors during the future time steps 

P i, i = t + T obs + 1, t + T obs + 2, …, t +  Tobs + T pred. The decoder input sequence consisted of the 

current position information P i, i = t + 1, t + 2, …, t + Tobs  and the future gesture information 

Gi, i = t + Tobs + 1, t +  Tobs + 2, …, t + Tobs + T pred). We use the cumulative L2 loss between the 

predicted end-effector trajectory and the ground-truth trajectory, summed over the T pred, as 

the trajectory loss function. To take the advantage of transformer for processing time series 

all at once, no recurrent inference as gesture recognition is used. Both inputs are fed into the 

model all at the same time.

Similar to the original Transformer implementation, We used the Adam optimizer [34] with 

β1 = 0.9, β2 = 0.98 and ϵ = 10−9 and varied the learning rate lr  over training steps [21]. We 

used warmup_steps  = 2000:

lr = ddec 
−0.5* steps −0.5, steps * warmup_steps −1.5 (1)

V. EXPERIMENTAL EVALUATIONS

We evaluated our gesture recognition, gesture prediction and trajectory prediction models on 

the JIGSAWS dataset (See Table I).

To evaluate gesture recognition and gesture prediction accuracy, for each data frame, we 

calculated the percentage of accurately recognized or predicted time steps in the frame. 

Then, the accuracy was averaged across all the frames in testing dataset.

To evaluate the performance of end-effectors trajectory prediction, Root Mean Squared Error 

(RMSE) and Mean Absolute Error (MAE) were used:

RMSE =
∑

i = 1

N

yi − yi 2

N
(2)

MAE   =
∑

i = 1

N

yi − yi

N
(3)
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We calculated both metrics for each dimension of the Cartesian end-effector path in the 

endoscopic reference frame x, y, z  and also the end-effector distance d =   x2 + y2 + z2 from 

the origin (camera tip).

We adopted the Leave-One-User-Out cross validation (LOUO) to train and test the 

generalizability of our model. In LOUO, for each iteration, the data of itℎ subject was 

left out as testing set, and the rest of data for training. Then we averaged the evaluation 

metrics across all the iterations which led to averaging over all subjects as testing set and 

reported the mean. The batcℎ_size  = 64 and the model was trained for epocℎ  = 15 during 

gesture recognition, epocℎ  = 40 during gesture prediction, and epocℎ  = 50 during trajectory 

prediction. For the final evaluation of the trajectory prediction performance, the evaluation 

metrics is calculated only on the time step of T pred without accounting for the previous 

prediction steps in the entire prediction window.

VI. RESULTS AND DISCUSSIONS

In order to compare with previous studies in the literature, during gesture recognition we 

kept the data as its original frequency 30Hz. During gesture and trajectory prediction, 

we downsampled the data to 10Hz. For each task, the model was trained and evaluated 

independently.

A. Gesture Recognition

We kept the JIGSAWS data as its original frequency 30Hz. We did not run hyperparameter 

tuning for gesture recognition as it would taken significant computational effort with 

the data of 30Hz. Instead, we decided to keep the model for gesture recognition in its 

simplest form: N = 1,   ℎenc = 1, and ℎdec = 1. The encoder input sequence was 38 dimensional 

kinematic features with a length of current observation T obs = 1s 30 samples . The decoder 

output was a 16-class gestures with a length of current observation T obs = 1s 30 samples) of 

the corresponding encoder input sequence.

We used the data of MTMs and PSMs individually to test the model performance. After 

LOUO cross validation, the reported accuracy was promising and outperformed the state-of-

the-art algorithms (89.3% with MTMs kinematic data as encoder input; 89.2% with PSMs 

kinematic data as encoder input, in Table III). An example of gesture recognition using the 

kinematic data of PSMs of a random trial as testing dataset is illustrated in Fig 3.

Fusion-KVE is a method which incorporates kinematic data, video and events data. 

However, our proposed Transformer model only uses kinematic data and outperforms 

Fusion-KVE in accuracy. Using less types of data could potentially shorten the 

computational time for gesture recognition and therefore, enables a near-real-time 

recognition manner.

B. Gesture Prediction

In order to compare our proposed model with the state-of-the-art, we also downsampled 

JIGSAWS data to 10Hz. The downsampled data could shorten the computational time 
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during training, therefore, we applied hyperparameter tuning using grid search to optimize 

the prediction performance. After grid search, the resulting hyperparameters were: 

N =  4, ℎenc = 1 and ℎdec = 4.

During training, the encoder input sequence was 38 dimensional kinematic features 

of current observation Ki,   i = t − T obs + 1, t − T obs + 2, …, t, T obs = 1s . The decoder output 

sequence was predictions of 16-class future gestures Gi, i = t + 1, t + 2, …, t + T pred . It 

is worth noting that the decoder input sequence is the current gesture sequence 

Gi, i = t + 1, t + 2, …, t + T obs .

Although our proposed gesture recognition model could output a good estimation of the 

current gesture sequence, and it’s more reasonable to use the current gesture estimation to 

mimic the real-world application, we decided to train and evaluate the gesture prediction 

model on “real” current gestures, assuming a perfect current gesture estimation during 

gesture recognition. It allowed us to independently evaluate the performance of gesture 

prediction model.

We summarized the gesture prediction model performance in Table IV. Both observation T obs

and prediction T pred time lengths were 1 second. Although the reported accuracy (84.6% with 

MTMs kinematic data as encoder input; 84.0% with PSMs kinematic data as encoder input) 

did not significantly outperform the state of the art, we still believe our proposed gesture 

prediction model is promising since less data source (only kinematic data) was used in our 

study. One example of gesture prediction using the kinematic data of MTMs is shown in Fig 

4.

C. Trajectory Prediction

For the trajectory prediction task, we downsampled JIGSAWS data to 10Hz. We used the 

hyperparameters: N = 1,   ℎenc = 6 and ℎdec = 11. The Encoder took both the kinematic features 

and the 16-class gesture class as input. The Decoder took the current x, y, z positions of two 

endeffectors and the future gestures as input. Similar to Gesture Prediction, during training 

and testing, we used the ground truth future gestures in decoder input, assuming a perfect 

gesture prediction, to evaluate the model independently.

Table V summarizes the Transformer performance on the JIGSAWS suturing dataset with 

the prediction time-step of 1 second T pred = 10 . Using only the PSM data, the Transformer 

has better performance than daVinciNet on the right arm trajectory prediction, while slightly 

worse performance on the left arm. Although results are mixed, the Transformer still only 

uses the kinematics data to obtain as competitive results as using those using both complex 

video and kinematic data. This would help largely reduce the computation complexity in the 

applications with a guarantee of accurate and real-time motion and gesture monitoring.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we used the Transformer model, a novel deep learning model initially 

designed for NLP tasks, to recognize and predict the surgical activities. We modified 

the Transformer model architecture from the original paper according to the need of our 
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tasks: gesture recognition, and gesture and trajectory prediction during RAS. In gesture 

recognition, the model took current kinematic data as its input sequence and estimated the 

corresponding surgical gestures (accuracy: 89.3% using MTMs and 89.2% using PSMs); In 

gesture prediction, the model took current kinematic data and current surgical gestures as 

its input sequences and predicted the future (1 second) surgical gestures (accuracy: 84.6% 

using MTMs and 84.0% using PSMs); In trajectory prediction, we jointly utilize the current 

kinematic data as well as the future gestures to predict the future (1 second) end-effector 

trajectory, and reached distance error as low as 2.71 mm.

Considering that our models are purely based on the kinematic data of the end-effectors 

(MTMs and PSMs) of the daVinci Surgical System without the aid of visual features, 

the results are very much competitive. Although some studies have shown that combining 

kinematic data and video could improve the recognition and prediction performance, our 

work shows the potential to achieve similar performance with only kinematic data, which 

is preferred when running surgical activity recognition and prediction in a real-time manner 

[12], [35], since vision data processing is inherently time consuming.

Though the proposed models have outperformed the state-of-the-art methods from literature, 

there are still some limitations remain unsolved. Future work would include jointly 

evaluating the performance of gesture and trajectory prediction models. Our gesture 

prediction model took the current gesture sequence as its decoder input. And our trajectory 

prediction model took the future gesture sequence as part of its decoder input. However, 

in our current implementation, we used the ground truth values of the current gestures in 

gesture prediction and the ground truth values of the future gestures in trajectory prediction, 

in order to train and evaluate the models independently. To test the robustness and the 

feasibility of near-real-time manner of the models in real-world gesture and trajectory 

prediction tasks, our next step would be to use the estimated values of gesture recognition 

as gesture prediction decoder input, and then, use the estimated values of gesture prediction 

as trajectory prediction decoder input. We also plan to do more ablation study on measuring 

the respective difficulty of trajectory prediction of the 16 gesture classes. This would help 

develop a global sense of when the RAS system should offer more motion guidance and 

deviation warning.

We believe our proposed methods can contribute to implementation of robot enhanced 

surgical applications, therefore, augment the role of robots in assisting surgeons through 

modern control strategies.
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Fig. 1: 
Architecture of the proposed Transformer model. In Encoder, denc = 38 during gesture 

recognition and prediction, denc = 54 during trajectory prediction. In Decoder, T = T obs during 

gesture recognition and T = T pred during gesture and trajectory prediction; ddec = 16 during 

gesture recognition and prediction, ddec = 22 during trajectory prediction; dout = 16 during 

gesture recognition and prediction, dout = 6 during trajectory prediction.
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Fig. 2: 
Training and inference (testing) methods during Gesture Recognition. R in (b) is a random 

vector for initializing inference. Ĝi in (b) is the estimated gesture value by the model.
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Fig. 3: 
An example of Gesture Recognition using a random suturing trial. The top row is the 

estimated gestures by our proposed Gesture recognition model. The bottom row is the 

ground-truth labels.
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Fig. 4: 
An example of Gesture Prediction using a random suturing trial. The top row is the predicted 

gestures by our proposed gesture prediction model. The bottom row is the ground-truth 

labels. The Decoder uses real current gestures as input.

Shi et al. Page 15

Rep U S. Author manuscript; available in PMC 2023 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shi et al. Page 16

Table I:

Gesture Descriptions in JIGSAWS

Gesture ID Description

G1 Reaching for needle with right hand

G2 Positioning needle

G3 Pushing needle through tissue

G4 Transferring needle from left to right

G5 Moving to center with needle in grip

G6 Pulling suture with left hand

G7 Pulling suture with right hand

G8 Orienting needle

G9 Using right hand to help tighten suture

G10 Loosening more suture

Gil Dropping suture at end and moving to end points

G12 Reaching for needle with left hand

G13 Making C loop around right hand

G14 Reaching for suture with right hand

G15 Pulling suture with both hands
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Table III:

Comparison to prior works of Gesture Recognition under LOUO cross validation. The listed models used the 

data of 30Hz.

Data Sources Accuracy

Fusion-KVE [4] PSMs+Video 86.3%

Forward LSTM [23] PSMs 80.5%

Bidir. LSTM [23] PSMs 83.3%

Transformer MTMs 89.3%

Transformer PSMs 89.2%
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Table IV:

Comparison to prior works of Gesture Prediction under LOUO cross validation. The listed models used the 

data of 10Hz in JIGSAWS and a prediction length of 1 second.

Data Sources Accuracy

daVinciNet [3] PSMs+Video 84.3%

Transformer MTMs 84.6%

Transformer PSMs 84.0%
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