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Abstract

The non-uniform Discrete Fourier Transform algorithm has shown great utility for reconstructing 

images from non-uniformly spaced samples in the Fourier domain in several imaging modalities. 

Due to the non-uniform spacing, some correction for the variable density of the samples must 

be made. Common methods for generating density compensation values are either sub-optimal or 

only consider a finite set of points in the optimization. This manuscript presents an algorithm for 

generating density compensation values from a set of Fourier samples that takes into account the 

point spread function over an entire rectangular region in the image domain. We show that the 

reconstructed images using the density compensation values of this method are of superior quality 

when compared to other standard methods. Results are shown with a numerical phantom and with 

magnetic resonance images of the abdomen and the knee.
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1. Introduction

In several imaging modalities including Magnetic Resonance Imaging (MRI) [1], Computed 

Tomography (CT) [2], Spectral Domain Optical Coherence Tomography (SD-OCT) [3], 

and radio astronomy [4], a formalism exists to represent the collected data as samples in 

the Fourier domain. When the samples are unique and located on a Cartesian grid, e.g. 

spin-warp imaging with MRI, then the image can be reconstructed with the inverse Discrete 

Fourier Transform (DFT). However, when the samples are not located on a uniform grid, 

a non-uniform DFT must be used; this is a problem of type I, as defined in [5]: a discrete 

conversion from a non-Cartesian sample set in the Fourier domain to a Cartesian sample set 

in the space domain).

When the Fourier values do not lie on a uniform grid, one must compensate for the 

varying density of samples. Effectively, the density compensation values determine the point 

spread function of the non-uniform transformation. Several methods have been proposed 

to determine density compensation values1. A thorough review of existing techniques is 

presented in [8]. The most intuitive method is to calculate the Voronoi cell of each point and 

set the density compensation values equal to the areas of the corresponding cells (with some 

exception made for the points on the convex hull) [9, 10, 11]. This corresponds to estimating 

the inverse Fourier transform with a Riemann sum where the partition of the sum is the 

set of Voronoi cells. This is an intuitive and computationally efficient approach but is not 

generally optimal (i.e., it does not optimize a quality metric). And the density compensation 

value assigned to outer most points is arbitrary. The methods of [12, 13, 7, 14, 15, 16] 

require the use of a convolution kernel; notably, there is not a convolution kernel inherent 

to the Riemann summation. Moreover, these methods as well as that of [17] only consider 

a finite set of points of the point spread function in the space domain; thus, there is some 

propensity for larger errors on points that were not considered.

In what follows, we present a density compensation algorithm for a general set of 

samples that takes into account the point spread function over an entire rectangular region 

in the space domain (rather than on a set of arbitrary points), and we show that the 

images reconstructed with this method are of superior quality when compared to density 

compensation values determined in other ways. Importantly, these density compensation 

weights have utility beyond an implementation of a non-uniform DFT; they can be used for 

preconditioning with iterative reconstruction algorithms [18] or as part of a system model in 

an neural network [19, 20, 21].

2. Background

A set of samples consists of a vector of frequencies k = k1, k2, …, kM ∈ ℝM × D

(called the sample coordinates) and a corresponding vector of Fourier values at 

those frequencies: G = G k1 , G k2 , …, G kM ∈ ℂM. Here, D represents the number 

1Note that [6], written by several of the authors of this manuscript, was previously presented at the 2017 symposium of the 
International Society of Magnetic Resonance in Medicine. It differs from the technique presented in this manuscript, which optimizes 
an objective function of the point spread function. The 2017 submission optimizes a convex formulation of [7].
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of dimensions of the source and destination domains. Reconstruction estimates 

the values of g = g x1 , g x2 , …, g xN ∈ ℂN for a vector of space domain locations 

x = x1, x2, …, xN ∈ ℝN × D. Here, g = ℱ−1G where the symbol ℱ−1 represents the inverse 

Fourier transform2. For this paper, we make the assumption that the support of g is a subset 

of N = −N1/2, N1/2 × ⋯ × −ND/2, ND/2 . (Here, set multiplication represents the Cartesian 

cross product.) The rectangle N is called the field of view. If the frequencies k = k1, …, kM

and coordinates x = x1, …, xN  are equally spaced with M = N (where the spacings between 

adjacent k frequencies are inversely related to the spacings between adjacent x coordinates), 

then the image can be reconstructed with the inverse DFT, which can be derived as a 

Riemann sum approximation to the Fourier transform [22]. When the frequencies k do 

not lie on a uniform grid, then the inverse DFT is no longer an appropriate reconstruction 

algorithm.

A simple (though computationally inefficient) reconstruction algorithm is to calculate the 

following sum directly [22]:

g xn = ∑
m = 0

M − 1
wmG km exp i2πkm ⋅ xn , (1)

where, km ∈ ℝD, xn ∈ ℝD, and · represents the dot product. The elements of the 

vector w = w1, …, wM ∈ ℝM are called the density compensation values; their values 

can dramatically affect the quality of the reconstructed image [23]. Note that (1) 

can be expressed as g = ℱ−1 GSw = g * Sw, where * represents continuous convolution, 

Sw = ∑m = 0
M − 1 wmδ k − km , δ represents the Dirac delta function, and sw = ℱ−1 Sw .

3. Theory

If sw = δ then g ≈ g. As previously stated, we further assume that g has compact support, 

which is a subset of N. In this case, sw only need approximate the Dirac delta function well 

over 2N = ∏d = 1
D −Nd, Nd  in order for g ≈ g, where Π represents a product over a set of 

indices. This motivates our approach; we will attempt to find a density compensation vector 

w such that sw x ≈ δ x  for all x ∈ ∏d = 1
D −Nd, Nd .

3.1. Forming an Optimization Problem

Note that sw is a true function (as opposed to a distribution) and takes a finite value at all 

locations in the domain. This differs from the Dirac delta, which is not a function but a 

distribution; thus, sw could never equal the Dirac delta over any domain that includes 0. Our 

hope, then, is that we can find some function that approximates the Dirac delta well in the 

sense that it is a steep function centered at the origin that integrates to 1 [24].

An algorithm that optimized over 2N could yield a point spread function with large positive 

values near the origin and with large negative values away from the origin. The resulting 

2The definitions of the Fourier Transform, the DFT, and their inverses are listed in Appendix A.
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point spread function would integrate to 1, but it would not represent a delta function 

well. To prevent this from happening, we have created an optimization function that forces 

sw to approximate a dirac delta well in a subset of the domain near the origin, and to 

make its values small outside of that subset. Let η = ∏d = 1
D −ηd/2, ηd/2 , a small rectangular 

region centered on the origin, be this subset. Then the density compensation values can be 

determined by solving the following optimization algorithm:

minimize
w, r′ ∫ ∫ ⋯2N∫ exp − ∑

d = 1

D xd

γdNd
sw(x) 2 dx

subject to sw(0) = r′ > 0, wm ≥ 0 for all m
, and ∫ ∫ ⋯η ∫ sw(x) dx = 1.

(2)

The objective function attempts to make the values of the point spread function small 

throughout 2N. Because the value at the origin is constrained to r′, and because the resulting 

sw function is continuous, it will be more difficult to make values close to the origin small 

than it is to make values distant from the origin small. The exp −∑d = 1
D | ⋅ |/ γdNd  function 

is a weighting that places more emphasis on the values near the origin and less emphasis 

on those values distant from the origin. This weighting permits the user (through the use of 

the parameter γd > 0, a fraction of the length of the domain Nd) to trade off between some 

additional error in areas more distant from the origin for improvements in those values close 

to the origin.

The density compensation values are constrained to be non-negative to make the 

interpolation process of (1) more stable. Moreover, the non-negativity constraint permits 

interpretation of the density compensation values as areas of an unknown partition such that 

(1) is a Riemann sum approximation of the Inverse Fourier Transform.

3.2. Solving the Optimization Problem

We now present a method for numerically solving problem (2). Consider the relaxed 

problem of (3) for an arbitrary value of r > 0 (where the integration constraint of (2) has 

been removed and r is not necessarily equal to r′):

minimize
w ∫ ∫ ⋯2N∫ exp − ∑

d = 1

D xd

γdNd
sw(x) 2 dx

subject to sw(0) = r > 0 and wm ≥ 0 for all m. 
(3)

The sw 0 = r constraint of (3) sets the value of the point spread function at x = 0 to be r; 
together with the objective function the problem attempts to find values that yield a peak 

near the origin and small values away from the origin. However, solving problem (3) does 

not yield a point spread function that integrates to 1, which is the remaining requirement of a 

good approximation of a Dirac delta function.

Problem (3) is a convex optimization problem that can be solved with known algorithms, as 

detailed in section 4. Importantly, if we find the solution to (3), we can find a solution to (2).
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Note that if (3) is solved with two different values of r, the effect is to simply scale the 

determined weights. So problem (3) can be solved with r = 1 and then scaled to attain the 

solution for other values of r. There is a unique value of κ = 1/r′ such that the integral over η
is 1:

∫ ∫ ⋯η ∫ sκw⋆(x)dx = 1. (4)

where w⋆ is the solution of problem (3). Thus, to find the density compensation values, 

one solves problem (3) with r = 1 and then scales the weights by κ = 1/r′ such that (4) is 

satisfied. The expression for κ, derived in Appendix B, is

κ = ∑
j = 1

M
wjΠd = 1

D sin πkj, dηd
πkj, d

.

4. Algorithm

In this section, we review the family of gradient projection algorithms that can be used 

to solve problem (3). We then present an algorithm that reduces the number of gradient 

computations required to attain a valuable solution.

4.1. Gradient Projection Algorithm

To solve problem (3) for r = 1, we convert it into a form that can be solved with a gradient-

projection algorithm. Let f0 denote the objective function of the problem, and let IPr denote 

the indicator function of the probability simplex (equal to 0 when the argument is an element 

of the probability simplex and equal to infinity otherwise). Then problem (3) is equivalent to

minimize
w

f0(w) + IPr(w) .

The gradient-projection algorithm requires an implementation of the gradient of f0, denoted 

∇f0, and an implementation of the Euclidean projection onto the probability simplex, 

denoted ΠPr (which is the proximal operator of the corresponding indicator function [25]). 

We use the computationally efficient algorithm of Wang and Carreira-Perpinán for this 

projection operator [26].

The gradient of the objective function, derived in appendix Appendix C, is ∇f0 w = Aw
where

Alj = 2 ∏
d = 1

D 2γdNd

1 + γd
2vd

2Nd
2 1 − e −1/γd cos vdNd − γdvdNd sin vdNd , (5)

and vd = 2π kl, d − kj, d .
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With the above definitions, problem (3) can be solved by alternating between an iteration of 

gradient descent and a Euclidean projection onto the probability simplex, as shown in Alg. 

1, where ΠPr represents projection onto the probability simplex.

Here, K is the number of iterations and μ is the step size of gradient descent. For reference, 

we call the results of this algorithm (and its variants) applied to problem (2) the Gradient 
Projection (GP) density compensation values.

Rather than using gradient-projection, we use the fast iterative shrinkage threshold algorithm 

(FISTA) [27]. To improve the speed further still, we used an adaptive restart algorithm based 

on the gradient [28]. In addition to limiting the maximum number of optimization iterations, 

we also incorporated a dynamic stopping criteria based on the relative difference between 

successive results. The complete algorithm is presented in Alg. 2. For this algorithm, 

· represents the dot product, δ represents the relative difference, and G represents the 

generalized gradient scaled by μ.

5. Experiments

We present results for three experiments with two-dimensional data: (1) a numerical 

phantom, (2) multi-coil magnetic resonance (MR) data from the 2010 reconstruction 

challenge of the International Society of Magnetic Resonance in Medicine (ISMRM) [29], 

and (3) MR data of a slice of a knee. Fourier domain data was normalized to lie in the 

[−0.5,0.5]2 square. The true images of the experiments can be seen in Fig. 1. To reconstruct 

the image once the density compensation values were determined, rather than calculating the 
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sum of (1) directly, we use the more efficient algorithm of [2, 12, 30] with a Kaiser-Bessel 

kernel and an oversampling ratio of 1.5. Unless otherwise specified, the value of γ used with 

the gradient projection algorithm was 0.25% of the size of the image; this value was chosen 

to ensure that there was significant weighting near the center of the point spread function 

and to ensure that the weightings near the boundary of 2N were non-negligible. For all 

experiments, η was set to 5% of the length of the side of the image (approximately 15 pixels) 

and δthresh was set to 10−4. The sizes of the images of the phantom, the abdomen, and the knee 

were, 208×208, 190×305, and 300×270, respectively. Correspondingly, the values of (γ1, γ2) 

were (52, 52), (47.5, 76.25), and (75, 67.5) pixels, respectively. For the gradient projection 

algorithm, the values of x 0  are initialized to the result of the Voronoi algorithm, the value of 

‖A‖ is estimated using power iteration, and the initial step size of the optimization algorithm 

is set to 0.99/ A .

The numerical phantom, shown in Fig. 1a, consists of a separable tri function, a circ 

function, and two separable scaled rect functions all offset from the origin and summed 

together. The Fourier values of this phantom are known. (The Fourier transform of a tri 

function is sinc2, the Fourier transform of a circ is a jinc, and the Fourier transform of a 

rect is a sinc. When these facts are combined with the Fourier shift and scaling theorems, 

the Fourier values of the numerical phantom can be determined analytically.) The sample 

coordinates used with this phantom are radial with 360 spokes, 150 points per spoke. An 

image of every sixth spoke from this sample set is shown in Fig. 2a.

The image shown in Fig. 1b consists of an axial slice of an abdomen with an 8 coil 

acquisition from the 2010 reconstruction challenge of the International Society of Magnetic 

Resonance in Medicine [29]. (Slice 6 of the 12 slice acquisition is used in this manuscript.) 

The method of Roemer et al. is used to combine the individual images of each coil into a 

single image for display [31]. The spiral trajectory created by Craig Meyer for the challenge 

was used, which consists of 8 spiral interleaves with 19 revolutions per interleave. However, 

to increase the difficulty of attaining a quality solution and better show the differences 

between the density compensation weights determined, only every 5th sample of the readout 

was retained for a total of 4000 points per interleave. A single interleave of this set of sample 

coordinates is shown in Fig. 2b.

The image shown in Fig. 1c consists of a sagittal slice of a knee acquired from mridata.org. 

The coordinates of the sample set used for analysis consists of 30 evenly spaced rotations 

of the the rosette trajectory [32, 33] with an inner frequency of 17 cycles and an outer 

frequency of 30 cycles. Figure 2c shows the Rosette trajectory that gets rotated.

For the images of the abdomen and the knee, a type II non-uniform DFT (where the input 

is a set of Fourier values that do not lie on a Cartesian grid and the output is a set of 

space-domain values that do lie on a Cartesian grid) was used to estimate the Fourier values 

given the images [34]. In the case of the abdomen, the type II non-uniform DFT was applied 

to the image from each coil separately.

Reconstructions were done with density compensation values determined using the Voronoi 

cell based algorithm of [10], the fixed point (FP) algorithm of [13, 7] with a Kaiser-Bessel 
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kernel, the LSQR algorithm of [6], and the proposed gradient projection (GP) algorithm. For 

FP, the kernel was normalized so that it integrates to 1 in order to scale the reconstructed 

image correctly. The mean square error (MSE) metric and the structural similarity metric 

(SSIM) were calculated for the difference between the reconstruction and the true image. All 

code was written in Matlab R2019b and computations were performed by a 16-core 2019 

Mac Pro with 112 gigabytes of memory. The creation of the A matrix for the GP method 

and the C matrix for the Fixed point and LSQR methods were each parallelized across 30 

workers.

6. Results

Figures 3, 4, and 5 show magnitude reconstructions for the phantom, the abdomen, and the 

knee, respectively. In Fig. 3, the top row shows the reconstructions of each algorithm and the 

bottom row shows the error image in decibels. All reconstruction algorithms generated the 

most significant errors at the edges of the circ and rect functions. Overall, the GP algorithm 

has less error than the other methods, as evidenced by the dark regions in the difference 

image. The MSE and SSIM values are reported in table 1.

Figure 4 shows results for the abdomen. The top row shows the reconstructed images, the 

middle row shows a region centered near the left kidney zoomed into the white rectangle 

shown in Fig. 1b, and the bottom row shows the difference images. As with the numerical 

phantom, there are regions of the image with less error when using the gradient projection 

algorithm than when using the competing algorithms. The FP reconstruction yields an image 

that is too bright. Additionally, it alters the contrast of the image significantly, making 

regions of the center of the image much brighter than the true image. In the zoomed-in 

images, note that there is an erroneous high frequency block pattern super-imposed on the 

reconstruction with the Voronoi cell based weights that is significantly reduced in the GP 

reconstruction.

Figure 5 shows the reconstructions of the knee with the rosette trajectory of Fig. 2(c). 

The Voronoi and GP methods present the lowest errors, with the GP method presenting a 

slightly lower error than that of Voronoi. The FP and LSQR methods present significantly 

higher error. This is likely due to the scaling of the convolution kernel employed with these 

methods. Without explicitly constraining the point spread function to mimic a delta function, 

as is done with GP, the scaling of the point spread function is a result of the convolution 

kernel chosen. This leads to the errors depicted in the FP and LSQR reconstructions.

Table 1 shows the mean square error, the structural similarity metric [35], and the runtimes 

for generating the density compensation values. In all cases, the gradient projection 

algorithm yields the lowest (best) mean square error and the highest (best) structural 

similarity value. The Voronoi method is the fastest method. The GP method takes 

dramatically longer the other methods.

Figure 6 shows the density compensation values determined when γ1 = γ2 = 0.25 for each 

of the four methods (Voronoi, fixed point, LSQR, and gradient projection) for the results 

presented in Table 1. Notably, the Voronoi method includes some values that are very high. 
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While the values of those sampling points on the interior of the sampling pattern are defined 

with the Voronoi method, the values for those points on the convex hull are not defined as an 

area of a Voronoi cell. In the method of [10], utilized in this work, the values for those points 

are determined according to a heuristic method, and that method yields values that are very 

high. This may partially explain the high frequency artifacts that accompany the Voronoi 

method.

The value of γ = γ1 = γ2 was chosen empirically. Figure 7 shows how the reconstruction of 

the knee with density compensation values determined using GP changes as the value of γ
changes between 01. to 0.4. Table 2 shows how the mean square error and the structural 

similarity metric change with as the value of γ changes for all the data studied. The effect is 

minor, which indicates that the density compensation values determined are not sensitive to 

changes in γ.

It is often the case that the overall scale of the image is irrelevant; e.g., this is the case with 

MRI. We scaled the intensities of the reconstruction of the abdomen with each algorithm 

from 0.1 to 1.5 in steps of 0.1 and found the scaling that minimized the mean squared 

error. Figure 8 shows the reconstructions of the best scaling along with the corresponding 

error images. Table 3 shows the Mean Squared Error (MSE), Mean Absolute Error (MAE), 

and the SSIM for each reconstruction. Much of the error was eliminated, especially for the 

LSQR algorithm. Even in this case, though, the error metrics show that the GP algorithm 

yields the image with the best error metrics. The error images show significantly more 

structure in the Voronoi, FP, and LSQR reconstructions; e.g., the kidneys are clearly visible 

in the error images. The error image for the GP algorithm does not obviously reveal any 

anatomical structure.

7. Discussion

The results show that the quality of the reconstruction is improved when the gradient 

projection method is used to determine the density compensation values, as opposed to the 

Voronoi method or the fixed point method. As previously stated, the density compensation 

values of the points that lie on the convex hull of the sample coordinates is arbitrary with 

Voronoi. This may lead to the high frequency noise observed in Fig. 4. The fixed point 

method is not, generally, guaranteed to converge to a set of values. Since there is no 

constraint, the values may increase to large magnitudes due to instabilities. Early stopping 

of 8 iterations is employed to prevent this from happening. However, this would yield 

sub-optimal values. This, along with the scaling ambiguity of the convolution kernel, may 

explain the significantly higher error of the fixed point iteration observed in Fig. 4b.

The gradient projection algorithm proposed is more computationally intensive than either 

of the others. The maximum number of iterations for the GP algorithm was limited to 

250, but the dynamic stopping criteria based on the relative difference tends to prevent the 

maximum number from being reached, though it still conducts many more iterations than 

8 (always over 100). Despite the long runtime, the gradient projection method is useful for 

systems where the sample coordinates are known prior to imaging (e.g. MRI or CT), or 

where the time required to collect the data is so long that the computation time is negligible 
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in comparison (e.g. radio astronomy). If the sample coordinates are known, the density 

compensation values can be computed prior to imaging and stored for future use. In this 

case, the time required to determine the density compensation weights does not alter the 

time between data acquisition and reconstruction. If the acquisition time is so long that the 

computation time is negligible in comparison (as is often the case with radio astronomy), 

then perhaps the gradient projection method is appropriate to get the highest quality image 

possible from a reconstruction. Finally, the runtimes presented were from an implementation 

in Matlab, an interpreted language. If speed is greatly desired, the GP algorithm can be 

implemented in a compiled language and/or run on specialized hardware (e.g., a Graphics 

Processing Unit).

The algorithm, as presented, requires that the image have compact support. For many 

applications, this assumption is met due to the limits of the sensing equipment. For example, 

with CT, the image must be of a person that fits within the machine. With MRI, the 

antennas have negligible sensitivity outside of the machine (and therefore the images that are 

reconstructed have compact support.

Aside from reconstructing the image directly for viewing, the result can be used to initialize 

an iterative model based reconstruction algorithm [36, 37] such as compressed sensing [38, 

39, 40]. This is especially important for non-convex model based reconstruction algorithms, 

such as ENLIVE [41] or MCCS [42], since a closer initial guess reduces the probability of 

yielding a final answer from an erroneous local minima. Finally, the density compensation 

weights can also be used for pre-conditioning with iterative reconstruction algorithms that 

include regularization [18]. When used for this purpose, they can actually reduce the time 

between data collection and reconstruction.

Though results are shown for two-dimensional data, the straightforward modification to 

three-dimensional data may be useful for non-Cartesian three-dimensional MRI datasets 

where the trajectories do not lie in a single plane, such as cones [43, 44] or yarn ball [45].

Though this approach has been demonstrated on non-uniform discrete Fourier transform 

problems of type I, it may be more general. The approach may be valid for problems of type 

III, where the points of both the source and the destination domain do not lie on a uniform 

grid. This possibility comes from the fact that a discrete set of points in the destination 

domain was never used when determining the density compensation values. The relevant 

change may simply be to alter the set xn:n = 1, 2, …, N  where the summation of (1) is 

calculated. We leave this pursuit as future work.

8. Conclusions

In this work, we present a method to determine the density compensation values of the 

non-uniform DFT of type I. The method for determining the density compensation values 

results from an optimization problem that considers twice the field of view of the object to 

be imaged. To the best knowledge of the authors, this is the first method for determining the 

density compensation values that is optimized over a set of non-zero measure.
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Appendix A.: Fourier Transform Definitions

For this document, the Fourier Transform and Inverse Fourier Transform are defined as

F (k) = ℱ f (k) = ∫
−∞

∞
f(x) exp( − i2πkx)dx,

f(x) = ℱ−1 F (x) = ∫
−∞

∞
F (k) exp(i2πkx)dk .

The DFT and Inverse DFT are defined as

V [m] = DFT (v)[m] = ∑
n = 0

N − 1
v[n] exp −i2πmn

N ,

v[n] = DFT−1(V )[n] = 1
N ∑

m = 0

M − 1
V [n] exp i2πmn

N .

Appendix B.: Expression for Scaling

Here we derive the expression for the scalar multiple that satisfies constraint (4) as explained 

in section 3. Let w be the solution to problem (3) when r = 1. Starting from constraint (4),

1 = ∫ ∫ ⋯η ∫ sw⋆(x)dx = ∫ ∫ ⋯η ∫ r′sw(x)dx

= r′∫ ∫ ⋯η ∫ ∑
j = 1

M
wj exp −i2πkj ⋅ x dx

= r′ ∑
j = 1

M
wj ∏

d = 1

D ∫
−ηd/2

ηd/2

exp −i2πkj, dxd dxd .

Therefore, κ = 1/r′ = ∑
j = 1

M
wj ∏

d = 1

D sin πkj, dηd
πkj, d

. 

Appendix C.: Gradient of the Objective function

Consider the objective function f0 w = ∫ ⋯∫2Nℎ x, w dx, where

ℎ(x, w) = exp − ∑
d = 1

D xd
γdNd

sw(x) 2 = exp − ∑
d = 1

D xd
γdNd

sw(x)sw(x) .

Here, · denotes the complex conjugate. Then ∇f0 w = ∫ ⋯∫2N ∇wℎ x, w dx. By the product 

rule of differentiation,
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∂
∂wl

ℎ(x, w) = exp − ∑
d = 1

D xd
γdNd

∂
∂wl

sw(x) sw(x) + sw(x) ∂
∂wl

sw(x)

= exp − ∑
d = 1

D xd
γdNd

∑
j = 1

M
wj exp i2π kj − kl ⋅ x + ∑

j = 1

M
wj exp −i2π kj − kl ⋅ x

= 2 exp − ∑
d = 1

D xd
γdNd

∑
j = 1

M
cos 2π kj − kl ⋅ x .

With this expression, we can now find an analogous expression for the partial derivative of 

the objective function:

∂
∂wl

f0(w) = 2 ∑
j = 1

M
wj∫ ∫ ⋯2N∫ cos 2π kj − kl ⋅ x exp − ∑

d = 1

D xd
γdNd

dx = al ⋅ w,

where al is the vector such that the jth component is

alj = 2∫ ∫ ⋯∫
2N

cos 2π kj − kl ⋅ x exp − ∑
d = 1

D xd
γdNd

dx .

We are left to determine al:

alj = exp − ∑
d = 1

D xd
γdNd

∫ ∫ ⋯2N∫ exp i2π kj − kl ⋅ x dx

+ exp − ∑
d = 1

D xd
γdNd

∫ ∫ ⋯2N∫ exp −i2π kj − kl ⋅ x dx

= ∏
d = 1

D ∫
−Nd

Nd
exp i2π kj, d − kl, d xd − xd

γdNd
dxd + ∏

d = 1

D ∫
−Nd

Nd
exp −i2π kj, d − kl, d xd − xd

γdNd
dxd

= 2Real ∏
d = 1

D ∫
−Nd

Nd
exp i2π kj, d − kl, d xd − xd

γdNd
dxd .

Consider

td = ∫
−Nd

Nd
exp i2π kj, d − kl, d xd − xd / γdNd dxd .

If kj, d = kl, d , then td = 2γdNd 1 − exp 1 − 1/γd . Otherwise,
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td = ∫
0

Nd
exp i2π kl, d − kj, d xd − xd

γdNd
+ ∫

−Nd

0
exp i2π kl, d − kj, d xd + xd

γdNd

= 1
ivd − 1/ γdNd

exp ivdNd − 1/γd − 1
ivd − 1/ γdNd

+ 1
ivd + 1/ γdNd

− 1
ivd + 1/ γdNd

exp −ivdNd − Nd
2γd

= 2Real −1/ γdNd − ivd

1/ γdNd
2 + vd

2
exp ivdNd − 1/γd + 1/ γdNd − ivd

1/ γdNd
2 + vd

2

= 2
1 + γd

2Nd
2vd

2 exp −1/γd −γdNd cos vdNd + γd
2Nd

2vd sin vdNd + γdNd ,

where vd = 2π kl, d − kj, d .

Therefore, al, j = 2∏d = 1
D td where td = 2γdNd 1 − exp −1/γd  if kj, d = kl, d and otherwise,

td = 2
1 + γd

2Nd
2vd

2 exp −1/γd −γdNd cos vdNd + γd
2Nd

2vd sin vNd + γdNd

With this expression of al, ∂ / ∂wl f0 w = al ⋅ w. Let A be the matrix such that the lth row of A
is al. Then ∇f0 w = Aw.
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Figure 1: 
Accurate images for data analyzed in this manuscript. (a) A numerical phantom consisting 

of the sum of a separable tri function, a circ function, and two separable stretched rect 

functions, each translated from the origin. (b) Slice 6 of the Double Vision dataset from 

the 2010 reconstruction challenge of the ISMRM. (c) A slice of a knee acquired from 

mridata.org. The white box in (b) shows a region zoomed into when presenting the results in 

Fig. 4.
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Figure 2: 
Subsets of the sample coordinates used for the data of Fig. 1. Sub-image (a) shows every 6th 

radial line for the radial sample set used with the numerical phantom Fig. 1a. Sub-image (b) 

shows 1 of the eight spiral interleaves from the sample set used with Fig. 1b. Sub-image (c) 

shows one cycle of the rosette trajectory used with Fig. 1c.
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Figure 3: 
Reconstructions of the phantom with the radial trajectory depicted in Fig. 2(a) and with 

density compensation values determine using (left) the areas of Voronoi cells, (center) the 

fixed-point iteration algorithm, and (right) the gradient projection algorithm. The first row 

shows the reconstructed images, the second row shows the error of each pixel in decibels. 

The gradient projection algorithm has lower error in more portions of the image than the 

other techniques.
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Figure 4: 
Reconstructions of the abdomen with the spiral trajectory depicted in Fig. 2(b) and density 

compensation values determine using (left) the areas of Voronoi cells, (center) the fixed-

point iteration algorithm, and (right) the gradient projection algorithm. The first row shows 

the reconstructed images, the second row shows a zoomed into a portion of the image 

centered on the left kidney indicated by the white rectangle shown in Fig. 1b, and the third 

row shows the error of each pixel in decibels. The gradient projection algorithm has lower 

error in more portions of the image than the other techniques.
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Figure 5: 
Reconstructions of the knee with the rosette trajectory depicted in Fig. 2(c) and a density 

compensation values determine using (left) the areas of Voronoi cells, (center) the fixed-

point iteration algorithm, and (right) the gradient projection algorithm. The first row shows 

the reconstructed images (each individually scaled) and the second row shows the error of 

each pixel on a logarithmic scale. The gradient projection algorithm has lower error than the 

other techniques.
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Figure 6: 
Density compensation values determined when γ = 0.25 using the Voronoi, Fixed Point, 

LSQR, and Gradient-Projection algorithms for the (left) numerical phantom with radial 

trajectory, (center) abdomen with spiral trajectory, and (right) knee with rosette trajectory.
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Figure 7: 
(Top) reconstructions and (Bottom) error (in decibels) for the knee for γ = γ1 = γ2 equal to 

0.1, 0.2, 0.25, 0.25, 0.3 and 0.4.
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Figure 8: 
Reconstructions of the abdomen after scaling the image intensities to minimize the MSE.
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Table 1:

Mean square error and structural similarity metric of each reconstruction

Voronoi Fixed Point LSQR Gradient Projection

Mean Square Error

Phantom 0.028 0.15 0.45 0.024

Abdomen 0.0010 0.079 0.034 0.00067

Knee 0.0026 0.062 0.110 0.0011

Structural Similarity Metric

Phantom 0.986 0.937 0.863 0.988

Abdomen 0.985 0.644 0.730 0.991

Knee 0.962 0.594 0.423 0.984

Runtime (seconds)

Phantom 1.1 10.8 6.1 586

Abdomen 3.6 1.7 1.3 190

Knee 1.9 1.4 1.1 775
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Table 2:

Mean square error and structural similarity metric for different values of γ

γ 0.1 0.2 0.25 0.3 0.4 ∞

Mean Square Error

Phantom 0.026 0.024 0.024 0.023 0.024 0.021

Abdomen 0.0011 0.0007 0.0007 0.0006 0.0005 0.0022

Knee 0.0020 0.0013 0.0011 0.0009 0.0008 0.0014

Structural Similarity Metric

Phantom 0.986 0.987 0.988 0.988 0.988 0.989

Abdomen 0.983 0.990 0.991 0.991 0.992 0.952

Knee 0.972 0.984 0.982 0.985 0.984 0.950
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Table 3:

Error Metrics for Reconstructions of the Abdomen after Scaling the Intensities

Voronoi Fixed Point LSQR Gradient Projection

Best Scaling 0.9 0.5 0.6 1.0

MSE (×10−3) 1.0 6.7 0.8 0.7

MAE (×10−2) 2.6 7.0 2.3 2.1

SSIM 0.985 0.88 0.988 0.991
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