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Abstract

The rapid development of diagnostic technologies in healthcare is leading to higher requirements 

for physicians to handle and integrate the heterogeneous, yet complementary data that are 

produced during routine practice. For instance, the personalized diagnosis and treatment planning 

for a single cancer patient relies on various images (e.g. radiology, pathology and camera 

images) and non-image data (e.g. clinical data and genomic data). However, such decision-making 

procedures can be subjective, qualitative, and have large inter-subject variabilities. With the recent 

advances in multimodal deep learning technologies, an increasingly large number of efforts have 

been devoted to a key question: how do we extract and aggregate multimodal information to 

ultimately provide more objective, quantitative computer-aided clinical decision making? This 

paper reviews the recent studies on dealing with such a question. Briefly, this review will include 

the (a) overview of current multimodal learning workflows, (b) summarization of multimodal 

fusion methods, (c) discussion of the performance, (d) applications in disease diagnosis and 

prognosis, and (e) challenges and future directions.
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1. Introduction

Routine clinical visits of a single patient might produce digital data in multiple modalities, 

including image data (i.e. pathology images, radiology images, and camera images) and 

non-image data (i.e. lab test results and clinical data). The heterogeneous data would 

provide different views of the same patient to better support various clinical decisions 

(e.g. disease diagnosis and prognosis [1-3]). However, such decision-making procedures 

can be subjective, qualitative, and exhibit large inter-subject variabilities [4, 5]. With the 

rapid development of artificial intelligence technologies, an increasingly large amount 

of deep learning-based solutions has been developed for multimodal learning in medical 

applications. Deep learning includes high-level abstraction of complex phenomenon within 

high-dimensional data, which tends to benefit multimodal fusion in extracting and modeling 

the complex relationships of different modalities and outcomes [6, 7].

Many works have achieved great success in using a single modality to make a diagnosis 

or prognosis with deep learning methods [8-10]. However, fusing the multimodal data 

effectively is not a trivial task in method design because different clinical modalities may 

contain different information (complementary information of a subject) and have different 

data formats. Figure 1 summarizes the scope of this review: that the multimodal data 

(image and non-image data) from the same patient are utilized for diagnosis or prognosis 

of diseases. The image data can be categorized as radiology image data, pathology image 

data, and camera image data. Such imaging data can be further classified as pixel-aligned 

data (can be spatially registered and overlayed) and pixel-not-aligned data (the pixels in 

different images do not have spatial correspondence), which might even have different 

dimensionalities (e.g. 2D, 3D, and 4D). The non-image data can be categorized as lab 

test results such as structured genomic sequences and blood test results, and clinical 

data including tabular data of demographic features, or free text in the lab test reports. 

The heterogeneity of such image and non-image data leads to critical challenges in 

performing multimodal learning, a family of algorithms in machine learning. For example, 

2D pathology images provide micro-level morphology for a tumor while the 3D radiology 

images such as computed tomography (CT)/magnetic resonance imaging (MRI) offer 

macro-level and spatial information of the same tumor. The clinical data and lab test results 

indicate the molecular, biological, and chemical characteristics, while the structured DNA 

and mRNA sequences are also involved in clinical decision making. Moreover, image data 

are typically larger and denser (e.g. millions of pixels), while the non-image data are 

more sparse with a lower dimensionality. Herein, the heterogeneous formats (e.g. different 

dimensions, image, free text, and tabular data) require different preprocessing and feature 

extraction methods, and different types of information require fusion methods that are 

able to capture the shared and complementary information effectively for rendering better 

diagnosis and prognosis.

Several surveys have been published for medical multimodal fusion [11-15]. Boehm et al 
[11] reviewed the applications, challenges, and future direction of multimodal fusion in 

oncology. Huang et al [12] and Stahlschmidt et al [15] categorized the fusion methods 

by the stages of fusion. Schneider et al [13] and Lu et al [14] divided the multimodal 
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learning studies by downstream tasks and modalities. In this survey, we not only adhere to 

the widely recognized stages of fusion categorization, but also review multimodal fusion 

techniques from a new perspective of categorizing the feature-level fusion methods into 

operation-based, subspace-based, tensor-based, and graph-based fusion methods. We hope 

the summary of the fusion techniques can foster new methods in medical multimodal 

learning.

In this survey, we collected and reviewed 34 related works published within the last 5 

years. All of them used deep learning methods to fuse image and non-image medical data 

for prognosis, diagnosis, or treatment prediction. This survey is organized in the following 

structure: section 2 provides an overview of multimodal learning for medical diagnosis 

and prognosis; section 3 briefly introduces the data preprocessing and feature extraction 

for different unimodalities, which is the prerequisite for multimodal fusion; section 4 

summarizes categorized multimodal fusion methods, and their motivation, performance, 

and limitations are discussed; section 5 provides a comprehensive discussion and future 

directions; and section 6 is a conclusion.

2. Overview

2.1. Study selection

This survey only includes published studies (with peer-review) that fuse both image and 

non-image data to make a disease diagnosis or prognosis in the past five years. All of them 

used feature-level deep learning-based fusion methods for multimodal data. A total of 34 

studies that satisfied these criteria are reviewed in this survey.

2.2. Workflow

A generalized workflow of collected studies is shown in figure 2. Typically, data 

preprocessing, unimodal feature extraction, multimodal fusion, and predictor sections are 

included in the workflow. Due to the heterogeneity of image and non-image modalities, it is 

unusual to fuse the original data directly. Different modalities always have separate methods 

of data preprocessing and feature extraction. For multimodal learning, fusion is a crucial 

step, following the unimodal data preprocessing and feature extraction steps that are the 

prerequisites. Sections 3 and 4 will introduce and discuss the unimodal feature preparation 

and multimodal fusion separately.

Based on the stage of multimodal fusion, the fusion strategies can be divided into feature-

level fusion and decision-level fusion [12, 15]. Feature-level fusion contains early fusion 

and intermediate fusion. For decision-level fusion, which is also referred to as late fusion, 

the prediction results of unimodal models (e.g. probability logits or categorical results from 

unimodal paths in classification tasks) are fused for multimodal prediction by majority vote, 

weighted sum, or averaging, etc. The fusion operation is relatively simple and there is no 

need to retrain the unimodal models at the fusion stage. As for feature-level fusion, either the 

extracted high-dimensional features or the original structured data can be used as the inputs. 

Compared with decision-level fusion, feature-level fusion has the advantage of incorporating 

the complementary and correlated relationships of the low-level and high-level features of 
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different modalities [12, 16], which leads to more variants of fusion techniques. This survey 

mainly focuses on categorizing the methods of feature-level fusion, but also compares with 

the decision-level fusion.

2.3. Diagnosis and prognosis tasks and evaluation metrics

In this survey, multimodal fusion is applied to the disease diagnosis and prognosis. The 

disease diagnosis tasks include classifications such as disease severity, benign or malignant 

tumors, and regression of clinical scores. Prognosis tasks include survival prediction and 

treatment response prediction.

After obtaining the multimodal representations, multi-layer perceptrons (MLP) were used 

by most of the reviewed studies to generate the prognosis or diagnosis results. The specific 

tasks of diagnosis and prognosis can be categorized into regression or classification tasks 

based on discrete or continuous outputs. To supervise the modal training, the cross-entropy 

loss is usually used for classification tasks, while the mean square error (MSE) is a 

popular choice for regression tasks. To evaluate the results, the area under the curve (AUC) 

of receiver operating characteristics (ROC), mean average precision (mAP), accuracy, F1-

score, sensitivity, and specificity metrics are commonly used for classification, while the 

MSE is typically used for regression. However, although the survival prediction is treated 

as a time regression task or a classification task of long-term/short-term survival, the Cox 

proportional hazards loss function [17] is popular in survival prediction tasks. To evaluate 

the survival prediction models, the concordance index (c-index) is widely used to measure 

the concordance between the predicted survival risk and real survival time.

3. Unimodal data preprocessing and feature extraction

Due to multimodal heterogeneity, separate preprocessing and feature extraction methods/

networks are required for different modalities to prepare unimodal features for fusion. As 

shown in table 1, our reviewed studies contain image modalities such as pathology images 

(H&E), radiology images (CT, MRI, x-ray, functional MRI (fMRI)), and camera images 

(clinical images, macroscopic images, dermatoscopic images); and non-image modalities 

such as lab test results (genomic sequences) and clinical features (free-text reports and 

demographic data). In this section, we briefly introduce these data modalities and summarize 

the corresponding data preprocessing and feature extraction methods.

3.1. Image data

3.1.1. Pathology images—Pathology images analyze cells and tissues at a microscopic 

level, which is recognized as the ‘gold standard’ for cancer diagnosis [19]. The 2D 

Hematoxylin-Eosin (H&E) stained pathology images with 3 channels is a widely used 

one. Yet, the whole slide image (WSI) of pathology images usually cannot be processed 

directly because of its gigantic size. So, the smaller patches are always cropped from the 

informative regions of interests (ROIs) of WSIs to fit the computation memory. To define 

the ROIs, some reviewed studies used the diagnostic ROIs manually annotated by experts 

[20, 21] or predicted by the pre-trained segmentation models [21, 48], while some reviewed 

studies instead selected ROIs from the foreground [18, 44] or dense region [25, 47] based 
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on pixel intensity. Also, the color space can be converted from RGB to HSV for H&E 

images for higher intensity contrast [18, 44], and always standardized [26, 67] or calibrated 

to standard images [17, 21] for data consistency. To generate features from cropped image 

patches, 2D conventional neural networks (CNNs) are popular options for learning-based 

features. Moreover, finetuning models pre-trained by natural images (e.g. ImageNet [96]) is 

usually preferred especially for small datasets [26, 44, 48, 68], though there is a concern for 

the large gap between natural images and pathology images [27]. Except for the learning-

based methods, some other works [28, 29] used conventional feature extraction methods 

(e.g. CellProfiler [30]) to extract statistical and structured features about shapes, texture, 

intensity, etc. Meanwhile, multiscale is a common mechanism to extract complementary and 

shared information from different level of pathology images [20, 27, 31, 48]. As for the 

supervision, if only the WSI-level label is provided for patches (e.g. the patches from ROIs 

extracted based on intensity), multi-instance learning (MIL) is always applied to aggregate 

the information of patches in bags for supervision [32, 33].

3.1.2. Radiology images—Radiology imaging supports medical decisions by providing 

visible image contrasts inside the human body with radiant energy, including MRI, 

CT, positron emission tomography (PET), fMRI and x-ray, etc. To embed the intensity 

standardized 2D or 3D radiology images into feature representations with learning-based 

encoders [16, 24, 34-36, 87] or conventional radiomics methods [24, 34, 35] or both 

[34, 35], skull-stripping [38], affine registration [38], foreground extraction [39], lesion 

segmentation [20, 34, 35, 38] were used correspondingly in some reviewed works to define 

the ROIs at first. And then, the images were resized or cropped to a smaller size for 

feature extraction. In order to further reduce the image dimension to fit computation memory 

but keep essential information, some works used 2D maximum intensity projection [16], 

and some works used the representative slices with maximum tumor diameters [20, 35] 

to convert the 3D volume to 2D. The fMRI is another radiology modality used in some 

reviewed studies that investigated autism spectrum disorder (ASD) and Alzheimer’s disease 

(AD) [40, 41]. The images of brains were divided into multiple regions by the template. 

Then, the Pearson correlation coefficient between two brain regions was calculated to form 

the functional connectivity matrix, and the matrix was finally vectorized for classification.

3.1.3. Camera images—In addition to pathology and radiology images, some other 

kinds of medical images captured by optical color cameras are categorized as camera 

images; examples of these camera images include dermoscopic and clinical images for skin 

lesions [42, 45], endoscopic images to examine the interior of a hollow organ or cavity of 

the body [49], and the funduscopic images photographing the rear of eyes [50]. Different 

from pathology images, camera images can be taken directly while the sectioned and stained 

sample slides are not required. Also, most of the camera images are three-channel color 

images but in a smaller size than pathology images. 2D pre-trained CNN networks [42] or 

pre-trained transformer models [51] are usually applied to the whole images or detected 

lesions.
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3.2. Non-image data

The non-image modalities contain lab test results and clinical features. Laboratory 

tests check a sample of blood, urine, or body tissues, access the cognition and 

psychological status of patients, and analyze genomic sequences, etc. Clinical features 

include demographic information and clinical reports. These modalities are also essential 

to diagnosis and prognosis in clinical practice. The non-image data on the reviewed works 

can be briefly divided into structured data and free-text data for different preprocessing and 

feature extraction methods.

3.2.1. Structured data—Most of the clinical data and lab test results in the reviewed 

works are structured data and can be converted to feature vectors easily. In preprocessing, 

categorical clinical features were usually converted through one-hot encoding, while the 

numerical features were standardized [16, 34, 35]. Specially, Cai et al [51] used soft one-hot 

encoding by setting the elements that were as 0 in the standard one-hot encoding as 0.1 

to make contributions to the propagation. As the genomic data are in high dimension, 

some feature selection methods such as the highest variance were used to extract the 

most informative features [44, 47, 67]. The missing value is a common problem for some 

structured data. The ones with a high missing rate were usually discarded directly, while the 

other missing data were imputed with the average value, mode value, or values of similar 

samples selected by K-nearest neighbors [16, 24], and some works added missing status as 

features [52, 68].

3.2.2. Free-text data—Clinical reports capture clinicians’ impressions of diseases in the 

form of unstructured text. In order to deal with the free text data and extract informative 

features from the free-text, natural language processing techniques are implemented. For 

example, Chauhan et al [53] prepared the tokenization of the text extracted by ScispaCy 

[54]. Then, the BERT [55] model initialized by weights pre-trained on the scientific text 

[56] was used to embed the tokenization. Furthermore, the language model trained by 

medical data such as ClinicalBERT [57] was tried in the work [58] for text embeddings and 

compared its performance with BERT in multimodal prediction.

After using the above modal-specific preprocessing and feature extraction methods, the 

unimodal representations could be converted to feature maps or feature vectors. For feature 

vectors, in order to learn more expressive features with expected dimensions, EI-Sappagh 

et al [24] used principal component analysis (PCA), to reduce the dimension of radiomics 

features. Parisot et al [40] explored different feature reduction methods such as recursive 

feature elimination, PCA, and the autoencoder to reduce the feature dimension of the 

vectorized functional connectivity matrix. In contrast, Yan et al [27] used the denoising 

autoencoder to enlarge the dimension of low-dimensional clinical features to avoid being 

overwhelmed in feature-level fusion by high-dimensional image features. For similar 

purpose, Yoo et al [38] replicated and scaled the clinical features, while Cui et al [68] 

deconvoluted the feature vectors to the same size as feature maps of image modalities. In 

terms of aggregating multiple feature vectors, El-Sappagh et al [24] used bidirectional long 

short-term memory (biLSTM) models to handle the vectorized time-series features, and Lu 

et al [18] applied attention-based MIL to accumulate the feature vectors in bags to bag-level 
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representations. As for the image feature maps learned by CNNs, these feature maps could 

be used for fusion directly in order to keep the spatial information [59, 68], vectorized with 

pooling layers [16, 34, 35], or split by pixel/voxels as the tokens to feed transformers [58].

Unimodal feature extraction can be either unsupervised or supervised. Note that if the 

unimodal features are trained prior to fusion, it is possible to train the unimodal model with 

the maximum number of available samples of each modality for better unimodal model 

performance and hopefully better unimodal features to benfit the multimodal performance 

[35, 67, 84]. Regarding the relationship of unimodal feature extraction with the fusion, the 

unimodal feature extraction section can be independent to the fusion section [35, 87], which 

is known as early-level fusion, or can be trained from scratch or finetuned with the fusion 

section end-to-end [20, 31] as the intermediate-level fusion.

4. Multimodal fusion methods

Fusing the heterogeneous information from multimodal data to effectively boost prediction 

performance is a key pursuit and challenge in multimodal learning [97]. Based on the type 

of inputs for multimodal fusion, the fusion strategies can be divided into feature-level fusion 

and decision-level fusion [11]. Decision-level fusion integrates the probability or categorical 

predictions from unimodal models using simple operations such as averaging, weighted 

vote, majority vote, or a meta classifier with trainable layers for unimodal probability 

[16, 45, 60, 61, 87, 98], to make a final multimodal prediction. For the decision-level 

fusion, the prediction of unimodality can be learned separately and be independent to the 

fusion stage. It can fuse any combination of multimodalities without further adjustment 

in the testing phase. So, it may be preferable for flexibility and simplicity, and it can 

tolerate the missing modality situation. Sometimes the decision-level fusion achieved better 

performance than the feature-level fusion. For example, Wang et al [60] implemented a 

learnable weighted sum mechanism based on unimodal uncertainty to fuse the prediction 

of different modalities, which outperformed the intermediate feature-level fusion. Huang 

et al [87] showed that decision-level fusion also outperformed feature-level fusion in their 

experiments of pulmonary embolism detection. However, the decision-level fusion may lack 

the interaction of the features. For the modalities with dependent or correlated features, 

feature-level fusion might be more preferable. Some other works [16, 61] also showed that 

their proposed feature-level integration performed better than decision-level fusion. On the 

other hand, feature-level fusion fuses the original data or extracted features of heterogeneous 

multimodals into a compact and informative multimodal hidden representation to make 

a final prediction. Compared with decision-level fusion, more variants of feature-level 

fusion methods have been proposed to capture the complicated relationship of features 

from different modalities. This survey reviews these methods and categorizes them into 

operation-based, subspace-based, attention-based, tensor-based, and graph-based methods. 

The representative structures of these fusion methods are displayed in figure 3, and the 

fusion methods of reviewed studies are summarized in table 1.
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4.1. Operation-based fusion methods

To combine different feature vectors, the common practice is to perform simple 

operations of concatenation, element-wise summation, and element-wise multiplication. 

These practices are parameter-free and flexible to use, but the element-wise summation 

and multiplication methods always require the feature vectors of different modalities to be 

converted into the same shape. Many early works used one of the simple operations to 

show that multimodal learning models outperforms unimodal models [16, 18, 21, 24, 38, 

42, 45, 87]. Although the operation-based fusion methods are simple and effective, they 

might not exploit the complex correlation between heterogeneous modalities. Also, the long 

feature vectors generated by the concatenation may lead to overfitting when the amount of 

training data is not sufficient [62, 63]. More recently, Holste et al [16] compared these three 

operation-based methods in the task of using clinical data and MRI images for breast cancer 

classification. The low-dimensional non-image features were processed by fully connected 

layers (FCN) to the same dimension of image features before fusion. The results showed 

that the three operations performed comparably (p-value > 0.05), while the element-wise 

summation and multiplication methods required less trainable parameters in the following 

FCN. After comparing the learned non-image features by FCN and the original non-image 

features, the former ones achieved superior performance. Meanwhile, the concatenation of 

the feature vectors outperformed the concatenation of logits from the unimodal data. Yan et 
al [27] investigated the influence of the dimension of unimodal features on the unimodal 

performance using concatenation fusion. They hypothesized that the high-dimensional 

vectors of image data would overwhelm the low-dimension clinical data. To keep the rich 

information of the high-dimensional features for a sufficient fusion, they used the denoising 

autoencoder to increase the dimension of clinical features. Zhou et al [84] proposed a 

three-stage unimodal feature learning and multimodal feature concatenation pipeline, where 

every two modalities were fused at the second stage and all three modalities were fused 

at the third stage, in order to use the maximum number of available samples when some 

modalities were missing.

4.2. Subspace-based fusion methods

The subspace methods aim to learn an informative common subspace of multimodality. 

A popular strategy is to enhance the correlation or similarity of features from different 

modalities. Yao et al [28] proposed a DeepCorrSurv model and evaluated the survival 

prediction task. Inspired by the conventional canonical correlation analysis (CCA) method 

[99], they proposed an additional CCA-based loss for the supervised FCN network to learn 

the more correlated feature space of features from two modalities. The proposed methods 

outperformed the conventional CCA methods by learning the non-linear features and the 

supervised correlated space. Zhou et al [39] designed two similarity losses to enforce the 

learning of modality-shared information. Specifically, a cosine similarity loss was used to 

supervise the features learned from these two modalities, and a loss of hetero-center distance 

was designed to penalize the distance between the center of clinical features and CT features 

belonging to each class. In their experiments, the accuracy dropped from 96.36 to 93.18 

without these similarity losses. Li et al [48] used the average of L1-norm and L2-norm loss 

to improve the similarity of the learned unimodal features from pathology images and genes 

before concatenating them as a multimodal representation. The learned similar features can 
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then be fused by concatenation as the multimodal representation. Another study [47] fused 

the feature vectors from 4 modalities with the subspace idea in the diagnosis task of 20 

cancer types. Inspired by the SimSiam network [64], they forced the feature vectors from 

the same subject to be similar by a margin-based hinge-loss. Briefly, cosine similarity scores 

between the unimodal features from the same patient were maximized, whereas the ones 

from different patients were minimized. The feature similarities of different patients were 

only penalized within a margin of the feature similarity. Such a regularity enforced similar 

feature representation from the same patient, while avoiding mode collapse.

Another strategy in the subspace-based fusion method is to learn a complete representation 

subspace with the encoder-decoder structures. Ghosal et al [65] decoded the mean vectors 

of multimodal features and used the reconstruction loss to force the mean vectors to contain 

the complete information of different views. The mean vectors with additional decoder 

and reconstruction loss achieved superior classification accuracy as compared with the 

counterparts without such loss functions. Similarly, Cui et al [35] also used the autoencoder 

backbone to learn the complete representation, but some modalities were randomly dropout 

and reconstructed by the mean vector generated from the available modalities to improve 

prediction accuracy and be more robust to the testing data with missing modalities.

4.3. Attention-based fusion methods

Attention-based methods computed and incorporated the importance scores (attention 

scores) of multimodality features when performing aggregation. This progress simulated 

routine clinical practice. For example, the information from clinical reports of a patient may 

inform the clinicians to pay more attention to a certain region in an MRI image. Duanmu et 
al [59] built an FCN path for non-image data along with a CNN path for image data. The 

learned feature vectors from the FCN path were employed as the channel-wise attention for 

the CNN path at the corresponding layers. The low-level and high-level features of different 

modalities can be fused correspondingly, which achieved a better prediction accuracy than 

simple concatenation. Schulz et al [20] concatenated the learned feature vectors from three 

modalities by an attention layer, which weighted the modal importance for the downstream 

task. Chen et al [26] calculated the co-attention weight to generate the genomic-guided 

WSI embeddings. Similarly, Lu et al [69] proposed a symmetric cross attention to fuse the 

genomic data and pathology image embeddings of glioma tumors for multitask learning, 

while Cai et al [51] proposed an asymmetrical multi-head cross attention to fuse the camera 

images and metadata for skin classification. Li et al [31] aggregated multiscale pathology 

images and clinical features to predict the lymph node metastasis (LNM) of breast cancer. 

In their proposed method, the clinical features and patient-level image representations via 

mean pooling were concatenated to form the global multimodal representations, which were 

to guide the attention-based MIL of image patches and recalibrate the clinical features. 

The experiments showed that the proposed attention-based methods outperformed both the 

gating-based attention used by Chen et al [67] and a bag-concept layer concatenation [70]. 

Guan et al [36] applied the self-attention mechanism [100] in their concatenated multimodal 

feature maps. They tiled and transformed the clinical feature vectors to the same shape 

of the image feature matrix to keep the spatial information in an image feature map. 

Their performance surpassed both the concatenation and another subspace method using a 
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similarity loss [53]. In addition to the MLP and CNN, the attention mechanism was also 

applied to the graph model for multimodal learning in the medical domain. Cui et al [68] 

built a graph where each node was composed of image features and clinical features with 

category-wise attention. The influence weights of neighboring nodes were learned by the 

convolution graph attention network (con-GAT) and novel correlation-based graph attention 

network (cor-GAT). The attention value was used to update the node features for the final 

prediction. More recently, the transformer models were widely used in multimodal learning 

[71], and they were adapted to medical field. Jacenkow et al [72] exploited the unimodally 

pre-trained transformer-based language model BERT [55] and finetuned it after adding the 

image tokens for multimodal learning. Li et al [58] used the radiology images and radiology 

free-text reports to finetune the visual-text transformer models pre-trained by general image-

language pairs not specific for medical domains. Meanwhile, different visual-text backbone, 

unimodal pre-trained models and training strategy were compared in their work.

The above attention-based fusion methods rescaled features through complementary 

information from another modality, while Pölsterl et al [52] proposed a dynamic affine 

transform module that shifted the feature map. The proposed modules dynamically produced 

scale factor and offset conditional on both image and clinical data. In such a design, the 

affine transform was added ahead of the convolutional layer in the last residual block to 

rescale and shift the image feature maps. As a result, the high-level image features can 

interact with the compacted clinical features, which outperformed the simple concatenation 

and channel-wise attention-based methods [59].

4.4. Tensor-based fusion methods

The tensor-based fusion methods conducted outer products across multimodality feature 

vectors to form a higher order co-occurrence matrix. The high-order interactions tend to 

provide more predictive information beyond what those features can provide individually. 

For example, blood pressure rising is common when a person is doing high-pressure work, 

but it is dangerous if there are also symptoms of myocardial infarction and hyperlipidemia 

[39]. Chen et al [67] proposed pathomic fusion to make prognosis and diagnosis utilizing 

pathology images, cell graphs, and genomic data. They used the tensor fusion network with 

a Kronecker product [73] to combine the unimodal, bimodal, and trimodal features. To 

further control the expressiveness of each modality, a gated-attention layer [74] was added. 

Wang et al [29] not only used the outer product for inter-modal feature interactions, but 

also for intra-modal feature interactions. It surpassed the performance of the CCA-based 

method known as DeepCorrSurv [28]. More recently, Braman et al [34] followed the work 

of pathomic fusion [67] and extended it from three modalities to four modalities. Also, an 

additional orthogonal loss was added to force the learned features of different modalities to 

be orthogonal to each other, which helped to improve feature diversity and reduce feature 

redundancy. They showed that their methods outperformed the simple concatenation and the 

original Kronecker product.

4.5. Graph-based fusion method

A graph is a non-grid structure to catch the interactions between individual elements 

represented as nodes. For disease diagnosis and prognosis, nodes can represent the patients, 

Cui et al. Page 10

Prog Biomed Eng (Bristol). Author manuscript; available in PMC 2023 June 23.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



while the graph edges contain the associations between these patients. Different from CNN-

based representation, the constructed population graph updates the features for each patient 

by aggregating the features from the neighboring patients with similar features. To utilize 

complementary information in the non-imaging features, Parisot et al [40] proposed to 

build the graph with both image and non-image features to predict ASD and AD. The 

nodes of the graph were composed of image features extracted from fMRI images, while 

the edges of the graph were determined by the pairwise similarities of image (fMRI) and 

non-image features (age, gender, site, and gene data) between different patients. Specifically, 

the adjacency matrix was defined by the correlation distance between the subject’s fMRI 

features multipled with the similarity measure of non-image features. Their experiment 

showed that the proposed graph convolutional network (GCN) model outperformed MLP 

of multimodal concatenation. Following this study, Cao et al [41] built graphs similarly but 

proposed to use the edge dropout and DeepGCN structure with residual connection instead 

of the original GCN for deeper networks and thus avoid overfitting, which achieved better 

results.

5. Discussion and future work

In the above sections, we reviewed recent studies using deep learning-based methods to 

fuse image and non-image modalities for disease prognosis and diagnosis. The feature-level 

fusion methods were categorized into operation-based, subspace-based, attention-based, 

tensor-based, and graph-based methods. The operation-based methods are intuitive and 

effective, but they might yield inferior performance when learning from complicated 

interactions of different modalities’ features. However, such approaches (e.g. concatenation) 

are still used to benchmark new fusion methods. Tensor-based methods represent a more 

explicit manner of fusing multimodal features, yet with an increased risk of overfitting. 

Attention-based methods not only fuse the multimodal features but compute the importance 

of inter- and intra-modal features. Subspace-based methods tend to learn a common space 

for different modalities. The current graph-based methods employ graph representation to 

aggregate the features by incorporating prior knowledge in building the graph structure. 

Note that these fusion methods are not exclusive to each other, since some studies 

combined multiple kinds of fusion methods to optimize the prediction results. Compared 

with decision-level fusion for the decision-level fusion, feature-level fusion may gain 

benefits from the interaction between multimodal features, while the decision-level fusion 

is more flexible for the combination of multimodalities and thus robust to modality missing 

problems.

Although different fusion methods have different characteristics, how to select the optimal 

fusion strategy is still an open question in practice. There is no clue that a fusion method 

always performs the best. Currently, it is difficult to compare the performance of different 

fusion methods directly, since different studies were typically done on different datasets 

with different settings. Moreover, most of the prior studies did not use multiple datasets 

or external testing sets for evaluation. Therefore, more fair and comparative studies and 

benchmark datasets should be encouraged for multimodal learning in the medical field. 

Furthermore, the optimal fusion method might be task/data dependent. For example, 

the decision-level fusion might be more suitable for multimodality with less correlation. 
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However, the theoretical analysis and evaluation metrics are not extensively researched. 

Some studies show that the fusion at different layers or levels can significantly influence the 

results [16, 59, 84, 87]. The neural architecture search provides an option to automatically 

optimize the network structure. It has been applied in the image and non-image fusion in 

other fields [101-103], but it is under explored in multimodal medical applications.

The reviewed studies showed that the performance of multimodal models typically 

surpassed the unimodal counterparts in the downstream tasks such as disease diagnosis 

or prognosis. On the other hand, some studies also mentioned that the models fused 

more modalities may not always perform better than those with fewer modalities. In other 

words, the fusion of some modalities may have no influence or negative influence on 

multimodal models [18, 20, 34, 40, 41]. It might be because the additional information 

introduces bias for some tasks. For example, Lu et al [18] used the data of both primary 

and metastatic tumors for training to increase the top-k accuracy of the classification of 

metastatic tumors effectively. However, the accuracy decreased by 4.6% when biopsy site, 

a clinical feature, was added. Parisot et al [40] and Cao et al [41] demonstrated that the 

fusion of redundant information or data with noise (e.g. age, full intelligence quotient) led 

to defining inaccurate neighborhood systems of the population graph and further decreased 

the model performance. Meanwhile, additional modalities increase the network complexity 

with more trainable parameters, which may increase the training difficulties and the risk 

of overfitting. Braman et al [34] used outer products to fuse unimodal features. However, 

the outer products with three modalities yielded an inferior performance compared with 

the pairwise fusion and even unimodal models. Thus, although multimodal learning tends 

to benefit model performance, modality selection should consider the model capacity, data 

quality, specific tasks, etc. This is still an interesting problem worth more exploration.

A concern in this field is data availability. Although deep learning is powerful in extracting 

a pattern from complex data, it requires a large amount of training data to fit a reasonable 

model. However, data scarcity is always a challenge in the healthcare area, the situation of 

the multimodal data is only worse. Over 50% of the reviewed studies used multimodal 

datasets containing less than 1,000 patients. To improve the model performance and 

robustness with limited data, the pre-trained networks (e.g. image encoder Transformers 

and CNN networks pre-trained by natural images [96], text encoder BERT [55] and 

ClinicalBERT [57], and multimodal encoder VisualBERT [91], LXMERT [92] and UNITER 

[93] pre-trained by natural image-visual pairs) were widely used by many studies instead 

of training from scratch with small datasets. Meanwhile, several studies [18, 44, 45, 69] 

deployed multi-task learning and showed improvements. Through sharing representations 

between related tasks, models generalized better on the original task. Also, many studies 

applied feature reduction and data augmentation techniques to avoid overfitting. To enlarge 

the paired dataset scale for multimodal fusion, combining multi-site data is a straightforward 

method, but the computational data harmonization is worth to consider to eliminate the 

non-biological variances of multi-site data for a general and robust model [104]. Also. 

unsupervised methods [105] and semi-supervised methods [106] which have gained a great 

success in unimodal learning can also be applied to utilize the multimodal data without 

labels. Meanwhile, transfer learning with larger datasets shared related knowledge can 

benefit the multimodal learning. For example, Sharifi-Noghabi et al [107] used multimodal 
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pan-drug data in training to enlarge the multimodal dataset and achieve better performance 

of the response prediction in a drug-specific task than the model trained by drug-specific 

data only. Similarly, Cheerla et al [47] noticed that the survival prediction of single cancers 

was improved by using all cancer data instead of using the single cancer data for training. 

Data missing is another problem of data availability. Complete datasets with all modalities 

available for every patient are not always guaranteed in routine practice. In the reviewed 

papers, random modality dropout [35, 47], multi-stage training [34, 35, 84], partial network 

training [65, 84], data imputation [24], and autoencoders with reconstruction loss [35, 65] 

have been implemented to handle the missing data in multimodal learning. However, the 

comparison of these methods and the influence of missing data in training and testing 

phases were not thoroughly investigated. Utilizing limited data effectively and efficiently is 

a practical but essential problem. This is a fast-growing direction attracting more and more 

attention.

Unimodal feature extraction is an essential prerequisite for fusion, especially for multimodal 

heterogeneity. Proper preprocessing and feature extraction methods/networks are inevitable 

for the following fusion procedures. Both the standard feature extraction methods and 

learning-based feature extraction methods are commonly seen in deep fusion works. 

According to some reviewed works, different feature extraction methods can influence 

the fusion results significantly. For example, Cai et al [51] observed that the ViT-based 

image encoder led to better fusion results than CNN-based encodes, and the fusion model 

using clinical features with soft one-hot encoding also outperformed hard encoding and 

word2vec. Li et al [58] compared the contribution of different pre-trained language models 

to multimodal fusion. The results showed that although the language model CliniclBERT 

pretrained by medical data outperformed the BERT model in unimodal prediction, it 

does not fit the pre-trained weights in the fusion stage and performed slightly worse in 

multimodal prediction. To boost the fusion prediction, unimodal preprocessing and feature 

extraction should be carefully designed and evaluated. For better unimodal representation, 

different strategies can be considered. For example, the segmentation results tend to benefit 

the diagnostic feature extraction and ease the unimodal learning by providing regions 

of interests [34, 35, 39, 108]. The combination of conventional radiomics features and 

learning-based features achieved better performance [34, 39]. And the unimodal encoder 

trained by more data is more capable for representation generalization [35, 84, 105, 106]. 

Large unimodal datasets are always easier to obtain than multimodal dataset. The leading 

techniques can be adapted to the unimodal feature extraction to boost the multimodal 

performance.

Explainability is another challenge in multimodal diagnosis and prognosis. Lack of 

transparency is identified as one of the main barriers to deploying deep learning methods 

in clinical practice. An explainable model not only provides a trustworthy result but also 

helps the discovery of new biomarkers. In the reviewed papers, some explanation methods 

were used to show feature contributions to results. For image data, heatmaps generated with 

the class activation maps algorithm (CAM) were used to visualize the activated region of 

images that were most relevant to the models’ outputs [20, 53, 67]. Li et al [31] displayed 

the attention scores of patches to visualize the importance of every patch to the MIL of a 

WSI. The activated image region was compared with prior knowledge to see whether the 
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models focused on the diagnostic characteristics of images. For non-image features, Holste 

et al [16] used a permutation-based measure, Ghosal et al [65] used learnable dropout layers, 

while Zhou et al [39] and Chen et al [67] implemented a gradient-based saliency method to 

get the score of feature importance. Especially, explainability in multimodal learning helps 

explain and visualize the interaction between different modalities, EI-Sappagh et al [24], 

Cheerla etand Gevaert [47] and Braman et al [34] displayed the importance of modalities 

with the performance of multimodal models trained by different combination of modalities. 

Chen et al [26] visualized the correlation of gene data and pathology image regions to reflect 

the known genotype-phenotype relationships of cancers. Although the usefulness of these 

explanations is still waiting to be validated in clinical practice, the development of more 

advanced meta-explanation through multimodal information fusion can be a promising topic 

for future study as Yang et al [109] mentioned in their medical explainable AI review.

6. Conclusion

This paper has surveyed the recent works of deep multimodal fusion methods using the 

image and non-image data in medical diagnosis, prognosis, and treatment prediction. The 

multimodal framework, multimodal medical data, and corresponding feature extraction 

were introduced, and the deep fusion methods were categorized and reviewed. From the 

prior works, multimodal data typically yielded superior performance as compared with the 

unimodal data. Integrating multimodal data with appropriate fusion methods could further 

improve the performance. On the other hand, there are still open questions to achieve a 

more generalizable and explainable model with limited and incomplete multimodal medical 

data. In the future, multimodal learning is expected to play an increasingly important 

role in precision medicine as a fully quantitative and trustworthy clinical decision support 

methodology.
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Figure 1. 
The scope of this review is presented. multimodal data containing image data (e.g. radiology 

images and pathology images) and non-image data (e.g. genomic data and clinical data) are 

fused through multimodal learning methods for diagnosis and prognosis of diseases.
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Figure 2. 
The overview of the multimodal learning workflow is presented. Due to the heterogeneity of 

different modalities, separate preprocessing methods and feature extraction methods are used 

for each modality. For feature-level fusion, the extracted features from unimodals are fused. 

Note that the feature extraction methods can be omitted, because some data can be fused 

directly (such as the tabular clinical features). As for decision-level fusion, the different 

modalities are fused in the probability or final predication level. Because feature-level fusion 

contains more variants of fusion strategies, we mainly focus on reviewing the feature-level 

fusion methods, but also compares with the decision-level fusion.
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Figure 3. 
Representative structures of different feature-level multimodal fusion methods.
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