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Genome re-arrangements such as chromosomal inversions are often involved in
adaptation. As such, they experience natural selection, which can erode genetic varia-
tion. Thus, whether and how inversions can remain polymorphic for extended periods
of time remains debated. Here we combine genomics, experiments, and evolutionary
modeling to elucidate the processes maintaining an inversion polymorphism associated
with the use of a challenging host plant (Redwood trees) in Timema stick insects. We
show that the inversion is maintained by a combination of processes, finding roles
for life-history trade-offs, heterozygote advantage, local adaptation to different hosts,
and gene flow. We use models to show how such multi-layered regimes of balancing
selection and gene flow provide resilience to help buffer populations against the loss of
genetic variation, maintaining the potential for future evolution. We further show
that the inversion polymorphism has persisted for millions of years and is not a
result of recent introgression. We thus find that rather than being a nuisance, the
complex interplay of evolutionary processes provides a mechanism for the long-term
maintenance of genetic variation.
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Genetic variation is the ultimate fuel for evolution. However, many forms of natural
selection (e.g., directional and purifying selection) and random genetic drift are expected
to result in the loss of genetic variation, depleting the reservoir of fuel for evolution.
Whether and how genetic variation can be maintained over long periods of time
thus remains a central question in biology (1–8). We address this question here by
studying the maintenance of an ancient chromosomal inversion. Since their discovery by
Sturtevant∼100 y ago (9), chromosomal inversions have been central to the development
of evolutionary biology. In this regard, inversions served as the first genetic markers
and motivated ideas by Dobzhansky et al. concerning co-adapted gene complexes
and balancing selection (10, 11). For example, inversions can create “supergenes” by
capturing multilocus adaptive allele combinations (12–14). This mechanism underlies
several modern theories of adaptation that involve suppressed recombination (15, 16).
Inversions also serve as powerful models for studying the maintenance of genetic variation,
because their age can be estimated and they are often subject to natural selection (17–19).

Although inversions are now known to vary along environmental clines and to
be associated with adaptive traits (10, 11, 18, 20–22), studies that directly estimate
selection on inversions are few, some notable exceptions aside (12, 23, 24). Thus, the
mode and strength of selection on inversions remains poorly quantified, making it
difficult to infer how and why inversion polymorphism is maintained. For example,
forms of balancing selection, including heterozygote advantage (i.e., overdominance)
and negative frequency-dependent selection, can maintain inversion polymorphisms
(11, 25), especially if strong enough to counteract drift (SI Appendix, Fig. S1). But this is
not true of many other forms of selection. Similarly, the role of gene flow in maintaining
polymorphism requires further study (8, 26–28).

Determining the age of an inversion is also important for explaining the maintenance
of inversion polymorphisms. For example, one hypothesis is that the inversion is young
and still in the process of sweeping to fixation. In other words, it could be that the
inversion will not be maintained as polymorphic in the long term. If the inversion
polymorphism is found to be ancient such that this “young inversion” hypothesis is
refuted, then studies of the processes maintaining variation, particularly natural selection,
are required to explain the inversion polymorphism (Fig. 1A). Here we combine field
data, genomics, experimental estimates of fitness, and evolutionary modeling to elucidate
the processes driving the long-term maintenance of an inversion polymorphism with
fitness consequences across populations using different hosts (Fig. 1).
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Fig. 1. Conceptual overview and tests for host-associated differentiation. Panel (A) illustrates our two alternative hypotheses of (H1) an ongoing sweep and
(H2) polymorphism maintained by selection. Under the first hypothesis the inversion is young and in the process of sweeping; variation will not be maintained.
Under the second hypothesis balancing selection promotes the long-term maintenance of inversion polymorphism. (B) Shows illustrations of Timema stick
insects and their host plants, for the taxa studied here. Panel (C) summarizes genome-wide genetic differentiation for parapatric Timema populations on
different hosts. Points denote mean FST for each of 13 T. cristinae linkage groups with horizontal lines extending to the 75th percentile of FST for that linkage
group. Host abbreviations are A = Adenostoma, C = Ceanothus, P = Pseudotsuga menziesii (Douglas Fir), Pi = Pinus (pine), Q = Quercus (oak), and RW = Sequoia
sempervirens (Redwood). See SI Appendix, Fig. S2 for more detailed patterns of genetic differentiation. Illustrations here and in other figures by Rosa Ribas.

Our study system is the genus Timema, a group of plant-
feeding stick insects distributed throughout southwestern North
America (Fig. 1). Timema are well studied for their cryptic
colors and patterns, which help them avoid predation by visual
predators such as birds and lizards (29, 30). These traits are
highly heritable and controlled by a modest number (∼5) of
linked loci on linkage group (LG) 8 (LG8 hereafter), which
often exhibit strongly reduced recombination due to structural
genomic features including chromosomal inversions and dele-
tions (17, 31, 32). Timema are also known to use a particularly
wide range of host-plant species, including both conifers and
flowering plants (i.e., angiosperms) (33). This host-plant use,
in the context of local adaptation (i.e., growth and survival
on different hosts; “performance” hereafter), is our focus here.
Notably, the genetic basis of performance variation in Timema
was previously unknown, but as we report here also involves a
chromosomal inversion (on a different chromosome from color,
LG11).

Results

Genome Scans Reveal Exceptional Host-Associated Differenti-
ation on Linkage Group 11. During the 30-million year diversifi-
cation of the Timema genus, host shifts have occurred frequently
between plant families (within conifers and within flowering
plants), and several times even between these plant divisions (33).
Indeed, Timema are broadly generalized in diet, often feeding on
multiple plant families in nature and surviving in the lab on
novel hosts (34). One exception involves the use of Redwood
(Sequoia sempervirens); very few Timema species and populations

are known to use Redwood in nature–only T. knulli and T.
poppensis–and most exhibit poor performance on this host in
laboratory experiments (34).

We thus initiated our investigation by quantifying patterns
of genetic differentiation for the sexual species of Timema
that live in the vicinity of Redwood in northern California
and that use multiple hosts in nature. Specifically, we study
T. californicum and T. landelsensis, which do not use Redwood,
T. poppensis, which is specialized on conifers including Redwood
in some localities, and T. knulli, which uses both Redwood and
angiosperms. In this context, T. knulli is of particular interest
as it is polymorphic in host-plant use, living on Redwood (a
conifer) as well as other more commonly-used hosts such as
Ceanothus (an angiosperm). In contrast, T. poppensis uses only
conifer hosts. We tested for host-associated genetic differentiation
using published genotyping-by-sequencing (GBS) data (35, 36).
Our core interest was whether the use of a certain host was
associated with genetic differentiation, and if so whether this
was genome-wide or restricted to individual chromosomes. Due
to the known strong effects of geographic isolation on genetic
structure in Timema (37), we restricted our survey to the
six pairwise comparisons involving nearby populations using
different hosts (broadly speaking, “parapatry,” SI Appendix,
Table S1, Fig. 1, SI Appendix, S2). This revealed that genetic
differentiation between parapatric, conspecific populations was
generally weak. The exception to this trend was LG11 for
populations of T. knulli using Ceanothus versus Redwood: LG11
was strongly differentiated in this comparison. We thus focused
our study on T. knulli, with particular reference to the use of
Redwood.
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Redwood T. knulli Populations Are Distinguished by a Chromo-
somal Inversion. The results above were based on mapping GBS
reads to the published T. cristinae reference genome (35, 36).
Timema knulli is known from cytological work to have one
chromosome pair fewer than T. cristinae (38), and we suspected
structural variation on LG11 within T. knulli based on our initial
analyses (SI Appendix, Fig. S2B). Thus, to increase the accuracy
and precision of the current work and test explicitly for structural
variation, we generated a high-quality de novo reference genome
assembly for T. knulli. We did so using an individual collected
from Redwood and a combination of PacBio and Illumina
reads with Chicago and Hi-C technology for scaffolding. The
T. knulli genome comprised 12 large scaffolds corresponding
to the 13 known T. cristinae chromosomes, but with a fusion
between T. cristinae chromosomes 1 and 3 (we refer to the fused
chromosome as chromosome 1 and retain the T. cristinae linkage
group numbering for the other chromosomes; total assembly
length = 1,322,373,696 base pairs; scaffold N50 = 83,614,905
base pairs) (SI Appendix, Table S2 and Fig. S3). We then used
this reference genome for further population genetic and trait
mapping analyses, with new data collected to allow larger sample
sizes for T. knulli than what were available from published data.

Using new GBS data from 138T. knulli collected onCeanothus
and Redwood (SI Appendix, Table S3) we detected a large block
of differentiation (e.g., highly accentuated FST) on chromosome
11, whose boundaries were delimited using a Hidden Markov
Model (HMM) approach applied to the results of a principal
components analysis (PCA) (Fig. 2). This block spanned genomic
positions 13,093,370 to 43,606,674 on chromosome 11 (∼30
mega-base pairs, mbps). This 30 mbp genomic region included
876 of the genome-wide total of 36,055 annotated genes, with
a striking spike in gene density near the region boundaries (see
SI Appendix, Fig. S4 and Datasets S1, S2, and S3 for details).
We hereafter refer to this region as the “Perform” locus, as
polymorphism at this regions was associated with performance
variation in an experiment reported below. A PCA of SNPs within
the Perform locus revealed three genetic clusters segregating
within populations (Fig. 2). In contrast, PCA of genome-wide
genetic variation exhibited structure by geography. This result
is consistent with the Perform locus being a structural genomic
variant that segregates within populations, differs in frequency
among populations (as we reported in more detail below, one
allele, denoted PRW , is at 84% frequency on Redwood but only at
34% frequency onCeanothus where the alternative allele, denoted

A
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Fig. 2. Genetic differentiation and structure associated with Redwood feeding in Timema knulli. These results are based on the new reference genome for
T. knulli. (A) Manhattan plot of FST between stick insects collected on Ceanothus versus Redwood at the BCE locality. Points denote FST for individual SNPs; the
solid line denotes mean FST in 100 SNP sliding windows. Timema knulli chromosomes are used here (chromosome 3 from T. cristinae is fused to chromosome 1;
X = the X sex chromosome). Panel (B) shows (square roots of) eigenvalues for the first principal component of genetic variation in T. knulli (excluding BCTURN,
an allopatric Ceanothus population) in 100 SNP overlapping, sliding windows along chromosome 11. Colors denote alternative states as identified by a Hidden
Markov model (HMM), with red denoting the elevated eigenvalue state and defining the bounds for the “Perform” locus on chromosome 11 (text for details).
Panels (C) and (D) show summaries of genetic variation in T. knulli based on principal components analysis (PCA) for all SNPs not on chromosome 11 (C) and for
the Perform locus only (D). Values for the first two principal components are shown with colors and symbols denoting locations and hosts. The inset in (C) is a
schematic for the model used to infer neutral rates of gene flow among populations: BCE C (on Ceanothus), BCE RW (on Redwood) and BCTURN C (on Ceanothus).
Point estimates of Nm, that is the number of migrants exchanged per generation, are shown on lines connecting the populations, and are consistent with a
pattern of isolation by geographic distance. The ellipses in (D) delimit Perform locus genotypes based on PC clusters.
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PC , is more common), and exhibits reduced recombination
between the two chromosomal variants.

To more formally test for the existence of a chromosomal
inversion on T. knulli chromosome 11, we aligned the T. knulli
genome with published chromosome-level assemblies of T.
cristinae and T. chumash genomes (31, 32). These genome
alignments identified an inversion on chromosome 11 in the
Redwood T. knulli genome relative to both T. cristinae and
T. chumash. Most critically, the breakpoints of this inversion
coincided with the identified bounds of thePerform locus (Fig. 3).
In contrast, this genomic region was co-linear betweenT. cristinae
and T. chumash. The collective results are most consistent with
the Perform locus being a polymorphic chromosomal inversion
in T. knulli. We combined additional population genomic
analyses and whole genome sequencing to explicitly test this

hypothesis. Specifically, we identified and analyzed patterns of
linkage disequilibrium (LD) and heterozygosity for different
Perform genotypes corresponding to different clusters in PC space
(Fig. 2D). As predicted if Perform is a segregating inversion
within T. knulli, we found elevated LD across Perform when
considering PRW PRW and PCPC homozygotes together (Figs. 3
D–F , SI Appendix, S5), and elevated heterozygosity precisely in
the Perform locus region in PRW PC heterozygotes (Fig. 3 G–I ).
Interestingly, heterozygosity was especially low withinPerform for
PCPC homozygotes, consistent with a possible selective sweep on
this genomic background. Lastly, we gathered nanopore long-
read DNA sequence data from a second T. knulli collected
on Ceanothus. This revealed a large inversion (9,706,606 to
48,357,002 bps on chromosome 11) relative to the Redwood
T. knulli genome (SI Appendix, Fig. S6). This inversion spanned

A B C

D E F

G H I

Fig. 3. Genome alignments and population genomic evidence that Perform is an inversion. Dot plots show alignments of chromosome 11 for T. knulli and
T. cristinae (A), T. knulli and T. chumash (B), and T. cristinae and T. chumash (C). Red line segments denote aligned genome regions with the orientation of the
alignment shown by the direction of the lines. The bounds of the Perform locus in the T. knulli genome are denoted by the gray shaded region. A large inversion
coinciding with the Perform locus is evident between T. knulli and both T. cristinae (A) and T. chumash (B), but no such inversion is found for T. cristinae vs.
T. chumash. Panels (D–F ) show patterns of pairwise linkage disequilibrium (LD) across chromosome 11 in T. knulli individuals homozygous for the Perform
PRW allele (D), homozygous for the PC allele (E), and the combined sample of individuals homozygous for either allele (F ). Panels (G–I) depict mean observed
heterozygosity for each perform genotype: PRW PRW (G), PCPC (H), and PRW PC (I). Points denote mean observed heterozygosity for individual SNPs, solid lines
denote mean observed heterozygosity for 200 kbp windows, and the vertical dashed lines delimit the Perform locus.
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thePerform locus and the inversion boundaries identified between
species (but did not correspond precisely with these boundaries).
Collectively, these genome alignments and population genomic
results are consistent with expectations for the inversion (or
more complex structural variation including an inversion) also
segregating within T. knulli.

The Perform Locus Inversion Affects Performance on Different
Hosts. We next considered the evolutionary processes potentially
maintaining the inversion polymorphism. Specifically, to connect
the inversion polymorphism to fitness, we tested if performance
on Ceanothus and Redwood is affected by the Perform locus.
Such an association with fitness would refute strict neutrality
with regard to the evolution of inversion frequencies. To do
so, we collected T. knulli and reared them in the laboratory on
either Ceanothus or Redwood, measuring growth and survival
(notably these are the same individuals analyzed above to delimit
the Perform locus). We focus our analyses here on specimens
from the vicinity of the locality BCE, where T. knulli uses
both Ceanothus and Redwood (we thus exclude population
BCTURN, which uses only Ceanothus)(SI Appendix, Tables S3
and S4). These experiments revealed that the Perform locus
explains appreciable and significant variation in both growth and
survival (see details in the next paragraph), but with a trade-off
between these fitness components that suggests the possibility
of an overall heterozygote advantage (i.e., overdominance) on
Ceanothus (Fig. 4, SI Appendix, Figs. S1 and S7).

Specifically, our experiments revealed that one allele at the
Perform locus,PRW , was associated with increased growth on both
Ceanothus and Redwood (this is the allele at a high-frequency on

A

B C D

E F G

Fig. 4. Summary of the rearing and genetic mapping experiments. Panel
(A) illustrates the experimental design. Panels (B) and (C) show 15- and 21-d
weight for T. knulli reared on Ceanothus based on their Perform genotype
(PRW PRW , PCPRW , and PCPC ). Points denote individuals (with a small jitter
applied to the x-axis), horizontal lines give means for each genotype. The
P-value for the null hypothesis of no effect of Perform is shown. A barplot (D)
shows survival proportions on Ceanothus along with the P-value for the null
model of no effect of genotype on survival. Analogous results are shown for
T. knulli on Redwood (RW, Sequoia) in (E) (15-d weight), (F ) (21-d weight) and
(G) (survival).

Redwood; linear regression on residuals after removing effect of
sex; Ceanothus 15 d weight, β = 0.018, r2 = 0.178, P = 0.002;
Ceanothus 21 d weight, β = 0.020, r2 = 0.233, P < 0.001;
Redwood 15 d weight, β = 0.0086, r2 = 0.109, P = 0.031;
Redwood 21 d weight, β = 0.0072, r2 = 0.053, P = 0.138)
(see SI Appendix, Tables S5 and S6 for model comparison
and evaluation). Critically, this same allele negatively affected
survival on Ceanothus (linear regression, β =−0.14, r2 = 0.115,
P = 0.014), representing a host-specific life-history trade-off (see
SI Appendix, Table S7 for model comparison and evaluation).
Notably, there was suggestive evidence that this latter result was
sex-dependent, withPRW most markedly decreasing male survival
(for individuals homozygous for this allele, 86% of females
survived but only 57% of males survived; SI Appendix, Table
S8, Fig. S7). Comparable results were observed using generalized
linear models (GLM) for survival rather than simple linear
regression (GLM survival onCeanothus, β =−1.71, P = 0.031),
demonstrating that the results are robust to methods of analysis.
Thus, there is a fitness trade-off between growth and survival at
the Perform locus. This trade-off raises the possibility that this
locus could exhibit an overall heterozygote advantage across life
history stages, at least on Ceanothus, even if the heterozygote
always has intermediate fitness within life history stages. We
evaluate this hypothesis with population genetic models below.

The Inversion Is Maintained by Complex Selection and Gene
Flow. The results above suggest that genetic variation at the
Perform locus could be maintained, in part, due to life-history
trade-offs that vary with host and possibly sex resulting in an
overall heterozygote advantage (a form of balancing selection,
SI Appendix, Fig. S1). Moreover, selection appears to be shifted
between populations feeding on different hosts. Specifically, the
PRW allele that confers higher growth (but reduced survival on
Ceanothus) is at higher frequency in nature on Redwood (84%)
than on Ceanothus (34%). Thus, there is a marked (∼50%) allele
frequency difference between populations on different hosts. We
suspect that this reflects the previously documented difficulties
Timema have using Redwood in laboratory experiments (34);
use of Redwood favors PRW (the “growth” allele) to make “a go
of it” on this challenging host (at the same time PRW does not
appear to compromise survival on Redwood per se). In contrast,
growing on Ceanothus is easy for Timema such that the survival
advantage is more important than a growth benefit, leading to
a high frequency of the allele associated with increased survival
on Ceanothus (PC ). Thus, a shift in selection appears to result
in divergent allele frequencies (i.e., adaptation) between hosts.
Thus, divergent selection combined with gene flow between hosts
could also play a role in maintaining variation within populations,
especially on Redwood. In principle, divergent selection with
gene flow could maintain variation even without heterozygote
advantage, that is via a balance between directional selection
that acts in divergent directions between hosts and gene flow
(SI Appendix, Fig. S1). We next used evolutionary modeling to
quantify these possibilities and their effects on the maintenance
of variation. We did not consider models of underdominance, as
underdominance is unlikely to contribute to the maintenance of
inversion polymorphism within populations (39).

Specifically, we used approximate Bayesian computation
(ABC) to estimate the probability of population genetic models
that included genetic drift and gene flow (as inferred from
putative neutral loci; see Fig. 2C ) and either heterozygote
advantage or divergent (between hosts) directional selection on
the Perform locus (Fig. 5 A and B). We modeled evolution
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A B

C D

E F

Fig. 5. Summary of the approximate Bayesian computation (ABC) model
and inferences and simulations testing the effects of selection and gene
flow on the maintenance of polymorphism at the Perform locus. Panel (A)
illustrates the fitness schemes and definitions of selection coefficients under
directional selection selection versus heterozygote advantage. Specifically,
for directional selection s denotes the difference in relative fitness for
alternative homozygotes and h gives the heterozygote effect (with 0 < h
< 1), whereas for heterozygote advantage s1 and s2 denote the reductions in
fitness for homozygotes relative to the heterozygote. Panel (B) summarizes
the demographic component of the model. Colored circles correspond with
populations with colors denoting host, red = Redwood and blue = Cean-
othus. Populations have distinct effective population sizes (Ne) and selection
coefficients (either s and h or s1 and s2) dictated by host (RW = Redwood or C
= Ceanothus). Asymmetric gene flow is allowed as indicated by the migration
edges. Panel (C) illustrates the three models–heterozygote advantage with
gene flow (our best model), divergent directional selection with gene flow,
and heterozygote advantage without gene flow–that we consider for the
three focal populations analyzed with the ABC model, BCE on Ceanothus
(BCE C), BCE on Redwood (BCE RW) and BCTURN (an allopatric Ceanothus
population). Panels (D)–(F ) show the proportion of replicate simulations
in which variation at Perform was lost over time, that is the proportion
of monomorphic replicates at time, in BCTURN (D), BCE RW (E) and
BCE C (F ).

of the Perform locus inversion alleles, not the DNA sequence
variation within this genomic region. We did this because
of the evidence for selection on the inversion alleles from
our experiment and our interest in the maintenance of this
inversion polymorphism rather than on nucleotide variation
within the inversion. These models included adjacent (i.e.,
parapatric) Ceanothus (BCE C) and Redwood (BCE RW)
populations and an allopatric Ceanothus population (BCTURN)

(SI Appendix, Table S3), with the latter being important to
help parse the roles of heterozygote advantage versus gene flow
in maintaining variation. Models with heterozygote advantage
were most probable on both Ceanothus (posterior probability
= 0.897) and Redwood (posterior probability = 0.683), and
a model of (divergent) directional selection on both hosts was
very unlikely (posterior probability = 0.023)(SI Appendix, Fig.
S8). Under the most probable model of heterozygote advantage
on both hosts (posterior probability = 0.603), relative fitnesses
of Perform homozygotes (when heterozygote fitness is set to 1.0)
were 0.81 for the PRW PRW homozygote (i.e., the homozygote for
the allele conferring the growth advantage) and 0.94 for thePCPC
homozygote on Ceanothus versus 0.98 and 0.64 for the PRW PRW
and PCPC homozygotes on Redwood (SI Appendix, Fig. S8).
Thus, the population genetic model-fitting analysis strongly
supports heterozygote advantage on Ceanothus, consistent with
the life-history trade-off observed on this host in the rearing
experiment. The model-fitting analysis also suggests possible
heterozygote advantage on Redwood, though this was not evident
from the experiment and the estimated relative fitnesses of the
heterozygote (1.0) and the fitter homozygote (0.98 for PRW PRW )
were very similar.

The Combination of Processes Buffers Populations Against
the Loss of Variation. We have shown that gene flow and
heterozygote advantage (at least on Ceanothus) together can
explain the observed polymorphism at the Perform locus, but it is
unclear whether both processes are necessary for the maintenance
of variation in this system. In other words, does this combination
of processes maintain variation that would be lost with either
process in isolation? To address this question, we simulated
evolution under our best model of heterozygote advantage (on
both hosts) and gene flow and under two counterfactual models–
one with gene flow and divergent directional selection between
hosts and one with heterozygote advantage but no gene flow (all
broadly considered forms of balancing selection as they maintain
variation). Thus, whereas all three models result in a form of
balancing selection, the latter two models eliminate heterozygote
advantage or gene flow, respectively (i.e., each leaves out one
process that can help maintain variation). For all models, we used
selection coefficients estimated from the ABC analysis (assuming
either heterozygote advantage or divergent directional selection)
and gene flow inferred from neutral models based on genome-
wide SNP data (except where gene flow was set to 0).

Replicate simulations, each spanning 250,000 generations,
showed that the heterozygote advantage with gene flow model
routinely maintains variation and predicts the observed data
extremely well (Fig. 5, SI Appendix, Fig. S9). Divergent selection
with gene flow also maintained variation over this time interval
in all but a few simulations, but failed to recover the observed
Perform allele frequencies as well as the heterozygote advantage
(overdominance) with gene flow model (SI Appendix, Fig. S9).
Finally, variation was lost in many of the heterozygote advantage
without gene flow simulations. Thus, these simulations suggest
that gene flow among populations feeding on different hosts
and experiencing different selection pressures is important for
the long-term maintenance of variation at Perform, and that
gene flow combined with heterozygote advantage is particularly
effective at generating balancing selection and preventing the loss
of polymorphism.

The Chromosomal Inversion Is Ancient. Lastly, we estimated
the age of the Redwood inversion to test the hypothesis that
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it might be young and in the act of sweeping rather than a
polymorphism maintained over the long-term (Fig. 1). To do so,
we first used a phylogenetic approach to estimate the divergence
time between theT. knulli chromosomal variants. Our inferences
were based on SNP data within the Perform locus for T. knulli,

A

B

Fig. 6. Evidence that Perform is an ancient inversion. Panel (A) shows the
phylogeny for the Perform locus estimated with BEAST2. Colored points
indicate taxa and inversion alleles (for T. knulli only) (PRW and PC ). Bifurcations
with posterior probability > 0.5 are shown with pie charts colored to denote
posterior probabilities. Panel (B) shows the corresponding Bayesian posterior
distributions for divergence times for T. knulli and T. poppensis based on
genome-wide SNP data, for the T. knulli PRW chromosomal variant and T.
poppensis based on SNPs within the Perform locus, and for SNPs within the
T. knulli PRW and PC Perform chromosomal variants together and each alone.
Points and horizontal lines denote posterior medians and 95% equal-tail
probability intervals [ETPIs], respectively.

T. poppensis, T. petita and T. californicum and species divergence
time estimates from a published, time-calibrated phylogeny (35).
This revealed that the inversion is ancient, inconsistent with the
young and sweeping hypothesis. Specifically, the divergence time
between Redwood and Ceanothus chromosomal variants in T.
knulli was estimated as 7.5 million years ago, MYA hereafter
(90% equal-tail probability intervals [ETPI] = 3.4-13.5 MYA)
(Fig. 6). We also generated a complementary estimate of this
divergence time using a population genetic approach based on the
site-frequency spectrum and allowing for recombination between
inversion haplotypes. Our estimate of the divergence time using
this approach implemented in δaδi (40) was 5.0 MYA (95%
block-jackknife CI lower bound = 1.9 MYA) (see SI Appendix,
Fig. S10 for model performance and SI Appendix, Table S9
and Fig. S11 for model parameter estimates), which is broadly
consistent with the phylogenetic estimate above.

Furthermore, our results from the phylogenetic analysis sug-
gest that the deep divergence between Redwood and Ceanothus
alleles in T. knulli is not due to recent introgression from the
closely related species T. poppensis, which feeds on Redwood and
other confiers, or from another unknown or even extinct species.
First, in terms of possible introgression from T. poppensis, the
T. poppensis Perform DNA sequences were indeed more closely
related to the inverted Redwood T. knulli alleles (PRW ) than
the Ceanothus T. knulli alleles (PC ), but the divergence time
between T. poppensis and T. knulli Redwood alleles was 4.7
MYA (90% ETPI = 2.1 to 9.8 MYA). This corresponds roughly
to the previously inferred divergence time between these two
species based on genome-wide SNP data (4.1 MYA, 90% ETPI
= 2.3 to 6.7 MYA) (35). Thus, while T. poppensis appears to
share DNA sequence similarity at the Perform locus with the T.
knulli Redwood alleles (PRW ) and there is uncertainty regarding
whether the origin of the inverted Redwood allele predates the
split between T. knulli and T. poppensis (the posterior probability
of this is 0.60), our results suggest that the Redwood allele in
T. knulli diverged from T. poppensis millions of years ago. In
terms of introgression from other unknown or extinct species,
our phylogenetic analyses yielded estimated times to the common
ancestor of PRW and PC haplotypes within T. knulli of 3.4 MYA
(90% ETPI = 1.5 to 7.5 MYA) and 2.5 MYA (90% ETPI = 1.2
to 5.4 MYA), respectively. This means that sequence variation
within each of these chromosomal variants is millions of years
old within T. knulli. Thus, even if one of the inversion variants
introgressed from another species, our results still suggest that
the polymorphism has been maintained within T. knulli for a
million years or more.

Discussion. Genetic variation is the ultimate fuel for evolution,
but it remains unclear whether and how it can be maintained
for extended periods of time (1–3, 5, 7, 8). The maintenance
of variation is particularly puzzling given that drift and many
forms of natural selection tend to erode variation, depleting
evolution’s fuel reservoir. Our results have broad implications for
understanding the long-term maintenance of genetic variation,
and the capacity to adapt to challenging environments. We dis-
covered an ancient chromosomal inversion that likely facilitates
the use of a challenging host plant (Redwood) and has been
maintained for millions of years in Timema stick insects. We
combined genomics, experiments, and evolutionary modeling to
elucidate the processes maintaining variation, finding a role for
life-history trade-offs, heterozygote advantage, local adaptation to
different hosts, and gene flow among populations (we ruled out
recent introgression from other species). We then used models
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to show how such multi-layered regimes of selection and gene
flow provide resilience that buffers populations against the loss
of genetic variation, maintaining future evolutionary potential.

Genetic and ecological mechanisms for the origin and main-
tenance of inversion polymorphisms have been identified in
a number of species. For example, recent work in Heliconius
numata butterflies showed that inversions can evolve heterozygote
advantage through the accumulation of deleterious mutation
load resulting in associative overdominance (19). Other systems
provide evidence of inversion polymorphisms maintained by life-
history trade-offs, which are sometimes sex specific (24). Yet
other systems suggest environmental heterogeneity plays a role
in maintaining inversions, especially in terms of inversion clines
or inversion polymorphism at the species level (20, 22, 41).
Each of these mechanisms acting in isolation can contribute to
the maintenance of inversion polymorhphism. Our results add to
this body of knowledge by explicitly demonstrating how multiple
mechanisms operating within and across populations combine
to enhance the persistence of inversion polymorphisms. Such a
combination of processes, including gene flow, could be especially
important for the persistence of inversion polymorphism over
very long time periods given the potential for stochastic loss,
especially in small populations.

Beyond the maintenance of variation, our results have im-
plications for understanding local adaptation. This process is
a hallmark of evolution and is known to be common, but
its dynamics remain poorly understood because studying such
dynamics often requires genetic analyses of adaptive mutations,
whose identification has only recently become more feasible (42–
44). In this context, adaptation might involve the fixation of
mutations that are beneficial in a new environment. This is
a “directional selection” hypothesis, often invoked in classical
population genetics thinking and models (45, 46). Alternatively,
adaptation may involve shifts in allele-frequencies rather than
fixation, representing disruption of a pre-existing evolutionary
balance (47–50). Such shifts might stem from standing genetic
variation, and could occur via changes in the weight of balancing
selection that maintains alternative alleles, slightly towards one
allele or the other. This is a “shifting balancing selection”
hypothesis, often emphasized in the ecological genetics literature
(11). Our results are also broadly consistent with this latter
hypothesis. Still, the functional significance of the Perform inver-
sion, including the mechanisms responsible for the host-specific
effects on performance, remains to be resolved. For example,
the inversion could contribute to adaptation by suppressing
recombination among linked loci that affect performance thereby
creating a supergene, or the breakpoint mutations of the inversion
could themselves be responsible for the observed fitness effects
of this structural variant (15, 32, 51, 52). Additionally, the low
level of heterozygosity for SNPs within the PC allele of Perform
suggests the possibility of a soft, partial or ongoing selective
sweep limited to this genetic background (a recent and complete
hard sweep would be inconsistent with the inferred age of this
chromosomal variant), but this hypothesis remains to be tested.

Our results are also relevant for understanding the spatial
context of evolution, namely the potential for gene flow and
recombination between populations. Specifically, at spatial scales
allowing gene flow, recombination will occur between popu-
lations. This can result in the breakdown of adaptive gene
combinations, frustrating the ability of divergent selection to
generate multi-locus local adaptation (53). Thus, factors that
reduce recombination, such as chromosomal inversions, are
predicted to evolve when gene flow occurs (15, 54). Gene

flow is also relevant as it can modulate the degree to which
alleles can move around in space and time, as increasingly
documented in cases of adaptive introgression (21, 55–57). We
here demonstrated a key role for gene flow in the maintenance
of genetic variation, but further work is required to test its role
in the origin of inversion polymorphism.

In conclusion, although inversion evolution has received much
recent attention (18–22, 32, 58), studies that directly elucidate
the processes affecting inversions are still few (12, 23, 24). This
makes it difficult to connect data and theory, and precludes
objective evaluation of ideas that have emerged over the last
century concerning the evolutionary dynamics and role of
inversions. Studies estimating selection on inversions are needed,
and we provided such a study here, thereby elucidating how
genetic variation can be maintained for millions of years. We
find that rather than being a nuisance, complexity of evolutionary
processes can generate resilience that buffers populations against
the loss of variation. Further studies of the maintenance of ancient
genetic variants, including inversions, are required to solidify the
general importance of combinations of multiple evolutionary
processes for maintaining genetic variation.

Materials and Methods

Measuring Host-Associated Genetic Differentiation. We used previously
published single nucleotide polymorphism (SNP) data, obtained by genotyping-
by-sequencing (GBS), to quantify host plant-associated genetic differentiation in
four Timema species–T. californicum, T. knulli, T. landelsensis, and T. poppensis.
All four are sexual species from the monophyletic “Northern” Timema clade that
live in the vicinity of Redwood and use multiple hosts in nature (35). We focused
our analyses on six pairwise comparisons of nearby (i.e., parapatric) populations
on different hosts (SI Appendix, Table S1). Genomic data from these populations
were originally described by (35). Here, we used SNPs and associated genotype
likelihoods (from vcf files) generated through a more recent re-analysis of these
genomic data by ref. 36. See https://github.com/zgompert/TimemaRW for code
for this and other analyses described below.

We first estimated allele frequencies in each population at each of 1139
to 8548 genome-wide SNPs (SI Appendix, Table S1). This was done using
the program estpEM (version 0.1) (59) (Dryad, https://doi.org/10.5061/dryad.
nq67q), which implements the expectation-maximization (EM) algorithm from
(60) to estimate allele frequencies while accounting for uncertainty in genotypes
as expressed by genotype likelihoods. We used a convergence tolerance of
0.001 and allowed for a maximum of 40 EM iterations. Then, for each pair
of populations, we computed FST = (HT − HS)/HT for each SNP, and then
summarized the distribution of FST for each linkage group (as defined by the
T. cristinae genome to which these data were aligned) by computing the mean
and various percentiles. Here, HS and HT denote the expected heterozygosities
for the (sub)populations and the total, respectively. These calculations were
performed in R (version 4.0.2).

Generating the T. knulli Genome and Assigning Chromosome Numbers.
We generated a de novo reference genome for T. knulli using a combination
of PacBio and Illumina reads from Chicago and Hi-C genomic libraries. DNA
extraction, library preparation, DNA sequencing, and de novo genome assembly
were performed by Dovetail Genomics (now Cantata Bio). Specifically, 105.4 Gbp
of PacBio data (∼75.2× coverage) were generated over two SMRT cells and used
to build an initial assembly with the Falcon assembler (with default options). This
initial assembly was further improved and scaffolded using the HiRise assembler
(with default options). To do so, 58.8 Gbp of Chicago DNA sequence data and
72.9 Gbp of Hi-C DNA sequence data were generated on a HiSeqX machine
(150 bp paired-end reads). A total of three female stick insects were used for
the assembly, and the individuals were chosen based on a preliminary analysis
(i.e., PCA on genotypes obtained by GBS) that suggested they were homozygous
for the Perform PRW allele. The final assembly created using Dovetail’s HiRise
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Assembly pipeline comprised 1,322,373,696 base pairs (bps) with an N50 of
83,614,905 bps. Based on BUSCO version 4.0.5 with the eukaryota_odb10
database (70 species, 255 BUSCOs), the assembly included 216 complete
BUSCOs (212 single copy and four duplicated; 84.7%), 15 fragmented BUSCOs
(5.9%) and 24 missing BUSCOs (9.4%). We then used the BRAKER2 pipeline
to annotate this genome (61); see “Genome annotation” in SI Appendix for
additional details.

Much of our recent work in Timema, including the analyses of host-associated
genetic differentiation described in the previous section, has relied on a T.
cristinae reference genome and associated linkage map, with each linkage group
comprising multiple moderately large scaffolds (version 1.3c2; this genome
comes from a melanic stick insect; see refs. 7 and 31). We wished to identify
chromosomes (scaffolds) homologous to the T. cristinae linkage groups in our
T. knulli genome for consistency in chromosome (linkage group) names and
numbering. To do this, we first compared the T. cristinae reference plus linkage
map to a more recent yet published T. cristinaegenome from a green striped stick
insect, which was constructed based on proximity ligation of DNA in chromatin
and reconstituted chromatin (Hi-C) and comprised 13 large scaffolds, each
corresponding to one of the 13 T. cristinae chromosomes (32). We then used
cactus (version 1.0.0) to align the T. knulligenome to the green striped T. cristinae
genome (62, 63). There was a one-to-one correspondence between T. cristinae
and T. knulli chromosomes with one exception, T. cristinae chromosomes 1 and
3 were represented by a single fused chromosome in T. knulli (hereafter chro-
mosome 1), consistent with cytological work showing that T. knulli has one fewer
chromosome thanT. cristinae (38). Thus, we were able to map our olderT. cristinae
linkage map numbers to the large scaffolds (i.e., chromosomes) in T. knulli. See
“Assigning chromosome numbers” in SI Appendix for additional details.

Timema knulli Sample Collection. In spring 2019 (March 16–18), we collected
138 T. knulli for population genomic analyses and for use in a performance
rearing experiment (described below). Most stick insects were collected at one
of two localities–BCTURN, where Ceanothus is the main host and Timema are
not found on Redwood (N= 37), and BCE where both Ceanothus and Redwood
are hosts (N = 68 and N = 24, respectively) (SI Appendix, Table S1). Ten
additional T. knulli were collected from three localities near BCE; BCOG (N= 1
on Ceanothus), BCSH (N = 1 on Redwood) and BCXD (N = 8 on Ceanothus).
Stick insects were collected in sweep nets by beating host plants with a stick, as
in past work (35, 64). Captured insects were placed in plastic tubes, and kept in
a cooler with ice for 1 to 2 d during transplantation to the laboratory for use in
the performance experiment, as detailed below.

DNA Extraction, Library Preparation and Sequencing. After the perfor-
mance experiment (see details below), we isolated DNA from each of 138
T. knulli. Frozen legs from each individual were ground into powder form
using a Qiagen TissueLyser (Qiagen Inc., Valencia, CA). Genomic DNA was
then extracted using Qiagen DNeasy Blood and Tissue kits, using a protocol
with slightly altered incubation temperatures and times. We used a reduced-
representation technique (i.e., genotyping-by-sequencing or GBS) to construct
DNA sequencing libraries following the protocol detailed in ref. 65. Genomic
DNA from each individual was digested with two restriction endonucleases,
MseI (four base recognition site) and EcoRI (six base recognition site). Illumina
adaptors with unique 8 to 10 bp DNA barcodes for each individual were ligated
to EcoRI cut sites, and a base Illumina adaptor was ligated to MseI cut sites.
Barcoded fragment libraries were then PCR amplified using Illumina primers
and a high-fidelity proofreading polymerase (Iproof, BioRad, Hercules, CA). PCR
products were pooled into a single library which was then quality screened using
an Agilent BioAnalzyer automated electrophoresis device. To reduce the portion
of the genome targeted for sequencing, the reduced-representation library was
then size-selected for DNA fragments 350 to 450 bp in length using a Pippin Prep
quantitative electrophoresis unit (Sage Science, Beverly, MA) at the University
of Texas Genome Sequencing and Analysis Facility (UTGSAF). The size-selected
library was then sequenced using S2 chemistry and a single lane on an Illumina
NovaSeq 4000 at UTGSAF.

DNA Sequence Alignment, Variant Calling, Filtering and Genotype
Estimation. We aligned the newly acquired T. knulli GBS reads to our new
T. knulli reference genome. This was done with the aln and samse algorithms

from bwa (version 0.7.17-r1188) (66). For alignment, we set the maximum
number of allowed mismatches to 4, allowed only 2 mismatches in the first 20
bp of the alignment, trimmed bases with quality scores<10, and only output
alignments for reads with a single, best alignment. We then used samtools
(version 1.5) to compress, sort and index the alignments (67). Next, we used
samtools (version 1.5) and bcftools (version 1.6) for variant calling (67). Here,
we used the consensus caller (-c), applied the recommended mapping quality
adjustment for Illumina data (-C 50), and only output SNPs when the probability
of all individuals being homozygous for the reference allele conditional on
the data was <0.01. We then used a series of Perl scripts to filter the variant
set. Specifically, we only retained SNPs that met the following criteria: 2×
minimum coverage per individual, a minimum of 10 reads supporting the non-
reference allele, Mann-Whitney P-values for base quality, mapping quality and
read position rank-sum tests>0.005, a minimum ratio of variant confidence to
non-reference read depth of 2, a minimum mapping quality of 30, no more than
20% of individuals with missing data, only two alleles observed, and coverage
not exceeding 3 SDs of the mean coverage (at the SNP level). We did not thin
SNPs based on LD or physical proximity. Filtering left us with 64,650 SNPs for
further analysis.

We then used the (ad)mixture model implemented in entropy (version
1.2) to obtain Bayesian estimates of genotypes (68, 69). This model uses a
mixture prior on genotypes for each locus and individual based on co-estimated
allele frequencies from a series of k hypothetical source populations similar to
the admixture model from ref. 70. The model also accounts for uncertainty in
genotypes arising from finite sequence coverage and possible sequencing errors
as captured by the genotype likelihoods computed with bcftools. We estimated
genotypes using Markov chain Monte Carlo (MCMC) and assuming either 2 or
3 source populations (i.e., our estimates integrate over these two possibilities).
We ran 10 MCMC chains total (5 each for 2 and 3 source populations), each
comprising 8,000 steps, a 5,000 step burnin and a thinning interval of 3. MCMC
output was visually inspected to ensure (probable) convergence of the chains
to the posterior distribution. Bayesian genotype estimates were then obtained
by taking the posterior mean of the number of non-reference alleles (0, 1, or
2) for each locus and individual (these estimates are not constrained to integer
values).

Delineating the Perform Locus. We used principal component analysis (PCA)
to delineate the region of T. knulli chromosome 11 associated with host-plant
use (feeding on Ceanothus versus Redwood), i.e., the Perform locus. First,
we conducted separate PCA ordinations of the genetic data (centered but not
standardized genotype matrixes) for the 62,093 SNPs not on chromosome 11
and the 2557 SNPs on chromosome 11. Only the PCA of chromosome 11 showed
host-associated genetic structure, and thus we then focused on chromosome 11.
To localize the portion of chromosome 11 exhibiting this pattern, we performed
PCAs for 100-SNP sliding windows along chromosome 11. We summarized
each PCA by the eigenvalue associated with the first eigenvector. Larger values
coincide with greater genetic structure along this first PCA axis. All PCAs were
done with the prcomp function in R (version 4.0.2). Visual inspection of the
eigenvalues indicated a broad peak of high eigenvalues (accentuated structure)
spanning much of chromosome 11. We fit a Hidden Markov model to the
eigenvalues in R with the HiddenMarkov package (version 1.8.13) (71). We
allowed for two hidden states, which we initialized with expected values equal
to the 25th and 75th percentiles of the empirical (square root) eigenvalue
distribution across chromosome 11. We assumed a normal distribution for
the observed eigenvalues with SD initialized at half the empirical SD. We
then estimated the hidden state means, SD, and transitions between hidden
states using the Baum-Welch algorithm (i.e., we set initial values for means
and standard deviations but these were then refined with the Baum-Welch
algorithm) (72). For this, we allowed a maximum of 500 iterations and set the
tolerance to 1e−4. This procedure identified high (mean square root eigenvalue
= 4.6, SD = 0.45) and low (mean square root eigenvalue = 2.8, SD = 0.29)
states. We then used the Viterbi algorithm for decoding, that is for inferring the
most likely hidden state for each 100 SNP window (73). A single contiguous
set of 100 SNP windows was assigned to the high state, which we hereafter
refer to as the Perform locus. This region (i.e., the Perform locus) includes
base positions 13,093,370 to 43,606,674 (i.e., ∼30 megabases) of T. knulli
chromosome 11.
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Determining Perform is a Chromosomal Inversion. We used a series of
comparative genome alignments to test the hypothesis that the Perform locus
is an inversion. Specifically, we performed pairwise whole-genome alignments
for our de novo chromosome-level reference genomes for T. knulli (described
in this paper), T. cristinae (the green striped morph) (32), and T. chumash (31).
Repetitive genomic regions were masked prior to genome alignment using
RepeatMasker (version 4.0.7) and a Timema repeat library from (32). We ran
RepeatMasker using the slow/sensitive search (-s) with the NCBI engine. We then
used cactus (version 1.0.0) to align each pair of genomes (62, 63). cactus creates
genome alignment graphs, which can represent genome rearrangements and
copy number variation. We then used HAL (Hierarchical Alignment) tools (version
2.1) to extract synteny blocks from the genome graphs. This was specifically done
with HalSynteny with the default lower bound for synteny blocks of 5,000 bps
(74). We then constructed sequence alignment dot plots from the synteny blocks
using R (version 4.0.2) to visualize inversions and other structural variation
between species. These patterns of structural variation were compared to the
bounds of the Perform locus, delimited within T. knulli as described above using
the PCA approach. The comparative alignments described above demonstrated
thatPerform coincides with an inversion in the Redwood T. knulli allele relative to
T. cristinaeand T. chumash. We used Oxford Nanopore long-read sequencing (75)
and additional population genomic analyses of LD and heterozygosity to verify
that this genomic region is a segregating inversion within T. knulli (as strongly
suggested by the PCA results) similar to ref. 21. See “Nanopore sequencing and
structural variant calling in T. knulli” and “Population genomic analyses of LD
and heterozygosity” in SI Appendix for details.

Performance Experiment. We conducted a laboratory experiment to test for a
potential effect of the Perform locus on performance (here growth and survival)
in T. knulli reared on Ceanothus or Redwood. For this experiment, each of the
138 T. knulli collected (see “T. knulli sample collection” above) were placed
individually in 500 mm plastic containers, with air holes for breathing punched
into the lid containers using a needle. Each stick insect was then fed fresh plant
material from either Ceanothus or Redwood every second day (when survival
was recorded, see below). Host-plant treatment was determined randomly and
was independent of the host from which the stick insect was collected. We then
measured weight and survival at 15 and 21 d as metrics of performance, and
survival (dead or alive) was monitored every second day for the course of the
21-d experiment.

Testing for Associations Between Perform and T. knulli Performance. We
next tested for an association betweenPerformgenotype and weight and survival
on Ceanothus and Redwood during the performance experiment. We used PCA
and k-means clustering to assign Perform genotypes (following, e.g., ref. 17).
Specifically, we performed a PCA of the SNP genotypes for SNPs within the
Perform locus; this was done on the centered but not standardized genotype
matrix. We then used k-means clustering with three centers to assign each
individual to a cluster based on the first PC from the ordination of SNPs in the
Perform locus. We then fit models for 15 and 21 d weight (linear models) and
survival (generalized linear model with binomial response and logit link) on
each host plant as a function of Perform genotype (i.e., we fit distinct models
for each of the two host-plant treatments), source host plant, and the interaction
between these variables. Here, genotype corresponds to the assigned cluster
number with homozygous clusters coded as 0 and 2 and the heterozygous
(intermediate on PC1) cluster coded as 1 (17). We removed the effects of sex and
developmental stage (juvenile versus adult) on weight prior to the analyses by
using the residuals from linear regression of weight on these factors, but included
sex and genotype sex interactions as additional factors in the survival analysis.
We dropped T. knulli from BCTURN to avoid possible confounding effects of
population structure. Models were fit in R with the lm and glm functions (version
4.0.2). Alternative models with subsets of variables were compared using Akaike
information criterion (AIC).

Modeling Gene Flow and Selection. We used approximate Bayesian compu-
tation (ABC) to fit and compare alternative models for selection with gene
flow in the T. knulli-Ceanothus-Redwood system (76, 77). Details of this
analysis are described in the “ABC inference of gene flow and selection” in

SI Appendix. Briefly, our approach involved first estimating (putative neutral)
migration rates Nm (number of migrants per generation) between our three
main populations: BCE C (BCE on Ceanothus), BCE RW (BCE on Redwood;
parapatric with BCE C) and BCTURN (on Ceanothus, allopatric with respect
to BCE C and BCE RW). We then fit ABC models for selection on Perform,
with gene flow based on our estimates of gene flow. The selection models
allowed for directional selection or heterozygote advantage (overdominance) on
each host.

Additional Simulations Testing if a Combination of Processes Buffers
Populations Against the Loss of Genetic Variation. We conducted an
additional set of forward-time simulations of evolution to determine whether
and to what extent our best fit model (heterozygote advantage with gene
flow) maintained variation at the Perform locus (i.e., we conducted a predictive
check of this model) and how this compared to two counterfactual models–one
with directional selection and gene flow and one with heterozygote advantage
and no gene flow. We used the same general model described above. For
the heterozygote advantage with gene flow simulations, we sampled effective
population size and gene flow parameters from the same prior distributions used
for the aforementioned ABC analysis and then sampled selection coefficients
from the posterior distributions inferred from ABC. For the heterozygote
advantage without gene flow simulations, we did the same thing, except we
set the migration rates to 0. Lastly, for directional selection with gene flow, we
sampled selection coefficients from a posterior inferred from the ABC model
when only considering the directional selection model (i.e., forcing directional
selection). We ran 50 simulations (50 samples from the prior or posterior
distributions depending on the parameters) under each of the three models
with each running for 250,000 generations. Initial Perform allele frequencies
were set to 0.5 for all simulations. These simulations were conducted in R (version
4.1.3). We then compared the outcome of these simulations to the observed
variability at the Perform locus.

Dating the Chromosomal Inversion. We first used a phylogenetic approach
to estimate the divergence time between the Perform chromosomal variants,
i.e., alleles (as in ref. 17). For this, we used GBS data from 138 T. knulli
described above, along with 69 newly sequenced T. petita (from site 101S,
latitude = 35.73◦N, longitude = 121.31◦W), and 329 T. poppensis and 86 T.
californicum originally described in ref. 32. These data were aligned to the T.
knulli reference genome using the bwa aln algorithm (version 0.7.17-r1198) and
alignments were compressed, sorted and indexed with samtools as described
above for the T. knulli samples (66, 67). We identified variable nucleotides
(SNPs) across this full set of samples but only within the Perform locus using
samtools (version 1.5) and bcftools (version 1.6). Other than considering only
the Perform locus, variant calling options and subsequent filtering were as
described above for T. knulli. We then determined the number of invariant bases
of each type (A, C, G, or T) within the Perform locus, as this information is part of
the phylogenetic model. Specifically, using the samtools depth command, we
determined coverage for each individual at each site within Perform that was
not called as a SNP (even before filtering). We counted the site as invariant if we
had data for at least 80% of the individuals with a mean coverage of at least 2×
per individual. This resulted in 789 variable sites (SNPs) and 18,425, 11,610,
12,007, and 18,570 invariant As, Cs, Gs, and Ts, respectively. We then used Perl
scripts to convert the variant file to a nexus alignment and to choose a subset
of individuals for phylogenetic analysis (the conversion scripts are from ref.
17 and are available from GitHub, https://github.com/zgompert/TimemaRW).
Specifically, for the outgroup taxa T. californicum, T. poppensis and T. petita,
we chose the 8 to 10 (10 for T. petita only) individuals with the least missing
data for the aligned SNPs, and for T. knulli we retained 33 individuals from
BCE C (host = Ceanothus) and 25 from the parapatric population BCE RW
(host = Redwood).

We then used BEAST2 (version 2.6.6) (78) to estimate the divergence times
between thePerform chromosomal variants in T. knulli. We encoded information
on the invariant sites using the constantSiteWeights option. We fit the GTR
sequence evolution model with rate heterogeneity that approximated a gamma
distribution using four rate categories. We assumed a relaxed log-normal clock
(79) with a coalescent extended Bayesian skyline tree prior (80). Following (17),
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we fit a gamma distribution to the previously inferred divergence time for all
four of our taxa–T. knulli, T. petita, T. californicum, and T. poppensis–using the
fitdistr function in R. This gives a gamma with α = 10.8509 and β = 0.973,
which has a mean of 11.5 million years and SD of 3.4 million years. We used
this as the prior on the root divergence time and thus as a calibration point
for our key divergence time of interest, that is between the two chromosomal
variants in T. knulli. Our input xml file (tknulli_perform_og.xml) is available
from GitHub (https://github.com/zgompert/TimemaRW). We estimated the tree
and associated divergence times based on 3 chains each comprising 10 million
iterations. Posteriors were summarized in R.

Second, we estimated the divergence time in a population genetic
context with the diffusion approximation approach implemented in δaδi (40).
We specifically followed an approach inspired by ref. 81, which modeled
recombination between subgenomes (in polyploids) as being analogous to gene
flow between populations. We focused on the BCE population and designated
two “populations,” each comprising individuals homozygous for one of the
Perform inversion alleles. See “Dating the chromosomal inversion with δaδi" in
SI Appendix for details.

Data, Materials, and Software Availability. DNA sequence data are avail-
able from the NCBI SRA (PRJNA967016) (82). All other data, including data

from the rearing experiment, are available from Dryad (https://doi.org/10.5061/
dryad.1vhhmgqzd) (83). Scripts and computer code used for core analyses are
avaiable from GitHub (https://github.com/zgompert/TimemaRW) (84).
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