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Abstract

CSF1R mutations cause autosomal-dominant CSF1R-related leukoencephalopathy with axonal spheroids

and pigmented glia (CSFTR-ALSP) and autosomal-recessive brain abnormalities, neurodegeneration, and
dysosteosclerosis (BANDDOS). The former is increasingly recognized, and disease-modifying therapy was
introduced; however, literature is scarce on the latter. This review analyzes BANDDOS and discusses similarities and
differences with CSF1R-ALSP.

We systematically retrieved and analyzed the clinical, genetic, radiological, and pathological data on the
previously reported and our cases with BANDDOS. We identified 19 patients with BANDDOS (literature search
according to the PRISMA 2020 guidelines: n=16, our material: n=3). We found 11 CSFTR mutations, including
splicing (n=3), missense (n=3), nonsense (n=2), and intronic (n=2) variants and one inframe deletion. All
mutations disrupted the tyrosine kinase domain or resulted in nonsense-mediated mRNA decay. The material is
heterogenous, and the presented information refers to the number of patients with sufficient data on specific
symptoms, results, or performed procedures. The first symptoms occurred in the perinatal period (n=5), infancy
(n=2), childhood (n=5), and adulthood (n=1). Dysmorphic features were present in 7/17 cases. Neurological
symptoms included speech disturbances (n=13/15), cognitive decline (n=12/14), spasticity/rigidity (n=12/15),
hyperactive tendon reflex (n=11/14), pathological reflexes (n=8/11), seizures (n=9/16), dysphagia (n=9/12),
developmental delay (n=7/14), infantile hypotonia (n=3/11), and optic nerve atrophy (n=2/7). Skeletal deformities
were observed in 13/17 cases and fell within the dysosteosclerosis — Pyle disease spectrum. Brain abnormalities
included white matter changes (n=19/19), calcifications (n=15/18), agenesis of corpus callosum (n=12/16),
ventriculomegaly (n=13/19), Dandy-Walker complex (n=7/19), and cortical abnormalities (n=4/10). Three patients
died in infancy, two in childhood, and one case at unspecified age. A single brain autopsy evidenced multiple brain
anomalies, absence of corpus callosum, absence of microglia, severe white matter atrophy with axonal spheroids,
gliosis, and numerous dystrophic calcifications.
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In conclusion, BANDDOS presents in the perinatal period or infancy and has a devastating course with
congenital brain abnormalities, developmental delay, neurological deficits, osteopetrosis, and dysmorphic features.
There is a significant overlap in the clinical, radiological, and neuropathological aspects between BANDDOS and
CSF1R-ALSP. As both disorders are on the same continuum, there is a window of opportunity to apply available

therapy in CSF1R-ALSP to BANDDOS.
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Introduction

Mutations in the colony-stimulating factor-1 receptor
(CSFIR) gene may account for up to 25% of adult-onset
leukoencephalopathies [1, 2]. Most of the previously
reported CSFIR mutation carriers had only one mutant
allele and presented with an autosomal-dominant neuro-
degenerative disorder characterized by neuropsychiatric
and motor symptoms, white matter lesions on magnetic
resonance imaging (MRI), brain calcifications with step-
ping stone appearance on computed tomography, axo-
nal spheroids and pigmented glia on neuropathological
examination [3, 4]. The disease was previously known as
hereditary diffuse leukoencephalopathy with spheroids
(HDLS) or pigmentary orthochromatic leukodystrophy,
but the expanding knowledge of leukoencephalopathies
led to the new classification, and it was named adult-
onset leukoencephalopathy with axonal spheroids and
pigmented glia (ALSP) [1, 2, 5, 6]. Most cases of ALSP are
due to the CSFIR mutations; however, AARS2 mutations
were reported in CSF1R-negative ALSP, a single Swedish
HDLS family was found to carry an AARSI mutation, and
ALSP without CSFIR, AARSI or AARS2 mutation was
reported [7-9]. As of January 2023, approximately 300
cases of CSFIR-ALSP were reported, but with genetic
testing available commercially, the disease is increasingly
recognized, and at present, the prevalence is estimated at
30-75 cases/million [1].

Furthermore, few case reports have been published
with patients carrying two mutant CSFIR alleles pre-
senting with brain abnormalities, neurodegeneration,
and dysosteosclerosis (BANDDOS), and a new entity has
been recognized (MIM#618,476) [10]. The literature on
BANDDOS is scarce, and the clinical presentation and
radiological and neuropathological features are yet to
be elucidated. Disease-modifying treatment is available
for the CSFIR-ALSP, and an interventional clinical trial
is underway (NCT05677659). As both BANDDOS and
CSFIR-ALSP share a genetic basis, treatment of the lat-
ter could be potentially translated to the former. A bet-
ter understanding of the BANDDOS would also benefit
CSFIR-ALSP, which pathomechanism remains not fully
understood.

In this paper, we add to the growing literature on
the pathogenicity of CSFIR mutations and their geno-
type-phenotype associations by reviewing the clinical,
genetic, radiological, and neuropathological features of

BANDDOS. We analyzed three new BANDDOS patients
from a Brazilian family and the previously published
cases in the literature.

Methods

We collected the clinical, genetic, and radiological data
on the family diagnosed with BANDDOS observed at
the Hospital Pequeno Principe, Curitiba, Parand, Brazil.
Each individual was repeatedly evaluated by a multidisci-
plinary team, including geneticist, neurologist, psycholo-
gist, and radiologist. Genetic testing was performed in 5
individuals, including whole-exome sequencing (WES) in
the proband and targeted sequencing in four others. WES
was performed using an Agilent v5 SureSelect capture kit
and Illumina HiSeq 2500 sequencing technology. Reads
were aligned to a reference sequence (GRCh38), and
sequence changes were identified and interpreted in the
context of relevant transcripts. Targeted sequencing was
performed with next-generation sequencing (NGS) tech-
nology. Brain 1.5 Tesla MRI was performed in 3 cases.

Next, we searched the MEDLINE, PubMed, Scopus,
and Web of Science databases for papers on BANDDOS
published until December 16, 2022. The literature search
was conducted according to the PRISMA 2020 guidelines
[11]. We applied the following search terms: “BAND-
DOS’, “CSF1R” and “homozygous’, “CSF1R” and “autoso-
mal recessive”. We screened the titles and abstracts of the
papers to check if they were relevant to the review. We
searched the reference list of the relevant manuscripts
and websites to identify other papers pertinent to the
review.

Lastly, we extracted in a structured manner the data on
the Brazilian family with BANDDOS and previously pub-
lished cases identified in the literature. We retrieved the
information on CSFIR mutation, demographics (sex, eth-
nicity, consanguinity of the parents, gestational age, birth
weight, birth length, age of onset, follow-up duration,
weight, and height at the last follow-up, age of death),
brain autopsy, dysmorphic features, first symptoms,
neurological status (infantile hypotonia, developmental
delay, cognitive decline, seizures, optic nerve atrophy,
dysphagia, speech disturbances, rigid-spasticity, hyperac-
tive tendon reflexes, pathological reflexes), skeletal sys-
tem symptoms (bone and tooth abnormalities), and brain
imaging (Dandy-Walker malformation, ventriculomegaly,
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calcifications, agenesis of corpus callosum, white matter
changes and cortical abnormalities).

Results

We identified three unreported siblings with homozy-
gous CSFIR ¢.1754G>T (Gly585Val) mutations from
Curitiba, Parand, Brazil (Fig. 1). They were born to con-
sanguineous parents (first cousins) and did not display
dysmorphic features, bone abnormalities, or develop-
mental delay in the first few years of their life. The III-1
developed cognitive regression and speech disturbances
at 10 years, followed by seizures, dysphagia, and spastic
tetraparesis over the following six years. The III-2 devel-
oped neuropsychiatric symptoms at the age of 15 years,
whereas III-4 remained asymptomatic at the age of 9
years. All three had white matter changes on neuroimag-
ing with MRI. The III-3 and II-1 were heterozygous for
the Gly585Val mutation and remained asymptomatic, the
II-2 refused genetic testing. In silico analysis predicted
the newly identified mutation to be pathogenic (Com-
bined Annotation Dependent Depletion score of 35) and
it was likely pathogenic (PM1, PM2, PM5, PP2, PP3, PP4)
according to the guidelines of the American College of
Medical Genetics and Genomics and the Association for
Molecular Pathology [12].

Literature search for papers on BANDDOS yielded
124 records. After removing the duplicates (n=_87), we
screened 37 papers, and subsequently excluded 30 that
were not pertinent to the topic. We were able to retrieve
6/7 of the remaining manuscripts and assessed 4/6 to be
relevant to the topic. We identified 3 additional papers on
BANDDOS through citation and website searching, of
which 2 were pertinent to the topic and were included in
the review. The PRISMA 2020 flow diagram for the litera-
ture review on BANDDOS is presented in Fig. 2.

The demographics and CSFIR mutations of the
patients with BANDDOS are presented in Table 1. The
material is heterogenous, and the presented informa-
tion refers to the number of patients with sufficient data
regarding the specific symptoms, results, or performed
procedures. Figure 3 presents the chart with the main
features of BANDDOS and their frequency.

We identified a total of 19 cases (10 females, 7 males
and 2 unreported sex) diagnosed with BANDDOS,
including three new cases from the Brazilian family and
16 cases through the literature search [10, 13—-17]. Most
cases (n=17/19) were born of consanguineous parents
and carried homozygous mutations (n=17/19), whereas
only two were compound heterozygotes born of unre-
lated parents. We found 11 different CSFIR mutations,
including splicing variants (n=3), missense (n=3),
nonsense (n=2), and intronic (n=2) variants, and one
inframe deletion. Further analysis revealed that all muta-
tions led to functionally deficient CSFIR protein with
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disrupted tyrosine kinase domain or nonsense-mediated
mRNA decay. Figure 4 depicts CSFIR gene and protein
with mutations reported in BANDDOS, and Table 2 pro-
vides detailed information on them.

Patients were from different parts of the world and of
various ethnic backgrounds, with Chaldean (n=5), Bra-
zilian (n=4), Arab (n=3), Turkish (n=3), Indian (n=2),
Japanese, and Native American ancestry in individual
cases. Most cases (9/11) were born full term, and only
one was born prematurely. The mean weight and length
at birth were 3600 g and 50 cm. Five cases became symp-
tomatic before birth, 2 in infancy, and 5 in childhood,
whereas only one showed first symptoms when adult.
The mean follow-up duration was 9 years (8 months —16
years). Dysmorphic features were present in 7 out of 17
cases, whereas weight and height were normal in 8/9 and
6/9, respectively, at the last evaluation at the mean age of
16 years (range 5—-37 years).

Clinical characteristics of the patients with BANDDOS
are presented in Table 3.

Neurological symptoms were observed in most cases
(n=15/17), including speech disturbances (n=13/15),
cognitive  decline  (n=12/14), spasticity/rigidity
(n=12/15), hyperactive tendon reflex (n=11/14), patho-
logical reflexes (n=8/11), seizures (n=9/16), dysphagia
(n=9/12), developmental delay (n=7/14), infantile hypo-
tonia (n=3/11), and optic nerve atrophy (n=2/7). Skeletal
deformities were observed in 13/17 cases and fell within
the osteopetrosis spectrum. One case had enamel abnor-
malities, whereas the remaining cases with sufficient data
(n=6) had normally developed teeth.

Table 4 provides the neuroimaging characteristics of
the patients with BANDDOS. Brain abnormalities were
present in all cases (n=19) on neuroimaging, includ-
ing white matter changes (n=19/19), -calcifications
(n=15/18), agenesis of corpus callosum (n=12/16),
ventriculomegaly (n=13/19), Dandy-Walker complex
(n=7/19), and cortical abnormalities (n=4/10).

Three patients died in infancy, two in childhood and
one case at unspecified age, and a brain autopsy was per-
formed in one case. Postmortem examination showed
multiple brain anomalies, including an absence of corpus
callosum, reduced volume of white matter, Dandy-Walker
malformation, colpocephaly, numerous periventricular
and brainstem calcifications, and heterotopia, abnormal
gyration of hippocampi, and non-decussation of small
pyramidal tracts [14]. Histological evaluation evidenced
severe microglia deficiency with only rare spotting of
abnormal microglia around the blood vessels, prominent
white matter atrophy with axonal spheroids, gliosis, and
numerous dystrophic calcifications predominantly in the
periventricular white matter [14].
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Fig. 1 (A) Pedigree. For family pedigree, standard pedigree symbols are used; arrow indicates the proband; circles indicate females; squares indicate
males; black symbols indicate individuals diagnosed with brain abnormalities, neurodegeneration, and dysosteosclerosis (BANDDOS). (B) The Integrative
Genomics Viewer snapshot displaying the newly identified CSF7R mutation.
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Discussion

In this study, we compiled data on the largest number
of BANDDOS cases to date. Although it is an exceed-
ingly rare disease, it was reported in different parts of the
world, encompassing Asia and South and North Amer-
ica. Most cases were born of consanguineous marriages
after an uncomplicated pregnancy, with normal weight
and length. Figure 5 presents and compares the core fea-
tures of BANNDOS and CSF1R-ALSP.

Brain abnormalities were found in all cases and ranged
from mild asymptomatic white matter changes to severe
brain malformations. Similar to CSFIR-ALSP, white mat-
ter lesions were the most common finding on neuroim-
aging (in 100% of BANDDOS vs. 81% with CSFIR-ALSP
cases), followed by calcifications (in 83% of BANDDOS
vs. 75% with CSFIR-ALSP cases) and callosal abnormali-
ties (agenesis in 75% of BANDDOS vs. atrophy in 29%
with CSFIR-ALSP cases) [18]. Interestingly, calcifica-
tions in both disorders were present already at birth and
shared a characteristic “stepping stone appearance” [2].
White matter lesions and callosal abnormalities were also
present at birth in BANDDOS cases but were observed
later in CSFIR-ALSP, in which they were seen around the
time of the symptomatic disease onset in adulthood [2,

19]. Compared to CSFI1R-ALSP, cases with BANDDOS
also displayed other congenital brain anomalies, includ-
ing Dandy-Walker malformation, ventriculomegaly, and
cortical abnormalities.

BANDDOS and CSFIR-ALSP mainly manifest with
neurological deficits. However, in the former first symp-
toms were most often observed in the first weeks of
life, and developmental delay was present in half of the
cases, whereas in the latter, the first three decades of life
were usually unremarkable, and the disease started in
the 4th -6th decade of life [3]. The earlier age of disease
onset with the frequent developmental delay reflects the
greater severity of the disease in BANDDOS. Speech dis-
turbances were the most common neurological symptom
in BANDDOS and were present in 87% of cases, with
dysarthria reported in more than half of cases. Speech
disorders are frequently observed in CSFIR-ALSP with
complex underpinnings involving language disturbances
(aphasia in up to 42%), articulation disorders (dysar-
thria in up to 54%), and not infrequently, both. As all
cases with BANDDOS with speech disturbances had
accompanying cognitive decline or developmental delay,
the multifaceted nature of speech dysfunction, as seen
in CSFIR-ALSP, is most likely. Progressive cognitive
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Hyperactive tendon reflex
Developmental delay

Dysphagia
Pathological reflexes

Seizures

Fig. 3 The chart presents the main features of brain abnormalities, neurodegeneration, and dysosteosclerosis (BANDDOS). The y-axis represents the

frequency; the x-axis represents the features

dysfunction was present in 86% of BANDDOS -cases
and was not reported only in two clinically asymptom-
atic Brazilian cases. Likewise, cognitive impairment is
frequent in CSFI1R-ALSP and occurs in 94% of cases [3].
Pyramidal signs (spasticity, hyperactive tendon reflexes,
and pathological reflexes) were present in up to 80% of
BANDDOS cases, compared to up to 81% of CSFIR-
ALSP cases [3]. Seizures were noted in 56% of cases in
BANDDOS, compared to up to 32% of CSFIR-ALSP [3].
Dysphagia was common and reported in 75% of cases of
BANDDOS, compared to 18% of CSFIR-ALSP [3]. As
seizures usually reflect more widespread and severe brain

injury, and dysphagia is observed in the later disease
stages in CSFIR-ALSP, the higher reported frequency of
these symptoms in BANDDOS may be attributed to a
more devastating disease course. In addition, a minor-
ity of BANDDOS cases presented infantile hypotonia
(27%) and atrophy of the optic nerve (29%), which were
not reported in CSFIR-ALSP. Skeletal abnormalities were
observed in 76% of cases of BANDDOS. However, the
extent of skeletal involvement and presentation was vari-
able and generally fell within the dysosteosclerosis — Pyle
disease spectrum. Dysmorphic features were reported
in 41% of cases of BANDDOS. Skeletal deformities and
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RJDI TKD ALD TKD

1 v v

Pro132Leu GIn481*

¢.1859-119G>A

: c.1754-1G>C ¢.1969+115_1969+116del €2763+1G>T

582 910 1 972

11 12 13 14 15

16 17 18 19 20 21 22

ALD

Tyr540* Gly585Val Lys627del
His643GIn

Thr833Met

Fig.4 Schematic diagram of CSF1R gene and protein with mutations reported in BANDDOS. ALD - activation loop domain; Ig - immunoglobulin domain;

RID - regulatory juxtamembrane domain; TKD - tyrosine kinase domain

dysmorphic features were often associated with complex
brain abnormalities and a more ominous clinical course;
however, they were also observed in one case with the
adult onset of the disease. Skeletal deformities and dys-
morphic features have not been reported in CSFIR-
ALSP. Therefore, the presence thereof may reflect more
profound sequelae of the CSF1R mutations in the BAND-
DOS, which impacted organs beyond the central nervous
system. Similar to other childhood-onset leukoencepha-
lopathies, the quality of life of the patients and their care-
givers is severely compromised [20-22].

Neuropathological evaluation of one case with BAND-
DOS evidenced significant overlap with CSFIR-ALSP [2,
9, 14]. Macroscopically both disorders shared extensive
white matter degeneration, most prominent in the peri-
ventricular region, corpus callosum, and pyramidal tracts
[2, 9, 14]. Likewise, histological evaluation evidenced a
deficiency of microglia in the brain parenchyma, atrophic
white matter with axonal spheroids, gliosis, and dystro-
phic calcifications in BANDDOS and CSFIR-ALSP [2,
9, 14]. However, the former had much greater severity of
the disease process, as reflected by macroscopic (absence
of corpus callosum, Dandy-Walker malformation, and
other) and microscopic (almost complete absence of
microglia) findings [14].

The CSF1R is a transmembrane tyrosine-protein kinase
serving as a receptor for CSF1 (colony-stimulating fac-
tor-1) and interleukin-34 (IL34) [1, 23, 24]. It partici-
pates in the innate immunity and inflammatory response
through the release of pro-inflammatory cytokines [23].
It also plays a crucial role in the development, prolifera-
tion, activation, and survival of the monocyte phagocytic
system [1, 23, 25, 26]. Both microglia of the central ner-
vous system and osteoclasts stem from the monocyte
phagocytic system, and their differentiation process
depends on CSFIR. Therefore, a properly functioning
CSFIR is required for the development and mainantence
of the central nervous system, bone and teeth, as well as,
immune system. It was also demonstrated that CSF1R is
important for developing milk ducts, acinar structures,
and both female and male reproductive tracts [23].

The CSFI1R protein consists of 972 amino acids, includ-
ing regulatory juxtamembrane domain (amino acids
542-574), tyrosine kinase domain (amino acids 582-
910), and activation loop domain (amino acids 796—818)
[23]. Both juxtamembrane and activation loop domains
have regulatory functions, and phosphorylation thereof
induces conformational changes and activates the tyro-
sine kinase domain [23]. In CSFIR-ALSP, more than
106 pathogenic mutations in CSFIR were identified [1].
Similar to CSFIR-ALSP, most of the identified CSFIR
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Table 2 The CSFTR mutations reported in BANDDOS
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Paper HGVS c. HGVS p. Type Result CADD_phred ACMG-AMP
classification
Monieset ¢.1620T>A Tyr540* Nonsense  Truncated CSF1R protein 38 Pathogenic
al. 2017) mutation  without intracellular part of (PVS1, PM2, PP3,
(Prema- the receptor PP4, PP5)
ture stop
codon)
Guoetal. c395C>T Pro132Leu Missense  Functionally deficient CSF1R 25 Pathogenic
(2019) variant protein (PS3, PM2, PM3,
PP2, PP3, PP4, PP5)
Guoetal. c.1441C>T GIn481* Nonsense  Truncated CSF1R protein 31 Pathogenic
(2019) mutation  without intracellular part of (PVS1, PS3, PM2,
(Prema- the receptor PP3, PP4, PP5)
ture stop
codon)
Guoetal. c.1859-119G>A Ser620delins40 Intronic Splicing mutation generating 13 Pathogenic
(2019) variant a novel cryptic splice accep- (PS3, PM1, PM2,
tor site PM4, PP1, PP3,
PP4, PP5)
Guoetal. c.1879_1881del Lys627del Inframe In-frame deletion of lysine Not available Pathogenic
(2019); deletion in the intracellular kinase (PS3, PM1, PM2,
domain of CSF1R causing PM4. PP3, PP4,
functionally deficient CSF1R PP5)
protein
Guoetal. c.1969+115_1969+116del Pro658Serfs*24 Intronic Splicing mutation leadingto ~ Not available Pathogenic
(2019); variant the inclusion of the cryptic- (PS3, PM1, PM2,
Helman exon, resulting in an in-frame PM4, PP3, PP4,
etal. stop codon, and nonsense- PP5)
(2020) mediated mRNA decay
QOoster-  ¢.1754-1G>C Gly585_Lys619delinsAla  Splicing Disruption of a splice accep- 33 Likely Pathogenic
hof et al. mutation  tor site, leading to skipping (PM1, PM2, PM4,
(2019) of the amino acids 585-619 PP3, PP4, PP5)
within the tyrosine kinase
domain and production of an
in-frame protein product
QOoster-  c.1929C>A His643GIn Missense  Functionally deficient CSF1IR 4 Likely Pathogenic
hof et al. variant protein (PM1, PM2, PPT,
(2019) PP2, PP4, PP5)
Tamhan- 2498 C>T Thr833Met Missense  Functionally deficient CSF1IR 29 Pathogenic
kar et al. variant protein (PS3, PM1, PM2,
(2020) PP2, PP3, PP4, PP5)
Kindiset  ¢c2763+1G>T Not available Splicing Aberrant splicing causing 34 *Likely Pathogenic
al. (2021) mutation  disruption of tyrosine kinase (PM2, PM4, PP3,
domain PP4, PP5)
Our cases c.1754G>T Gly585Val Splicing Disruption of a splice accep- 35 Likely Pathogenic
mutation®  tor site resulting in disruption (PM1, PM2, PM5,
of tyrosine kinase domain PP2, PP3, PP4)

*The authors concluded that the variant was pathogenic according to the ACMG-AMP criteria. “Based on in silico models

ACMG-AMP=American College of Medical Genetics and Genomics and the Association for Molecular Pathology; CADD=Combined Annotation Dependent

Depletion; HGVS=Human Genome Variation Society;

mutations in BANDDOS (n=9/11) affected the tyro-
sine kinase domain; however, severe variants were much
more common in the letter. In the CSFIR-ALSP, almost
80% of variants are missense mutations [3]. Although
the genotype-phenotype relationships in CSFIR-ALSP
are not well understood, patients with variants causing
CSF1R protein truncation or nonsense-mediated mRNA
decay were shown to have an earlier age of onset [1]. In

BANDDOS, missense variants accounted for less than a
third of all mutations. In one case with a missense vari-
ant outside the mutational “hot spot” (Pro132Leu), there
was a protein-truncating variant (GIn481*) on the other
allele leading to the CSF1R protein completely devoid of
the tyrosine kinase domain. Furthermore, in BANDDOS,
the splicing and nonsense variants leading to a severe loss
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Table 4 Neuroimaging characteristics of the patients with BANDDOS

No. Dandy-Walker malforma- Ventriculomegaly Calcifications Agenesis of White matter Cortical
tion (n=7/19) (n=13/19) (n=15/18) corpus callosum abnormalities abnor-
(n=12/16) (n=19/19) malities
(n=4/10)

1 Yes Supratentorial Yes Yes Yes Yes

2 Yes Supratentorial Yes Yes Yes Yes

3 Yes Yes Yes Yes Yes N/R

4 No Yes Yes Yes Yes Yes

5 Large cysterna magna Yes Yes No Yes N/R

6 Large cysterna magna Yes Yes Yes Yes N/R

7 No Yes Yes N/R Yes N/R

8 No Yes Yes N/R Yes N/R

9 No Yes Yes N/R Yes N/R

10 Yes Yes Yes Yes Yes Yes

1 Yes Yes Yes Yes Yes N/R

12 No Yes Yes Yes Yes N/R

13 No Yes Yes Yes Yes N/R

14 No No N/R Yes Yes No

15 No No Yes Yes Yes No

16 No No Yes Yes Yes No

17 No No No No Yes No

18 No No No No Yes No

19 No No No No Yes No

N/A=non-applicable; N/R=not reported;

of CSFIR protein function were the most common type
of mutation.

To date, no identical mutation has been reported to
occur in both disorders. In 2019 Oosterhof et al. [14]
reported a patient with a bi-allelic Gly585_Lys619de-
linsAla mutation which had been previously reported
in CSFIR-ALSP by Radamekers et al. [27]; however, the
mutations were not identical on the coding level. Differ-
ent substitution mutation at the same base pair position
was reported in BANDDOS, ¢.2498 C>T [16], and in
CSFIR-ALSP, ¢.2498 C>A [28, 29]. Therefore, we think
the apparent “dichotomy” in mutations between CSFIR-
ASLP in BANDDOS is due to the rarity of the disorders
rather than different pathomechanisms. As the genetic
testing becomes more readily available and CSFIR muta-
tions are increasingly recognize worldwide, we predict
the genetic landscapes of both disorders will soon be
bridged [1, 3, 4, 30-32].

BANDDOS and CSF1R-ALSP share a genetic basis
and a significant overlap of clinical, radiological, and
pathological features. Therefore, both disorders are
on the same continuum, albeit they differ in the sever-
ity of CSFIR mutations’ consequences and pheno-
types. This opens windows of opportunity for applying
already available therapy in CSFIR-ALSP in BANDDOS.
Bone marrow transplant (BMT) was shown to be effec-
tive CSFIR-ALSP [33, 34]. Another clinical trial with a
TREM?2 agonist, which could rescue or compensate for
CSFIR protein deficiency, is underway (NCT05677659)

[1]. In addition, CSF1R protein was shown to play a
role in other neurodegenerative diseases, and its inhibi-
tors showed promising results in preclinical studies [35].
Therefore, further studies on CSFIR-related disorders
may lead to a better understanding of these disorders and
pave the way toward curative therapy in other neurologi-
cal disorders.

The main limitation of the present study is the rela-
tively low number of cases included into the analsysis.
However, this is due to the rarity of the BANDDOS and
the present paper presents the largest analysis on patients
with BANDDOS to date. Secondly, the patients carried
different CSFIR mutations, occasionally in the compund
heterozygous state, and it was not possible to determine
genotype-phenotype correlations. As the genetic testing
with NGS is becoming more readily available, we spec-
ulate that more patients will be identified with variants
of unknown significance within CSFIR gene, in isolation
or in combination with other known CSFIR pathogenic
mutations. Therefore, more research is needed to deter-
mine the pathophysiology of CSFIR-related neurodegen-
eration and genotype-phenotype correlations.

Conclusions

BANDDOS is an exceedingly rare disorder with a wide
spectrum of the age of onset and disease severity; how-
ever, in most cases, it starts in the perinatal period or
infancy and has a devastating course with congenital
brain abnormalities, developmental delay, neurological
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CSF1R-ALSP

One mutant allele
Missense variants
Hypomorphic variants

Adult-onset
Cognitive decline, pyramidal
signs, speech disturbances,
parkinsonism, seizures

CSF1R mutation

Neurologic symptoms

Skeletal abnormalities

None

Inborn brain calcifications
Adult-onset WMLs, corpus
atrophy, cerebral atrophy,
ventricles

Neuroimaging

Dysmorphic features

None

Deficiency of microglia, at
white matter with axonal sp
ids, gliosis, and dystrophic
tions

Neuropathology
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BANDDOQOS

Two mutant alleles

Splicing and nonsense mutations
Apomorphic variants

Onset in infancy or childhood
Speech disturbances, pyramidal
signs, developmental delay, cogniti-
ve dysfunction, dysphagia, seizures

Dysosteosclerosis — Pyle disease

spectrum

Inborn brain calcifications

Inborn WMLs, corpus callosum
agenesis, ventriculomegaly, Dandy-
-Walker malformation, cortical
abnormalities, infantile hypotonia,
optic nerve atrophy

Abnormal shape and size of the
skull, epicanthus, ptosis, dysplastic

nose, high arched palate, chest wall
deformities

Absence of microglia, severe white
matter atrophy with axonal sphero-
ids, gliosis, and numerous dystro-
phic calcifications

Fig. 5 Schematic diagram of core features of the CSF1R-related adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (CSF1R-
ALSP) and brain abnormalities, neurodegeneration, and dysosteosclerosis (BANDDOS). Both disorders are on the same continuum, albeit differ in the
severity of CSF1R mutations’ consequences and phenotypes. WMLs — white matter lesions

deficits, osteopetrosis, and dysmorphic features. There is
a significant overlap in the clinical, radiological, and neu-
ropathological aspects between BANDDOS and CSF1R-
ALSP. Both disorders share a genetic basis and are
manifestations of CSF1R protein deficiency, albeit of dif-
ferent extents of disease severity. Therefore is a window

of opportunity for translating treatment from CSFIR-
ALSP to BANDDOS.

List of Abbreviations
BANDDOS Brain abnormalities, neurodegeneration, and dysosteosclerosis
CSFIR Colony-stimulating factor-1 receptor
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CSF1R-ALSP  CSF1R-related leukoencephalopathy with axonal spheroids

and pigmented glia
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