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Abstract

More than 50 million adults in America suffer from chronic pain. Opioids are commonly 

prescribed for their effectiveness in relieving many types of pain. However, excessive prescribing 

of opioids can lead to abuse, addiction, and death. Non-steroidal anti-inflammatory drugs 

(NSAIDs), another major class of analgesic, also have many problematic side effects including 

headache, dizziness, vomiting, diarrhea, nausea, constipation, reduced appetite, and drowsiness. 

There is an urgent need for the understanding of molecular mechanisms that underlie drug abuse 

and addiction to aid in the design of new preventive or therapeutic agents for pain management. 

To facilitate pain related small-molecule signaling pathway studies and the prediction of potential 

therapeutic target(s) for the treatment of pain, we have constructed a comprehensive platform of 

a pain domain-specific chemogenomics knowledgebase (Pain-CKB) with integrated data mining 

computing tools. Our new computing platform describes the chemical molecules, genes, proteins, 

and signaling pathways involved in pain regulation. Pain-CKB is implemented with a friendly user 

interface for the prediction of the relevant protein targets and analysis and visualization of the 

outputs, including HTDocking, TargetHunter, BBB predictor, and Spider Plot. Combining these 

with other novel tools, we performed three case studies to systematically demonstrate how further 

studies can be conducted based on the data generated from Pain-CKB and its algorithms and tools. 

First, systems pharmacology target mapping was carried out for four FDA approved analgesics 

in order to identify the known target and predict off-target interactions. Subsequently, the target 

mapping outcomes were applied to build physiologically based pharmacokinetic (PBPK) models 

for acetaminophen and fentanyl to explore the drug–drug interaction (DDI) between this pair of 
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drugs. Finally, pharmaco-analytics was conducted to explore the detailed interaction pattern of 

acetaminophen reactive metabolite and its hepatotoxicity target, thioredoxin reductase.
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INTRODUCTION

Pain is one of the most common reasons for people to seek medical help1 and is often 

associated with restricted daily activities and lowered mood, which will ultimately lead to 

a decrease in quality of life. According to a previous National Health Interview Survey 

data-based estimation, around 50 million U.S. adults (20.4%) suffer from chronic pain.2 

With such high prevalence, pain-related health care costs are estimated to be $280 billion 

each year.3 Other economic losses could result due to the loss of productivity caused 

by pain.4 Still, approximately 79% of patients are not satisfied with their medication 

management5,6 due to limited effectiveness7 and severe side effects caused by currently 

available analgesics.8 Thus, research into the pain process and treatment is of great urgency.

Pain is defined by the International Association for the Study of Pain (IASP) as “an 

unpleasant sensory and emotional experience associated with actual or potential tissue 

damage, or described in terms of such damage.”9 The detailed mechanism behind pain 

sensation is complex.10 Nociception starts with the activation of nociceptors caused by a 

thermal, mechanical, or chemical stimulus that goes beyond the noxious range.11 Once those 

nociceptors are evoked, electrical signals are generated and transduced from the periphery 

to an area called the dorsal horn located in the spinal cord, where various sensory and 

nociceptive signals are converged and modulated12 before being passed by neurotransmitters 

along the nerve fiber to the brain.

Currently, there are many categories of analgesics available on the market. Non-steroidal 

anti-inflammation drugs (NSAIDs), such as ibuprofen, are some of the most commonly 
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used classes of analgesics. These drugs are known to block the synthesis of prostanoids 

from arachidonic acids by inhibiting the prostaglandin G/H synthases (COX enzymes).13 

NSAIDs are usually used to treat mild to moderate pain,14 and their side effects include 

ulceration and bleeding in the GI tract, stomach pain, and renal failure15,16 depending 

on the dose and the inhibition ratio between COX1 and COX2.17 When it comes to the 

relief of moderate to severe pain, the use of opioid analgesics like morphine, fentanyl, 

and codeine may be more dominant.18 As agonists of opioid receptors, opioid analgesics 

can hyperpolarize the neuronal cells19 to inhibit the neural excitability and decrease the 

release of neurotransmitters to derive analgesia.20 Opioids may have better therapeutic 

effects; however, they often have more severe side effects such as respiratory depression, 

dependence, and drug addiction.8,21

Though various analgesics are available, there are critical problems associated with the use 

of analgesics. The most important aspect is the safety issue related to analgesics, especially 

opioids. Opioid poisoning is reported to be involved in nearly 40% of all drug poisoning 

deaths22 due to the synergistic effects caused by the combination use of opioids23 (https://

www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates).24 Even under the 

recommended dosage, chronic use of opioids will still cause tolerance, addiction, and severe 

withdrawal syndrome.25 Moreover, the lack of progress achieved by the pharmaceutical 

industry during the past few years is not reflective of the urgent need for new analgesics with 

better efficacy and side effect profile.26

Herein, we have constructed the pain domain-specific chemogenomics knowledgebase 

(Pain-CKB)27 based on our previously established molecular information databases28–32 

in order to accelerate the research in pain-related areas. The knowledgebase assembles 

a large amount of analgesic information and pain-related protein targets extracted 

from the literature. Integrated with the algorithms previously developed by our lab, 

such as TargetHunter,33 HTDocking, and Spider Plot, Pain-CKB enables pain-related 

target identification, drug repurposing analysis, small-molecule screening, and drug–drug 

interaction (DDI) predictions from the view of systems pharmacology. Therefore, Pain-CKB 

is a valuable platform for information sharing and investigation in the pain domain in the 

hope of aiding research on pain and analgesics. Based on the newly established Pain-CKB, 

first, a computational systems pharmacology target mapping was constructed to identify the 

known targets and potential off-target interactions based on the output of HTDocking and 

TargetHunter for four common analgesics. Second, physiologically based pharmacokinetic 

(PBPK) models were applied to quantify the DDI between acetaminophen and fentanyl in 

the pharmacokinetics (PK) field. Finally, we conducted docking studies to reveal the detailed 

interaction pattern between acetaminophen reactive metabolite and its reported liver toxicity 

target, thioredoxin reductase 1. We provide these case studies as an example of the usage of 

our database and how our knowledge can serve as a starting point for other follow-up studies 

combined with novel computational methods.
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RESULTS AND DISCUSSION

Development of Pain-CKB.

To facilitate pain research, we have constructed the pain domain-specific chemogenomics 

knowledgebase (Pain-CKB).27 Pain-CKB is also equipped with various chemoinformatics 

tools like HTDocking,28 Target-Hunter,33 Spider Plot,31 and BBB predictor28 to provide 

public users with cloud computing services for target identification and systems 

pharmacology research. Basically, HTDocking is an online high-throughput molecular 

docking algorithm powdered by idock,34 which can identify possible targets or off-target 

interactions for a query compound. Target-Hunter is a molecular fingerprints-based tool for 

calculating the similarity between the query compound and the active compounds of each 

target collected in our database, predicting the potential targets for user-submitted ligand(s). 

Spider Plot is a tool for the online visualization of the molecule–protein interaction network 

based on the output from both HTDocking and TargetHunter. In addition, BBB predictor is 

an independent tool to predict whether a compound can pass the BBB.

Workflow of Pain-CKB.

As shown in Figure 1, our platform intrinsically works on a set of conformations of pain-

related crystal or cryo-EM structures and their relevant compounds. Users can submit up 

to five different compounds to our platform for calculations. The platform first queues a 

task for each query compound and afterward converts its input format such as SMILES or 

SDF to PDB and PDBQT format with the help of Open Babel.35 Subsequently, the BBB 

predictor is applied to predict the BBB penetration for each query compound based on its 

structure. Simultaneously, the revised idock automatically docks each query compound into 

the previously defined binding pockets in different conformations of a target protein and 

generates docking scores, while the TargetHunter calculates the similarity score based on the 

molecular fingerprints using the Tanimoto coefficients (from 0.0 to 1.0, totally different to 

100% similar) against its known active compounds data set. Finally, a target classification 

is performed by docking scores and similarity score, and the classification results are then 

passed to Spider Plot for visualization of the drug–targets interaction network. All the output 

data from Pain-CKB can serve as the starting point for other follow-up studies.

Overview of Pain-CKB.

Our database is available at https://www.cbligand.org/g/pain-ckb. To date, Pain-CKB has 

archived 272 analgesics and 84 pain-related targets. As shown in Figure 2, the collected 

targets include (1) 28 G-protein coupled receptors (GPCR), such as mu, kappa, and delta 

opioid receptors (OPRM, OPRK, OPRM) and cannabinoid receptors (CNR1, CNR2); (2) 32 

enzymes, such as prostaglandin G/H synthases (PGH1, PGH2) and angiotensin-converting 

enzyme (ACE); (3) 14 ion channels, such as transient receptor potential cation channels 

(TRPV1, TRPV2, TRPV3, TRPM4, and TRPM8); and (4) 2 nuclear receptors, progesterone 

receptor (PRGR) and estrogen receptor 1 (ESR1). The Pain-CKB will be continuously 

updated to maintain the validity of the information collected.
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Validation of Pain-CKB with Codeine (Known Drug).

As shown in Figure 3, we submitted codeine as the signal query compound to our platform. 

We observed that codeine connects to two green target nodes with green solid lines, 

including MDR1 (ATP binding cassette subfamily B member 1) and OPRM mouse (mouse 

Mu-type opioid receptor). These results are consistent with the fact that codeine binds to 

these two receptors with high affinities, which further validated that our algorithms are 

reliable. Interestingly, our results also showed that codeine may bind to other pain-related 

targets with potential synergy.

Validation of Pain-CKB with Spiro[4.5]decan-8-yl Analogue 1436 (New Compound).

We submitted spiro[4.5]decan-8-yl analogue 14, which is a novel mentholbased transient 

receptor potential cation channel subfamily M member 8 channel (TRPM8) antagonist 

reported in our recent publication, into our platform for further validation.36 As shown in 

Figure 4, we observed that there are no green target nodes connected to spiro[4.5]decan-8-

yl analogue 14. This is consistent with the fact that this compound is a new TRPM8 

antagonist and the similarity with the reported compounds targeting TRPM8 calculated by 

TargetHunter is not higher than 0.85. However, we found that spiro[4.5]decan-8-yl analogue 

14 connects to TRPM8 with pink lines (Figure 4) with a high docking score of 10.55 

kcal/mol computed by HTDocking. These results further indicated that our Pain-CKB and 

the tools are powerful to predict the targets for new or unknown compounds.

In the following section, we conducted three case studies to demonstrate the function of 

Pain-CKB and how computation algorithms can aid pain research.

Case Study 1: Computational Systems Pharmacology-Target Mapping for 4 FDA-Approved 
Analgesics.

The prediction of polypharmacology of known drugs is a potential method for drug 

repurposing and DDI prediction.37,38 Here, we conducted a computational systems 

pharmacology-based study using the results from both HTDocking and TargetHunter, and 

Spider Plot is used to generate a target mapping for four analgesics approved by the FDA 

(acetaminophen, diclofenac, morphine, and fentanyl). Among them, though acetaminophen 

works by interacting with COX enzymes,39 it is categorized with aniline analgesics because 

of the limited inhibition effect on COX enzymes,40 while diclofenac is a typical NSAID.41 

On the other hand, morphine and fentanyl are members of the opioid analgesics family, 

which exhibit their pain-relieving effect by binding to opioid receptors to mimic the 

endogenous opioid peptides.42 As shown in Figure 5, after integrating the information 

included in the Pain-CKB and the results of TargetHunter and HTDocking algorithm, we 

were able to generate a target mapping for these four drugs by Spider Plot. The green circles 

and solid lines indicate known protein targets and interactions between the corresponding 

drug and protein targets. The purple circles and dashed lines represent the predicted protein 

target with interaction.

As expected, our results showed clearly that the COX enzymes were targeted by both 

acetaminophen and diclofenac.43 For acetaminophen, transient receptor potential cation 

channel subfamily V member 1 (TRPV1), which is another known target for acetaminophen 
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in the brain to produce antinociception,44 is also listed in our result. Moreover, Pain-CKB 

also predicted several acetaminophen off-target interactions such as nitric oxide synthase 1 

(NOS1) and carbonic anhydrase 2 (CAH2). As to diclofenac, apart from the COX enzymes, 

predicted targets like acetylcholinesterase (ACES) and C-X-C chemokine receptor type 1 

(CXCR1), have been reported to interact with diclofenac analogs.45,46

For morphine and fentanyl, known targets mu, kappa, and delta opioid receptors47 are all 

identified by Pain-CKB. Our algorithm also predicted cholinesterase (CHLE) and ACES 

as potential targets for morphine. Both CHLE and ACES were reported to be inhibited by 

morphine48 and its analogs49 in the literature. Finally, MAOB and HRH1 are predicted as 

potential targets for fentanyl, which is consistent with the results from ChEMBL database. 

This target map serves as a compelling example showing the reliability of our TargetHunter 

and HTDocking program. Thus, other predicted targets in this target map have the potential 

to become new targets for the corresponding drug, and we highly encourage other peers to 

experimentally validate our predictions.

Case Study 2: Virtual DDI Study between Acetaminophen and Fentanyl.

From our target mapping generated by Spider Plot, we found that two common targets 

including cytochrome P450 3A4 (CYP3A4) and ATP-dependent translocase (ABCB1) are 

shared by acetaminophen and fentanyl, suggesting there may be a DDI between these 

two drugs. CYP3A4 is a well-known enzyme responsible for the phase I metabolism of 

many drugs and compounds such as steroids, fatty acids, and xenobiotics.50 ABCB1 is a 

transmembrane active efflux pump for a wide range of drugs.51 We then conducted literature 

research and found articles reporting that acetaminophen can inhibit the metabolism of 

fentanyl by CYP3A4 inhibition in vitro52 and exhibit significant fentanyl-sparing effect in 

vivo.53 However, there is no direct evidence indicating that the DDI is related to ABCB1.

To obtain insight into the detailed interaction at the molecular level, we first conducted 

a docking study between CYP3A4 and these two drugs, in which the docking results 

are generated by revised idock algorithm implemented in Pain-CKB. As shown in Figure 

6, the key residues in CYP3A4 ligand-binding pocket include Thr309, Phe304, Phe215, 

Phe241, Phe108, Ser119, Arg105, and HEME. As acetamino phen is a relatively small 

molecule, it is not likely to interact with most of the key residues. The binding pose 

between acetaminophen and CYP3A4 allows the formation of two strong hydrogen bonds: 

one is observed between the hydroxyl group of acetaminophen and the HEME structure of 

CYP3A4 (2.8 Å) and another is found between the acetamide group of acetaminophen and 

Arg105 residue (3.6 Å). The binding conformation of fentanyl presents the benzene ring 

structure facing the HEME structure of the enzyme, allowing the formation of hydrophobic 

interaction between these two structures (4.5 Å). Another hydrogen bond with a binding 

distance of 3.3 Å was formed between the oxygen on fentanyl and Phe108 residue of 

CYP3A4. Hydrophobic interactions were observed between the drug and Thr309 (4.8 Å), 

Phe304 (4.8 Å), Phe215 (3.7 Å), and Phe241 (3.6 Å).

Another overlapped target between acetaminophen and fentanyl is ABCB1. The docking 

results by HTDocking algorithm (idock) on this target are shown in Figure 7. Key residues 

in the ABCB1 binding pocket include Phe335, Tyr309, Tyr306, Phe727, Gln724, Phe977, 
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and Tyr949. Acetaminophen formed two hydrogen bonds between the hydroxyl group and 

Tyr306 (2.7 Å) and Tyr 309 (2.3 Å). Three hydrophobic interactions were also observed at 

Phe335 (4.2 Å), Phe727 (3.9 Å), and Phe977 (3.8 Å). For fentanyl, during its binding with 

ABCB1, a hydrogen bond was formed with oxygen on the amide group of Gln632 (3.5 Å), 

and another hydrogen bond was observed between the nitrogen on the propenamide group 

and the phenyl ring of Tyr306 (4.0 Å). Five hydrophobic interactions were observed between 

fentanyl and Phe335 (4.2 Å), Tyr309 (3.6 Å), Phe727 (4.0 Å), Phe977 (3.1 Å), and Tyr949 

(3.3 Å) as well.

Based on the predicted results from Pain-CKB, we then built physiologically based 

pharmacokinetic (PBPK) models to quantitatively explore the metabolism changes of these 

two drugs, which is caused by the drug interaction on CYP3A4 when administrated 

simultaneously, from a pharmacometrics point of view. The parameters used to build the 

PBPK models for acetaminophen and fentanyl are listed in Table 1 and Table 2. All the 

parameters required to build the PBPK models are collected from the reported clinical 

studies. Using the optimized acetaminophen PBPK model, we simulated the drug plasma 

concentration profile after a single 1000 mg iv bolus dose in healthy volunteers. As shown 

in Figure 8a, our simulation is highly consistent with the observed data reported by previous 

papers.54 The PBPK model for fentanyl was built based on the model published by our lab 

before.55 The simulated drug plasma concentration profile after a single 7.0 mg iv bolus in 

healthy volunteers overlaps with the observed data well56 (Figure 8b). Moreover, four more 

validation studies for the acetaminophen and fentanyl models are presented in Figure S1–S4. 

We can see from the results that most of the clinical data falls within the range of arithmetic 

mean values and 95th/5th percentile values of simulated results. In conclusion, our PBPK 

model is highly consistent with the clinical data and can be extrapolated to different dosages.

Next, a virtual study of the DDI between acetaminophen and fentanyl was carried out based 

on the established PBPK models. Acetaminophen was chosen as the inhibitor substrate 

of fentanyl metabolism as reported by the literature.52 We first used therapeutic doses of 

acetaminophen (4000 mg)57 and fentanyl (0.003 mg/kg)58 to see if metabolism inhibition 

may occur under this dosage. As shown in Figure 9a, the systemic concentration of fentanyl 

with or without acetaminophen is almost identical. The AUC ratio (Figure 9b) is around 

1.02, also indicating there are no significant changes in body exposure to fentanyl due to the 

enzyme inhibition effect of acetaminophen.

We then used acetaminophen concentration around 1 order of magnitude greater than the 

therapeutic concentration to run the simulation, where potential fentanyl–paracetamol drug 

interactions have been reported to occur.52 When the dosage of acetaminophen reaches 80 

000 mg, which is 20-fold the therapeutic dose, we observed a significant elevation (the mean 

AUC ratio between administering fentanyl with acetaminophen and fentanyl alone is greater 

than 1.2) in the systemic concentration of fentanyl (Figure 9c,d). The simulated results 

indicate that when used in combination with acetaminophen at this concentration, fentanyl 

metabolism by CYP3A4 is likely to be affected. Considering that the lethal dose of fentanyl 

can be as low as 2 mg according to the Drug Enforcement Administration (DEA), more 

attention should be paid when administrating it with very high doses of acetaminophen. In 

addition, we also conducted a sensitivity analysis for the parameter reported in the range 
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(values for Ki in the acetaminophen model were reported between 2800 and 3200 μM). The 

result is presented in Figure S5. Within the reported range, we can see that AUC ratio, which 

is a key parameter to judge the existence of DDI, is always greater than 1.2-fold, indicating 

any value in that range will not cause substantial difference to our results.

In this case study, we only considered the influence of enzyme inhibition on CYP3A4, and 

there is no literature reporting the interaction of acetaminophen and fentanyl on another 

overlapped target, ABCB1, so far. ABCB1 is a transmembrane active efflux pump for a wide 

range of drugs. If inhibition also exists, we believe the DDI will get more severe than shown 

here. Our results not only provide a possible explanation of the real-world observed data but 

also indicate that Pain-CKB is a powerful tool for studies of DDI.

Case Study 3: Molecular Docking to Study Acetaminophen Metabolite Hepatotoxicity.

Acetaminophen is one of the most common causes of acute liver failure (ALF) in the 

United States.59 At its therapeutic dose, around 90% of acetaminophen is metabolized in 

the human body into inactive glucuronide and sulfate conjugates, while the rest of the 

unmetabolized drug is converted to a highly reactive metabolite, N-acetyl-p-benzoquinone 

imine (NAPQI),60 primarily by CYP2E1 and CYP3A4.61 However, a supratherapeutic dose 

of acetaminophen will cause the conjugation pathways to become saturated and increase 

the amount of NAPQI in the body, which can cause hepatotoxicity.62,63 NAPQI has 

been reported to target thioredoxin reductase (TrxR) to induce oxidative stress and liver 

toxicity. In detail, LC-MS/MS analysis confirmed that NAPQI can modify the Cys59, 

Cys497, and Sec498 in the redox centers of TrxR to cause enzyme inhibition.64 TrxR 

has been collected as a potential pain target65 in our Pain-CKB. Interestingly, Pain-CKB 

predicts that acetaminophen is very likely to interact with TrxR. Considering the structural 

similarity between acetaminophen and NAPQI, it is highly possible that our algorithms 

would successfully predict the toxicity target for NAPQI. Indeed, Figure S6 shows that 

NAPQI was predicted to bind to TrxR with a moderate binding energy of −5.88 kcal/mol, 

indicating that our algorithms are powerful to predict the toxicity target for NAPQI.

To study the interaction pattern between NAPQI and TrxR1, the HTDocking algorithm 

(revised idock) implemented in Pain-CKB is applied to conduct a docking study. In perfect 

agreement with the observed results,64 NAPQI is likely to interact with TrxR1 in three 

different ways as shown in Figure 10. First, the carbonyl group of NAPQI can form a strong 

hydrogen bond with the Cys497 residue with a distance of 2.9 Å. Another possible hydrogen 

bond interaction is observed between the N-acyl amides functional group and Sec498 

residue with a distance of 3.1 Å. Finally, NAPQI can also form a strong steric interaction 

with Cys59 (3.4 Å) because of the special spatial structure of Cys59. These possible binding 

poses provide a suitable spatial condition that can then facilitate the alkylation reaction on 

these residues and cause enzyme inhibition and further hepatotoxicity.

Pain-CKB and 3 Case Studies for Pain Research.

Pain is a highly complex disease66 that can cause severe challenges to patients’ daily 

lives.67 Efforts have been devoted to improving pain management, yet limited improvements 

have been achieved.68 Several databases related to pain such as PainNetworks69 have been 
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built to study the pain-related genes and their network associations. Several other specific 

disease-related databases have already been developed and implemented as novel ways 

to explore the molecular mechanisms and pathways of the disease to facilitate studies in 

related areas.70,71 Here, we provided a pain domain-specific chemogenomics knowledgebase 

(Pain-CKB) for pain research, with a user-friendly web interface and powerful algorithms 

implemented, including the target structure-based HTDocking, ligand -based TargetHunter, 

and more.

The presented case studies serve as examples of the compound inquiry results and how 

follow-up studies can be performed based on the output of Pain-CKB. The first case study 

validated the ability of Pain-CKB to map the network between different drugs and their 

targets based on the results of docking score (HTDocking) and similarity score (Target-

Hunter). The target map precisely identified known targets for the input analgesics. It can 

also make predictions based on the known target structure as well as new small-molecule 

structures that have been confirmed to bind to the target. The ability for Pain-CKB to 

identify drug targets allows users to conduct drug repurposing studies by looking for 

potential off-target interactions for a known compound or scanning new compounds as 

a starting point for new analgesics development. In addition, as shown in the second 

case study, based on the common targets mapped between certain drug pairs, studies can 

be carried out by using the docking algorithms and pharmacometrics models to explore 

the potential DDIs and synergistic drug pairs. In the third case study, we looked into 

the target mapping results and explored the relationship between acetaminophen active 

metabolite NAPQI and its reported hepatotoxicity target. Three case studies demonstrated 

the functionality and utility of our newly built database.

CONCLUSION

It is well-known that DDIs related to analgesics can cause severe adverse effects.72 This 

problem will become much more severe when opioids analgesics are involved. Enzyme 

inhibition or competition effects, if the exist, may greatly increase the blood concentration 

of opioids and cause unexpected opioid side effects like drug addiction, breath inhibition, 

and even death, On the other side, synergistic drug pairs with greater therapeutic effects and 

fewer side effects are of great research interest in pain-related areas.73

In the present work, we provided a Pain-CKB that can be extremely beneficial for future 

research. Pain-CKB is an integrative pain-domain specific knowledgebase with full access 

for public use. It includes pain-related target data and tools for target identification and 

systems pharmacology research. This knowledgebase will benefit pain research by bridging 

the knowledge barrier between computational, chemical, and biological areas to facilitate the 

identification of new DDIs and to accelerate the development of new analgesics.

However, our Pain-CKB has its limitations. First, although we conducted thorough literature 

research to implement as many pain-related targets as we could, a few potential pain related 

targets may not be included in Pain-CKB. To minimize this limitation, we will continuously 

update our Pain-CKB in the future. Second, the performance of the HTDocking algorithm 

relies largely on the quality and availability of the 3D structure of the target protein. 
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Homology models with high accuracy will be implemented into Pain-CKB. Finally, Pain-

CKB is not the first or only tool that uses integrated similarity to predict DDI interaction 

networks, though it is specific for pain regulating pathways.

MATERIALS AND METHODS

Genes and Proteins.

Genes and proteins related to pain were collected from public databases such as Ensembl,74 

UniProt,75 KEGG,76 GPCRDB,77 and NCBI Protein Database.78 Available crystal structures 

or cryo-EM structures of pain-related targets were retrieved from the Protein Data Bank 

(PDB) (https://www.rcsb.org/). To date, we have archived 84 pain-related targets with 207 

reported 3D structures in our platform.

Drugs and Chemicals.

ChEMBL database (version 23)79 and DrugBank database (version 5.1.5) were utilized in 

our work for searching and collecting the drugs and chemicals. The experimental data for 

each small molecule against its respective target proteins were collected using text mining 

techniques and cleaned up by manual inspection. Bioactivity data from different resources 

were normalized using the same standard. To date, we have collected 272 FDA-approved 

antipain drugs and 234 662 related chemicals, all of which have been integrated into Pain-

CKB.

Database Infrastructure.

Users can submit up to five different query compounds in one task using JSME 

Molecular Editor v2017-03-01.80 Pain-CKB was implemented based on our established 

molecular database prototype DAKB-GPCRs (https://www.cbligand.org/dakb-gpcrs/) using 

SQLite database management system (https://sqlite.org/) and Kestrel HTTP server (https://

github.com/aspnet/KestrelHttpServer) with Apache HTTP server (https://httpd.apache.org/) 

as its reverse proxy server. The overview of our design for Pain-CKB is depicted in Figure 1.

HTDocking.

Pain-CKB adopts our online high-throughput molecular docking technique, 

HTDocking,28–32 for identifying possible interactions between protein targets and small 

molecules. A maximum of three different reported 3D structures for each target protein can 

be found in our knowledgebase, depending on the availability of PDB files; if the available 

PDB files are less than three, then this number will change accordingly. For each query 

compound, HTDocking powdered by idock34 will automatically dock it into these different 

structures or conformations and generate docking scores. A higher docking score indicates 

that the protein is more likely to be the candidate target of the queried small molecule. 

The idock34 program can provide up to 10 predicted binding affinity values (ΔG values) 

from different docking poses for each compound in a binding pocket of a protein. In our 

HTDocking program, we only consider the best binding affinity value, which can be further 

transformed as a docking score. For important targets, we will collect the homology models 

with high accuracy from GPCRDB81 into Pain-CKB for calculations in the future.
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TargetHunter.

Pain-CKB integrates our online target-identification service, TargetHunter,33 for predicting 

the potential off-target interactions for submitted compounds. TargetHunter exploits an 

important principle of medicinal chemistry: compounds with structural similarities often 

have similar physicochemical properties and biological profiles. For each query compound, 

TargetHunter calculates the similarity based on the molecular fingerprints using Tanimoto 

coefficients (TC) with its known active compound data set that was collected from Drugs 

and Chemicals (see above), in which almost all of these known ligands are orthosteric 

binders. As a result, TargetHunter is useful even when there are no available 3D structures of 

a given protein target. However, the active compound data set of this target is required.

Indeed, our program supports up to ten different kinds of molecular fingerprints, including 

ECFP0, ECFP10, ECFP2, ECFP4, ECFP6, ECFP8, FP2, FP3, FP4, and MACCS. Based on 

the feedback and statistical data from our users, FP2 is the most popular and more accurate 

one. So, TargetHunter uses FP2 as the default fingerprint.

Spider Plot.

Based on the target classification, our online tool Spider Plot visualizes the molecule–

protein interaction network based on the output of HTDocking and TargetHunter. The 

average docking scores are displayed as connection labels and the protein targets on which 

the query compound is active are displayed as circular nodes. By default, a green node 

denotes a target with a high similarity score (>0.95) comparing the best matched known 

compound and the query compound, while a pink one denotes otherwise. With Spider Plot, 

the colors, font sizes, node sizes, border widths, and node shapes as well as the layout can 

be completely customized, and the entire network graph can be exported as an image file on 

particular browsers.

Blood–Brain Barrier (BBB) Predictor.

The blood–brain barrier (BBB) predictor28,31 was integrated into Pain-CKB. It 

predicts whether a query compound can move across the BBB to the central 

nervous system (CNS).82 The BBB predictor is also available for access from https://

www.cbligand.org/BBB/.

Software Requirements.

The Pain-CKB Web site is compatible with modern web browsers (such as Chrome, Firefox, 

Microsoft Edge, and Safari) provided JavaScript and cookies are enabled. We recommend 

the latest release version of these web browsers for better rendering.

Simcyp Simulations.

Simcyp Population-based ADME Simulator (version 17.0, Simcyp Limited, https://

www.certara.com/software/simcyp-pbpk/)83 was used to build the PBPK models for 

acetaminophen and fentanyl. In Simcyp, the PBPK model is separated into systems data 

and compound or drug data. In this study, we used healthy volunteers as our simulation 

population. The parameters in systems data are kept default. Parameters required from the 
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compound models were obtained from PubChem84 (https://pubchem.ncbi.nlm.nih.gov) or 

from previously published in vitro and in vivo data and kept unmodified. However, the 

parameter Ki in the acetaminophen compound model comes in a range. For this parameter, 

we selected a value in that range that can reflect the influence of drug–drug interaction 

between acetaminophen and fentanyl to the greatest extent. We also conducted a sensitivity 

analysis for this parameter to show that choosing any value in the recorded value range will 

not cause any substantial changes to our conclusion. The acetaminophen model was built 

on the minimal PBPK model with four basic compartments (central, liver, gut, and single 

adjusting compartment (SAC)) using Simcyp because acetaminophen is mainly metabolized 

in the liver, which is covered by the minimal PBPK model, and here we are mainly 

interested in blood or plasma time–concentrations curves. The SAC is a virtual organ 

compartment with physiological parameters that can be adjusted arbitrarily to account for 

the influence caused by all the other organs on the drug PK profile.85 The total systemic 

clearance was used to describe the metabolism of acetaminophen, and the percentage of drug 

metabolized by CYP3A4 is around 5% to 10%.86

The fentanyl model was built based on the full PBPK model of Simcyp. The full PBPK 

distribution model simulates the concentrations in various organ compartments utilizing 

the time-based differential equations. Organ compartments simulated include the blood 

(plasma), bone, adipose, brain, heart, kidney, liver, gut, lung, muscle, skin, pancreas, and 

spleen. Interindividual variability is introduced through tissue volume prediction considering 

factors such as weight, height, sex, and age. Based on the literature, the elimination of 

fentanyl consisted of metabolism by CYP3A4 in a predominant way (about 90%), the renal 

clearance in a minor way (less than 10%), and additional clearance is negligible so that was 

not considered in this model.

The experimentally observed plasma concentration–time data of acetaminophen and fentanyl 

were extracted from a previously published paper as a validation of the reliability of PBPK 

models. The simulated plasma concentration profiles were generated upon 10 trials of 10 

virtual healthy volunteers. The arithmetic mean values and 95th/5th percentile values of 

simulated results were compared with the observed data. The DDI simulation was also 

generated using 10 trials of 10 virtual healthy volunteers. The absorption parameters were 

ignored as all the drug administration routes used in this study are iv bolus in order to 

maintain consistency with previously published literature.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow of the Pain-CKB server that is divided into three major steps: (i) input of chemical 

agent; (ii) in silico BBB prediction, high-throughput docking (HTDocking) with pain-

related targets, and fingerprints-based similarity search (TargetHunter) by our established 

algorithms implemented in Pain-CKB; (iii) systems pharmacology target mapping for 

potential drug repurposing, DDI prediction, and drug combination.
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Figure 2. 
Summary of pain-related targets. A total of 84 pain-related targets are collected in the 

Pain-CKB: (1) 28 G-protein coupled receptors, (2) 32 enzymes, (3) 14 ion channels, (4) 2 

nuclear receptors, and (5) 8 targets categorized as “other”.
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Figure 3. 
Spider Plot for codeine visualization and analysis. The average docking scores are displayed 

as connection labels, and the protein targets on which the query compound is active are 

displayed as circular discs.
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Figure 4. 
Spider Plot for spiro[4.5]decan-8-yl analogue 14 (new compound) visualization and 

analysis. The average docking scores are displayed as connection labels, and the protein 

targets on which the query compound is active are displayed as circular discs.
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Figure 5. 
Computational systems pharmacology-target mapping (CSP-Target Mapping) for target 

proteins, enzymes, transporters, and potential targets for acetaminophen, diclofenac, 

morphine, and fentanyl. The green dots and solid lines represent the known targets 

and interactions. The purple dots and dashed lines represent the predicted targets and 

interactions.
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Figure 6. 
Detailed interactions of (a) acetaminophen and (b) fentanyl in CYP3A4 for their potential 

DDI. Two hydrogen bonds were observed between acetaminophen and Arg105 (3.6 Å) and 

HEME (2.8 Å). One hydrogen bond was observed between fentanyl and Phe108 (3.3 Å); 

five hydrophobic interactions were observed between fentanyl and Phe215 (3.7 Å), Phe241 

(3.6 Å), Phe304 (4.8 Å), Thr309 (4.8 Å), and HEME (4.5 Å). PDB ID 4K9T.
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Figure 7. 
Detailed interactions of (a) acetaminophen and (b) fentanyl in P-glycoprotein (ABCB1) 

for their potential DDI. Two hydrogen bonds were observed between acetaminophen and 

Tyr306 (2.7 Å) and Tyr309 (2.3 Å); three hydrophobic interactions were observed between 

acetaminophen and Phe335 (4.2 Å), Phe727 (3.9 Å), and Phe977 (3.8 Å). Two hydrogen 

bonds were observed between fentanyl and Tyr306 (4.0 Å) and Gln724 (3.5 Å); five 

hydrophobic interactions were observed between fentanyl and Tyr306 (4.0 Å), Tyr309 (3.6 

Å), Phe335 (4.2 Å), Phe727 (4.0 Å), and Tyr949 (3.3 Å). PDB ID 6FN1.
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Figure 8. 
Observed and simulated concentration–time profiles of (a) acetaminophen 1000 mg iv bolus 

and (b) fentanyl 7 mg iv bolus. The simulated results were generated using 10 trials of 10 

virtual healthy volunteers. Observed data are highlighted in red dots, while the simulated 

results, mean value, and 95th/5th percentile of the simulation are shown by corresponding 

lines.
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Figure 9. 
Virtual DDI studies between acetaminophen and fentanyl. (a) Systemic plasma 

concentration of fentanyl over time with and without 4000 mg of acetaminophen. (b) Trial 

arithmetic mean and standard deviation for 10 groups of 10 individuals out of a population 

of 100 for a fentanyl PK profile simulation with and without 4000 mg of acetaminophen. 

(c) Systemic plasma concentration of fentanyl over time with and without 80000 mg of 

acetaminophen. (d) Trial arithmetic mean and standard deviation for 10 groups of 10 

individuals out of a population of 100 for a fentanyl PK profile simulation with and without 

80000 mg of acetaminophen.
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Figure 10. 
Detailed interaction of NAPQI in TrxR1 for hepatotoxicity. NAPQI has three possible 

binding poses with TrxR1 because of the (1) steric interaction with Cys59 (4.3 Å), (2) 

hydrogen bonding with Cys497 (2.9 Å), and (3) hydrogen bonding with Cys498 (3.1 Å). 

PDB ID 2ZZ0.
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Table 1.

Key Model Parameters for Acetaminophen Simulation

parametera value source

PhysChem and Blood Binding

MW (g/mol) 151.16 b

log P 0.46 b

pKa 9.46 ref 87c

B/P 0.98 ref 88c

fu 0.82 ref 89c

Distribution

Vss (L/kg) 1 ref 90c

Elimination

ClAPAP (L/h) 19.7 ref 91c

Interaction

Ki (μM) 2800 ref 52c

a
Abbreviations: MW, molecule weight; log P, log of the octanol–water partition coefficient for the neutral compound; pKa, dissociation constant; 

B/P, blood/plasma concentration ratio; fu, fraction of drug unbound in plasma; Vss, steady-state volume of distribution; ClAPAP, in vivo clearance 

of acetaminophen; Ki, inhibition constant of acetaminophen on CYP3A4.

b
From PubChem (PubChem CID 1983) (https://pubchem.ncbi.nlm.nih.gov).

c
Derived from published data and then optimized based on observed data.
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Table 2.

Key Model Parameters for Fentanyl Simulation

parametera value source

PhysChem and Blood Binding

MW (g/mol) 336.47 b

log P 2.8 b

pKa 8.06 b

B/P 0.963 ref 92c

fu 0.297 d

Distribution

Vss (L/kg) 4.089 d

Elimination

Clint 3A4 (μL·min–1·pmol–1) 0.496 ref 93c

C1R (L/h) 4.6 ref 94c

Interaction

Ki (μM) 24.2 ref 95c

a
Abbreviations: MW, molecule weight; log P, log of the octanol–water partition coefficient for the neutral compound; pKa, dissociation constant; 

B/P, blood/plasma concentration ratio; fu, fraction of drug unbound in plasma; Vss, steady-state volume of distribution; Clint 3A4, in vivo 

clearance of acetaminophen; ClR, renal clearance; Ki, inhibition constant of fentanyl on CYP3A4.

b
From PubChem (PubChem CID 3345) (https://pubchem.ncbi.nlm.nih.gov).

c
Derived from published data and then optimized based on observed data.

d
Predicted by Simcyp.
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