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ABSTRACT

COVID-19 has been an emerging and rapidly evolving risk to people of the
world in 2020. Facing this dangerous situation, many colleagues in
Neurorestoratology did their best to avoid infection if themselves and their
patients, and continued their work in the research areas described in the
2020 Yearbook of Neurorestoratology. Neurorestorative achievements and
progress during 2020 includes recent findings on the pathogenesis of
neurological diseases, neurorestorative mechanisms and clinical therapeutic
achievements. Therapeutic progress during this year included advances in
cell therapies, neurostimulation/neuromodulation, brain—computer interface
(BCI), and pharmaceutical neurorestorative therapies, which improved
neurological functions and quality of life for patients. Four clinical
guidelines or standards of Neurorestoratology were published in 2020.
Milestone examples include: 1) a multicenter randomized, double-blind,
placebo-controlled study of olfactory ensheathing cell treatment of chronic
stroke showed functional improvements; 2) patients after transhumeral
amputation experienced increased sensory acuity and had improved
effectiveness in work and other activities of daily life using a prosthesis; 3) a
patient with amyotrophic lateral sclerosis used a steady-state visual evoked
potential (SSVEP)-based BCI to achieve accurate and speedy computer
input; 4) a patient with complete chronic spinal cord injury recovered both
motor function and touch sensation with a BCI and restored ability to detect
objects by touch and several sensorimotor functions. We hope these
achievements motivate and encourage other scientists and physicians to
increase neurorestorative research and its therapeutic applications.
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1 Introduction

We have
Neurorestoratology since 2016. The aim of the

serially compiled Yearbooks of

Yearbook is to describe major progress and
significant achievements in this field, with a
focus on pathogenesis, neurorestorative mechan-
isms, and clinical therapies of neurological
disease. The Yearbooks are intended to inform
scientists, physicians and students the major
progress in Neurorestoratology to attract
interest in people to the field of Neurorestor-
atology.

In 2020, COVID-19, a worldwide pandemic,
emerged, and induced rapidly evolving risks to
people of the world. Facing this dangerous
situation, colleagues in Neurorestoratology and
their
groundbreaking research in this field within the
severe constraints of COVID-19. This 2020

Yearbook describes the global achievements and

its related disciplines  continued

progress of Neurorestoratology for 2020.

2 New findings on disease pathogenesis
or nervous system degeneration

Friker et al. [1] showed that exposure to
apoptosis-associated speck-like protein contain-
ing a CARD (ASC)-B-amyloid (A) composites
amplified proinflammatory responses to cause
pyroptotic cell death, release functional ASC,
and induce a vicious cycle of feed forward
reactions that contribute to pathogenesis of
Alzheimer’s disease (AD). Chun et al. [2]
identified that excessive hydrogen peroxide
(H202) secreted by from severe but not mildly
reactive astrocytosis was a key determinant of
neurodegeneration in AD. The above two
studies imply that AP deposition is the result of
the AD neurodegenerative process, but not its
cause, and AD pathogenesis may in part be due

Journal of Neurorestoratology

to inflammatory reaction to harmful toxic
substances.

Winer et al. [3] reported that impaired sleep
may predict the speed with which AP is
accumulating over time; even before cognitive
symptoms of AD appear. Sleep disturbance may
be an wusful tool for forecasting B-amyloid
accumulation and A pathological progression.

3 New mechanisms for neurorestorative
therapy

Depleting the RNA-binding protein polypy-
rimidine tract-binding protein 1 (PTB or PTBP1)
could convert astrocytes to functional neurons,
which innervate and repopulate endo-genous
neural circuits. Astrocytes from different brain
regions may differentiate to various neuronal
subtypes. In a mouse model of Parkinson’s
disease (PD), Qian et al. [4] showed that
(DA)
midbrain astrocytes could provide nigral axons

dopamine neurons converted from
and reinnervate striatum, restoring dopamine
levels and reducing motor deficits. Zhou et al. [5]
reported that downregulating a single RNA-
binding protein could convert Miiller glia into
retinal ganglion cells (RGCs), and alleviate
symptoms associated with RGC loss. Further-
more, this approach also induced neurons with
dopaminergic features in the striatum and
alleviated motor defects in a PD mouse model.
Giacomoni et al. [6] successfully converted
human stem cell-derived glial progenitor cells
(hGPCs) into functional neurons that made
functional synaptic connections within a month.
These

GABAergic neurons, expressed subtype-specific

converted cells had properties of
interneuron markers (e.g., parvalbumin), and
exhibited a complex neuronal morphology with
extensive dendritic trees [6]. Finally, Nolbrant et

al. [7] reported successful reprogramming of
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human fetal and stem cell derived glial
progenitor cells into dopaminergic neurons with
dopaminergic phenotype.

Serapide et al. [8] reported that transplantation
of tissues containing astrocytes into aged PD
mice could restore the microenvironment via
upregulation of astrocyte antioxidant self-
defense and activate NF-E2-related factor 2
(Nrf2)/Wnt/p-catenin (WBC)

harnesses WBC signaling in the aged PD brain

signaling. This

to restore neurogenesis, rejuvenate the micro-
environment, and promote neurorescue and
regeneration [9].

Chemokine receptor CCR5 is a negative
modulator of learning and memory. Liraz-
Zaltsman et al. [10] found that reducing CCR5
signaling also reduced lesion area in brain
injured mice by protecting neurons. This may be
a promising neurorestorative approach to
improve functional recovery in stroke and
traumatic brain injury (TBI).

Interferon-induced transmembrane protein 3
(IFITM3) was
modulatory protein. Hur et al. [11] showed that

identified as a <y-secretase
inflammatory cytokines induces expression of
IFITM3 in neurons and astrocytes in mouse
brain injury models. IFITM3 binds and up-
regulates y-secretase activity, which increases
the production of amyloid- and risk of AD.
Knockout of IFITM3 reduces y-secretase activity
and amyloid plaque formation in a transgenic
mouse model of early amyloid deposition. This
finding raises the question, whether silencing of
IFITM3 reduces behavioral impairments or
deficits in patients or animal models of AD.

[12] found that small-
molecule integrated stress response inhibitor
(ISRIB) reversed ISR activation in the brain by
reducing activating transcription factor 4 (ATF4)

Krukowski et al.

and phosphorylated eukaryotic translation
initiation factor elF2. Through this mechanism,

ISRIB treatment reverses spatial memory deficits
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and improves working memory in old mice [12].
Lu et al. [13] showed that genetic reprogramming
of mouse retinal ganglionic cells may restore
youthful epigenetic information in mouse RGCs
and reverse vision loss in a mouse model of
glaucoma and aged mice. If confirmed in clinical
trial, this could be one of the most promising
approaches to treat glaucoma.

Zhou et al. [14] found that Plexin-B2 is up-
regulated in injury-activated microglia and
macrophages (IAMs) after spinal cord injury
(SCI), which engages axon guidance pathways
by promoting microglia motility, steering IAMs
away from colliding cells and facilitating matrix
compaction. Human mesenchymal stromal cells
derived adipose tissue exosomes promotes func-
tional recovery through suppressing neuroin-
flammation, reducing neuronal apoptosis, and
increasing neurogenesis in TBI rat model [15].

4 Achievements and progress in clinical
diagnosis and neurorestorative therapies

4.1 Cell therapy

Cell transplantation continued to be a hot topic
in Neurorestoratology in 2020. One multicenter,
double-blind and  placebo-
controlled olfactory ensheathing cell (OEC) and

randomized,

Schwann cell (SC) therapy trial for patients with
chronic ischemic stroke showed significant
differences in functional recovery among the
OEC treated, SC treated, and placebo groups
[16]. This is the first positive
multicenter, double-blind,
placebo-controlled cell therapy trial of stroke. A

result in

randomized, and

total of 30 patients were randomized into three
groups: OECs, SCs, or medium (control) injected
into olfactory sub-mucosa. Patients
assessed with the National Institutes of Health
Stroke Scale (NIHSS), modified Rankin Scale

(mRS), and Barthel Index before and 1 month, 3

were



months, 6 months, and 1 year after treatment.
The trial showed that OECs were safe and had
improved quality of life.
Muir et al. [17]
allogeneic human neural stem cell line CTX0EO03

reported transplanted
into brain of 23 patients with subacute chronic
stroke, improving upper limb functions in 4
patients with residual upper limb movement,
but not in those with absent upper limb
movement at baseline [17].

Steinberg et al. [18, 19] showed neurological
SB623
marrow-derived mesenchymal

improvement after (modified bone
cells)
transplantation for chronic stroke in a phase 2a
trial but the trial [20] did not demonstrate a

statistically significant improvement compared

stem

to the sham (control) surgery group in a phase
2b study (involved 163 patients).

Schweitzer et al. [21] implanted dopaminergic
progenitor cells, differentiated in wvitro from
autologous induced pluripotent stem cells
(iPSCs), in a patient with idiopathic PD. The
patient’s progressive PD symptoms stabilized
and improved at 18 to 24 months after implanta-
Positron emission

tion. tomography with

fluorine-18-L-dihydroxyphenylalanine showed
graft survival.

Several investigators transplanted autologous
bone-marrow  derived mononuclear cells
(BMMNC). Liem et al. [22] infused autologous
BMMNC intrathecally into five children who
had drowned and were in persistent vegetative
states. Children had improved motor function
and cognition as well as reduced muscle
spasticity 6 months after treatment. Autologous
BMMNC

improved motor function and reduced muscle

intrathecal transplantation also
spasticity in 4 children who had intracranial
hemorrhage during the neonatal period [23].
Yang et al. [24] repeatedly injected human
umbilical cord mesenchymal stromal cells into
the subarachnoid space for chronic SCI once a
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month for 4 months. Follow-up results showed
that the treatment was safe and effective, and
led to significant reductions in neurological
dysfunction and improved quality of life.

double-blind,
(involved 48 patients) of
(MSC)-neurotrophic
factor cells showed that the rate of disease

A randomized, placebo-

controlled trial

mesenchymal stem cell

progression, which is demonstrated by Revised
Amyotrophic Lateral Sclerosis Functional Rating
Scale (ALSFRS-R) slope change, in the overall
study population was similar in treated and
placebo participants, and even a higher
proportion of treated participants was significant
in rapid progressions at 4 and 12 weeks [25].
(This paper was published in the end of
December 2019, and was missed in the 2019

Yearbook of Neurorestoratology)

4.2 Neurostimulation/neuromodulation and
the brain-computer interface

Brain-computer interface  (BCI) research
advanced significantly in 2020. Beauchamp et al.
[25] showed that stimulating electrodes can
traces shapes on the visual cortex surfaces in
both sighted and blind participants to allow
accurate recognition of western letter and
Chinese characters. This means that a brain
prosthetic can produce coherent perceptions of
visual forms [26].

Shi et al. [27] applied steady-state visual
evoked potential (SSVEP) based BCI for a
patient with amyotrophic lateral sclerosis (ALS).
They developed a personalized BCI design for
this patient to achieve computer input with high
accuracy and reasonable speed, which was
practical and efficient enough to provide a means
to communicate for patients with ALS [27].

Ortiz-Catalan et al. [28] reported the use of a
bone-anchored, self-contained robotic arm with
both sensory and motor components over 3 to 7
after transhumeral

years in 4 patients

Journal of Neurorestoratology
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amputation. Daily use of this prosthesis resulted
in increasing sensory acuity and effectiveness in
work and other activities of daily life. No
serious adverse events, infections, bleeding, or
discontinuation of use of the prosthesis due to
adverse events occurred as a result of the
[28]. This
prosthesis allowed extraction of control signals

implants neuromusculoskeletal
from electrodes implanted on viable muscle
tissue and stimulation of severed afferent nerve
fibers to provide somatosensory feedback [29].
Patients using the prostheses adapted and
integrated the technology into functional and
social arenas of daily living, with positive
psychosocial effects on self-esteem, self-image,
[30].
between wusers and sensate neural-machine

and social relations The relationship
interface prostheses is dynamic and changes
with long-term use. The presence of touch
sensation had a near-immediate impact on how
the users operated their prostheses. Participants
more appropriately integrated their prostheses
into their body images after the take-home
period [31].

Ganzer et al. [32] reported that a patient with
a clinically complete SCI used a BCI to control
motor function and to sense touch. Using the
closed-loop demultiplexing BCI, he regained
to detect
improved several sensorimotor functions [32]. A

ability touch and significantly
patient with SCI at-level pain was treated by
peripheral subcutaneous field stimulation (PSFS)
during 5-year follow-up, which may be the
longest published follow-up of PSES therapy
[33].

neuropathic pain and sensory impairment,

In a patient with severe refractory
high-frequency spinal cord stimulation (SCS),
considerably reduced his pain [34].

In two participants with chronic complete loss
of motor and sensory functions below thoracic-
level SCI, epidural spinal electrical stimulation
enhanced seated reaching-performance [35].
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Pena Pino et al. [35] reported that sustained

spontaneous volitional movement without
active stimulation even in participants with
chronic and complete SCI after long-term
epidural SCS [36]. This means “complete” SCI is
not as commonly believed and that preserved
pathways may contribute to epidural SCS or
other

recovery in clinically motor-complete SCI.

neurorestorative therapies mediated
indicate that transcranial
(tDCS) is a

noninvasive brain stimulation technique that

Several studies

direct current stimulation
can be used effectively to treat neurological or
neuropsychiatric disorders, including poststroke

aphasia [37-40], primary progressive aphasia

[41], postanoxic leukoencephalopathy [42],
disorders of consciousness [43, 44], high autistic
traits [45], schizo-obsessive disorder [46],

risk-taking behavior [47], prosocial decision
making [48], and chronic ankle instability [49].
Vagus nerve stimulation (VNS) remarkably
restored mental development and cardiac
autonomic function in two pre-school children
with refractory epilepsy. Another two patients
with intractable pediatric epilepsy due to
different gene mutations showed promising
epilepsy
with a minimally

effects on controlling
through VNS. Patients
conscious state also showed effects on recover-

refractory

ing consciousness and visual perception after
6-month VNS stimulation [34]. Lu et al. [50]
reported the clinical application of deep brain
stimulation in patients with primary PD.
Patients with PD could gain clinical efficiency

with optimizing stimulation parameters.

4.3 Neurorestorative surgery

Badhiwala et al. [51] published a pooled analysis
of individual patient data derived from 4
data
sources showed that surgical decompression

independent, prospective, multicenter

within 24 hours of acute SCI was associated



with improved sensorimotor recovery. Yama-
waki et al. [52] showed that elbow flexion
reconstruction using concomitant nerve transfer
from the median and ulnar nerves did not
improve the touch sensory deficit in fingers.

A retrospective study including 325 patients
with adult traumatic brachial plexus injury
found that nerve injury with vascular injury
leads to worse functional outcomes after
reconstructive surgery than without vascular
injury [53]. Pages et al. [54] showed that brachial
could be

structurally restored by nerve reconstruction,

plexus injury functionally  or
with early nerve surgery yielding satisfactory
functional outcomes. Patients younger than 30
years old and those operated upon earlier than 6
months from the accident having better
functional recovery [55] through intercostal
nerve transfers [56]. Generally, patients with
distal nerve transfers had faster motor recovery
and better elbow flexion power than patients
with intercostal nerve transfers. However, there
were no significant differences in motor
outcomes between two nerve transfer methods
for patients with upper-type brachial plexus

injuries [57].
4.4 Pharmaceutical neurorestorative therapy

Hajjar et al. [58] studied neurocognitive effects
of candesartan versus lisinopril in older adults
with mild cognitive impairment (MCI) in
randomized clinical trial and found that 1-year
treatment of older adults with candesartan
resulted superior neurocognitive outcomes
compared with lisinopril. Two aducanumab
phase III clinical trials of AD were stopped
prematurely by Biogen, but post hoc analyses led
the sponsor to assert the trial provided a
sufficient efficacy signal to justify a new drug
application as a treatment for AD. Biogen plans
to conduct another phase III trial with high-dose

aducanumab for AD [59].
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Nerinetide is a neuroprotectant that improve

recovery in preclinical stroke models of
ischemia-reperfusion, but it did not increase the
proportion of patients achieving good clinical
outcomes after endovascular thrombectomy
compared with patients receiving placebo in a
multicenter, double-blind, randomized controlled
trial (RCT) [60]. Oral fluoxetine 20 mg daily for 6
months after acute stroke did not improve
recovery of neurological function or functional
outcome in randomized, double-blind, placebo-
controlled trials [61-63]. Mullard [64] reported
that three anti-tau antibodies (semorinemab,
gosuranemab, and ABBV-BE 12) in AD failed to
These

consistent with data suggesting that tau protein

show positive results. results are
is the result of AD neurodegenerative process,
but not its cause.

Honjo et al. [65] retrospectively analyzed the
scores of pharmacological and nonpharma-
cological treatments of AD after 12 months.
They found that mild or moderate AD
progressed more rapidly than moderate-to-
severe AD treated with medical interventions
that suppressed the progression of advanced
AD more than mild AD. Ton et al. [66] reported
that continuous dietary supplementation with
milk fermented with kefir grains could improve
cognitive function in the patients with AD.
These mechanisms of this treatment may be
reduction of systemic inflammation, oxidative
stress, and blood cell damage [66]. But RCTs are
necessary to confirm these findings. Eptinezumab
has demonstrated efficacy, tolerability, and
safety in patients with episodic and chronic
migraine and received approval by the US Food
and Drug Administration (FDA) as a medicine
for migraine prevention [67]. Ocrelizumab is a
monoclonal antibody and is effective in treating
both relapsing multiple sclerosis (RMS) and
primary progressive multiple sclerosis (PPMS).
Based on these results, ocrelizumab was the first

Journal of Neurorestoratology
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drug to be approved for PPMS and RMS by US
FDA [68].

4.5 Bioengineering and tissue engineering
therapy

Bioengineering and tissue engineering are at the
frontier of neurorestoration. Nutt et al. [69]
reported that aromatic L-amino acid decar-
boxylase gene therapy enhanced levodopa
in PD, which
responses to intravenous levodopa. Postmortem

response improved motor
studies on two patients with advanced PD 8 and
10 years after adeno-associated virus serotype 2
(AAV2)-neurturin gene therapy found no
difference Lewy pathology in treated and
untreated control patients with PD, possibly due
to the [70].

Analyzed postmortem, Castle et al. [71] found

limited neurturin expression

AAV2-nerve growth factor did not directly
engage the target cholinergic neurons. Thus, it
remains uncertain whether growth factor gene
therapy was ineffective for AD.

Li et al. [72] showed that nerve repair
membrane derived from xenogeneic decellu-
larized nerves retained the main extracellular
matrix components had good biocompatibility,
and repaired transected sciatic nerve in
preclinical studies. A clinical trial using this
membrane is underway, test its effect on
peripheral nerve

disruption and nerve

compression syndromes [72].

4.6 Other relevant findings

The purpose of day services (DS) is to help

elderly individuals maintain mental and
physical functions, and a study found that DS
use after 6 months significantly improved the
cognitive function of patients with AD [73].
Andreassen et al. [74] reported beneficial effects
of an interactive digital calendar with mobile
(RemindMe) to

everyday life for patients with acquired brain

phone reminders support
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injury. The results showed that using reminders
in activities in everyday life could support their
autonomy [74].

Hachmo et al. [75] tested the effect of
hyperbaric oxygen therapy (HBOT) exposures
(TL),
concentrations in 35 healthy independently

on telomere length senescent cell
living adults, aged 64 and older. They found
that 60 daily HBOT induced significant senolytic
effects, including significantly increasing TL and
clearance of senescent cells in the aging

populations.

4.7 Comprehensive therapy

A randomized clinical trial of sequential
psychological and medication therapies for
insomnia disorder showed that behavioral
therapy and zolpidem medication produced an
equivalent response and remission rates.
Adding a second treatment may help those
whose insomnia failed to remit with initial
therapies [76].

Activity-based recovery training in combina-
tion with epidural stimulation of the spinal cord
(scES) for 85 individuals with bladder control
dysfunction after SCI resulted in improvements
in overall bladder storage parameters compared
to a control cohort. Because the functional
relationship between urinary bladder distention
and blood pressure regulation was disrupted,
both bladder and cardiovascular function by
intersystem stimulation and integrating scES
may further improve bladder storage [77].

Krucoff et al. [78] reported an individual with
chronic complete L1 paraplegia due to conus
medullaris injury preceded with SCS implan-
tation and rehabilitation. His motor zones of
partial preservation went down from L1 to L5
on the left and from L1 to L3 on the right 18
months after implantation; his lower extremity
exhibited qualitative increases in electromyo-

graphy amplitudes, and his three validated



functional and quality of life surveys
substantially improved.

4.8 Guidelines

Standards and guidelines are important

instructive documents for the clinical practice of
neurorestoratology. The Chinese Association of
Neurorestoratology (Preparatory) and the China
Committee of International Association of
Neurorestoratology made or revised, and
approved 4 sets of guidelines or standards. Of
them, Clinical diagnostic and therapeutic guidelines
of stroke neurorestoration (2020 China version) [79]
provides therapeutic recommendations for
neurorestoration during different stroke stages.
These recommendations will hopefully improve
survival and quality of life for stroke patients.
Clinical neurorestorative therapeutic guideline for
brainstem hemorrhage (2020 China version) [80]
provides standardization of diagnosis and
neurorestorative treatments for brain stem
hemorrhage. Standards of clinical-grade olfactory
ensheathing cell culture and quality control (2020
China version) [81] and Standards of clinical-grade
mesenchymal stromal cell preparation and quality
(2020 China wversion) [82]

standardized procedures,

control make all
including donor
evaluation, sample collection, cell culture, cell
testing, packaging marks, storage,
transportation, and quality control, and also
training and management procedures of
laboratory operators, use and management of
materials and equipment, and etc. for OECs and
mesenchymal stromal cells. These standards and
guidelines are instructive documents of clinical
practice for Chinese physicians, and are
valuable references for global clinicians in
Neurorestoratology and its related disciplines.
Undoubtedly, these standards/guidelines will
promote further the development of Neurores-

toratology.

Journal of Neurorestoratology

5 Summary

The unforgettable year 2020 has passed, and we

experienced a challenging time due to
COVID-19. However, clinicians and scientists
working in Neurorestoratology worldwide and
its related disciplines still achieved many
exciting results from basic, preclinical, clinical
research, and enhanced scientific support for
evidence-based medicine. Those developing
strategies have been used to improve the quality
of life for patients with neurological diseases.
Hopefully, the epidemic will be under control
during this New Year, and our discipline will

achieve even greater results.
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