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Abstract

Diffusion-weighted magnetic resonance imaging (DW-MRI) is a non-invasive technique that

is sensitive to microstructural geometry in neural tissue and is useful for the detection of neu-

ropathology in research and clinical settings. Tensor-valued diffusion encoding schemes (b-

tensor) have been developed to enrich the microstructural data that can be obtained through

DW-MRI. These advanced methods have proven to be more specific to microstructural

properties than conventional DW-MRI acquisitions. Additionally, machine learning methods

are particularly useful for the study of multidimensional data sets. In this work, we have

tested the reach of b-tensor encoding data analyses with machine learning in different histo-

pathological scenarios. We achieved this in three steps: 1) We induced different levels of

white matter damage in rodent optic nerves. 2) We obtained ex vivo DW-MRI data with b-

tensor encoding schemes and calculated quantitative metrics using Q-space trajectory

imaging. 3) We used a machine learning model to identify the main contributing features

and built a voxel-wise probabilistic classification map of histological damage. Our results

show that this model is sensitive to characteristics of microstructural damage. In conclusion,

b-tensor encoded DW-MRI data analyzed with machine learning methods, have the poten-

tial to be further developed for the detection of histopathology and neurodegeneration.

Introduction

Non-invasive inference of tissue microstructure is made possible through diffusion-weighted

magnetic resonance imaging (DW-MRI) [1]. This valuable technique characterizes cerebral

microstructure, connectivity, plasticity, development, and diverse pathologies. The need to

find clinical standardized DW-MRI biomarkers in healthy and pathological neural tissue has

driven more research in this field [2, 3]. Classical DW-MRI techniques (i.e., those encoding

diffusion through a single pair of pulsed gradients) have shown sensitivity to nervous tissue

damage but not specificity to diverse histopathological forms [3]. Multidimensional diffusion

encoding (MDE) DW-MRI [4] techniques were developed to address this situation.
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Specifically, the b-tensor encoding technique [5] provides a solid framework to acquire multi-

dimensional diffusion data. It has been used in controlled environments with simulations [6],

healthy tissue [7], and in presence of pathology [8–10].

One of the main advantages of using b-tensor encoding acquisitions is that the complex

information in the data is suitable for advanced diffusion models or signal representations. In

the diffusion tensor distribution (DTD) model [4], a collection of micro-diffusion tensors with

different shapes, sizes, and orientations describes microstructure. The Q-space trajectory

imaging (QTI) method [5] extracts metrics from b-tensor encoding images to characterize the

behavior of the DTD. Such complex micro-structural models are not attainable through stan-

dard DW-MRI acquisitions. Thus, MDE DW-MRI potentially describes neuropathological

changes in detail. However, relatively few studies have used this technique for this purpose [11,

12].

In addition to novel DW-MRI acquisition methods, machine learning (ML) algorithms

have revolutionized technological and scientific advancement in practically all fields. In bio-

medical imaging, there are multiple examples of ML applications like automatic image seg-

mentation, data processing, MRI reconstruction, etc. In DW-MRI, ML techniques have been

used for data pre-processing [13, 14], estimation of diffusion parameters [15–19], automatic

white matter bundle segmentation [20], among other applications (for a review, see [21]).

There are still, however, several opportunities for clinical applications and improvements in

the detection of histopathology.

This work aims to evaluate the accuracy of ML for the classification of various degrees of

white matter tissue damage based on metrics derived from QTI in an animal model. To this

end, we performed experimental manipulations that induced histopathological changes in the

optic nerve and obtained b-tensor encoding images ex vivo. Histological evaluation of the spec-

imens provided the ground truth for a ML classifier, accounting for severity and spatial extent.

We also identified the most relevant features used by the classifier. Finally, we show the mod-

el’s utility for detecting neurological damage on a probabilistic classification map.

Materials and methods

Animals

We used adult male Wistar rats for this study (weight: 354±59 g). Animals were held in a vivar-

ium room under normal light/darkness conditions with controlled temperature and humidity.

Animals had ad libitum access to food and water. The study was approved by the Bioethics

Committee of the Institute of Neurobiology, Universidad Nacional Autónoma de México

(protocol 096.A) under NOM-062-ZOO-1999 federal law. All procedures were performed in

compliance with ARRIVE guidelines.

Animal surgery

Normal rats were used to induce different forms of white matter pathology (Fig 1). Rats were

anesthetized with a ketamine/xylazine mixture (70mg/kg and 10mg/kg ip) and placed on a

well-illuminated surface. For each animal the right optic nerve was injured while the left one

remained intact. This allows a direct comparison between subjects and between groups. Rats

were divided into four different procedures as follows:

1. Axonal degeneration (n = 6). Induced through unilateral retinal ischemia [22, 23]. Animals

were placed in a stereotaxic frame. A 32-gauge needle was inserted into the anterior cham-

ber of the right eye of each rat, and connected to a reservoir with saline solution that was
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elevated until an in-line pressure monitor indicated 120 mmHg (higher than systolic pres-

sure); this pressure was maintained for 90 min.

2. Inflammation (n = 9). Elicited through injection of 1μl of lipopolysaccharide (LPS, 4.5 μg/

μl; Sigma-Aldrich) in the optic nerve [24]. A small lateral incision behind the eye was per-

formed. Then, lacrimal glands and extra-ocular muscles were dissected to expose the optic

nerve. Using a 32-gauge needle coupled to a Hamilton syringe, the injection was done

approximately 1 cm rostral to the optic chiasm. After careful and slow manual injection, the

needle was left in place for approximately 1 min to avoid reflux. The skin was sutured and

topical antibiotics were administered. Animals were allowed to recover from anesthesia and

placed in their cages until perfusion.

3. Saline solution injection (n = 9). This group was used to evaluate the mechanical damage

produced solely by needle insertion. The procedure was identical to that of the previous

group, but the injection consisted of 1 μl of saline solution.

4. Control (n = 8). Healthy animals with both optic nerves intact.

Fig 1. Experimental design. Axonal degeneration or inflammation of the right optic nerves was induced in vivo through retinal

ischemia or LPS injection, respectively. Additionally, saline solution was injected into a group of animals to evaluate mechanical

damage. Animals were sacrificed ten days after experimental procedures, tissue was fixed, and the brains and optic nerves were

extracted. b-tensor encoding DW-MRI images were acquired ex vivo.

https://doi.org/10.1371/journal.pone.0282549.g001
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Brain extraction

Ten days after the surgical procedure, all the animals were deeply anesthetized using an intra-

peritoneal overdose of sodium pentobarbital. Animals were transcardially perfused with 0.9%

sodium chloride followed by paraformaldehyde (4%) glutaraldehyde (2.5%) solution. Brains

were carefully extracted leaving at least 1 cm of optic nerves intact. Specimens were post-fixed

in fresh 4% paraformaldehyde solution at 4˚C until scanning day.

Following previous reports from our group (e.g. [23]), we did not rehydrate tissue prior to

scanning. Recent work has shown that tissue rehydration increases T2 without altering the dif-

fusion coefficient of white matter [25, 26]. While a longer T2 has the potential to increase the

signal-to-noise ratio, our long acquisition protocol using a Helium-cooled coil (see below)

produced high-quality images despite the lack of rehydration of tissue.

Imaging

Brains were scanned 15±10 days post-extraction. The most distal portions of the optic nerves

were attached to the ventral side of the olfactory bulbs by using cyanoacrylate to prevent the

optic nerves from floating during the scan. To achieve a reduced field of view for DW-MRI,

we carefully dissected and kept the basal portion of the brain. These specimens were immersed

in Fluorinert (FC-40, Sigma-Aldrich) and allowed to rest for 4 h at room temperature before

scanning. Acquisition protocols were carried out at the National Laboratory for Magnetic Res-

onance Imaging using a 7 T Bruker Pharmascan with 760 mT/m gradients and a Cryoprobe.

The scanning room temperature was 21±1˚C, and the Cryoprobe’s heated ceramic head

mount was set at the same temperature. DW-MRI images were acquired using the available

sequence in the Preclinical Neuro MRI repository (https://osf.io/ngu4a), which is based on a

2D spin-echo sequence with a single k-space line readout for each TR. Voxel resolution was

80 × 80 × 1000 μm3. Other MRI parameters include: TR = 1500 ms, TE = 30.9 ms, two aver-

ages, flip angle = 79˚, scan time = 16 h.

DW-MRI images were obtained with b-tensor encoding based on a previously described

protocol [7]; specific modifications were done for our ex vivo setting. The protocol consists of

three different gradient waveforms to obtain linear, planar, and spherical tensor encodings

(LTE, PTE, and STE, respectively). STE and PTE waveforms were optimized and Maxwell-

compensated [27] using NOW toolbox [28]. LTE waveforms were extracted from the opti-

mized STE waveforms to obtain similar gradient spectral characteristics between waveforms

[29]. All waveforms had the same duration (δ1 = 9.8, δ2 = 10.4, separation time = 5.72 ms), and

each one was scaled in gradient magnitude to achieve four different b-values (0.5, 1.4, 2.8 and

4 ms/μm2). The STE waveform was rotated to obtain 10 directions for every b-value. Rotating

the STE waveforms results in the same spherical b-tensor, but this redundancy ensures the

robustness of data processing [7]. LTE and PTE waveforms were rotated to obtain [10, 10, 16,

46] directions for each corresponding b-value. S1 Fig shows the waveforms and protocol used

in this experiment.

Image data preprocessing

The acquired images do not present many artifacts because of the long spin-echo based acqui-

sition. Since the high b-value shells (4 ms/μm2) are noisy, the only preprocessing step needed

was denoising, which we achieved through Marčenko-Pastur principal component analysis

[30, 31] as implemented in mrtrix3 (version = 3.0.0) [32]. Examples of final images for each

encoding acquisition are shown in S2 Fig. Regions of interest (ROIs) for experimental and

control optic nerves were manually drawn in 3 to 4 slices per nerve (92 ± 25 voxels for each

nerve).
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Analysis of b-tensor encoded DW-MRI

We used QTI analysis to extract eight microstructural measures from the obtained b-tensor

encoding images. Four of them capture the macroscopic behavior of the DTD ensemble and

are akin to those from diffusion tensor imaging (DTI) [33]: 1. Fractional Anisotropy (FA). 2.

Mean diffusivity (MD). 3. Axial diffusivity (AD). 4. Radial diffusivity (RD).

The following four QTI metrics capture the microscopic behavior of the DTD ensemble

and are only achievable through methods such as b-tensor encoding:

1. Micro fractional anisotropy (μFA). Measures the average microscopic anisotropy of all ten-

sors in the DTD.

2. Orientation coherence (Cc). Measures the level of orientation coherence of the micro ten-

sors in the DTD.

3. Isotropic kurtosis (Ki). Quantifies the kurtosis produced by the size variance of the micro

tensors in the DTD.

4. Anisotropic kurtosis (Ka). Quantifies the kurtosis produced by the microscopic anisotropy.

We obtained QTI metrics using the implementation in QTI+ [34]. Standard QTI imple-

mentation is biased to complex microstructure [6], whereas QTI+ provides a more stable solu-

tion to the DTD fitting optimization problem and achieves smoother and more precise maps

than QTI [34]. We used the default settings for QTI+ [35]. To avoid regions where QTI fitting

was poor, we excluded voxels (6.8% of all data) where any of the QTI metrics resulted in values

outside their valid range: Normalized metrics (FA, μFA) should lie between 0 and 1, and kurto-

sis metrics (Ki and Ka) should be between 0 and 5.

Histology

Following DW-MRI acquisition, specimens were returned to 4% paraformaldehyde solution

and kept at 4˚C until processing. Briefly, the optic nerves were separated from the basal por-

tion of the brain and were washed with buffered sodium cacodylate (0.1 M) and glutaraldehyde

(3%). Then, they were stained with osmium tetroxide (0.1%), washed with cacodylate buffer

(0.1 M), and dehydrated with ethyl alcohol at different concentrations (10%, 20%, 30%, until

absolute). Next, samples were embedded in a 1:1 epoxy resin/propylene oxide solution for 12

h. For polymerization, samples were placed in a plastic container with epoxy resin and kept at

60˚C for 36 h. Finally, each block was sectioned (600 nm thick) using an ultramicrotome

(RMC PowerTome PT XL). Slices were stained with a toluidine blue/sodium tetraborate solu-

tion (both 5%). Toluidine blue stains a wide variety of nuclear, cytoplasmic, and intercellular

matrix structures [36, 37]. Because of its polychromatic nature, nuclei and ribosomes are both

stained deep blue, while membranous structures are stained blue-green. Other components

are stained deep blue (e.g. collagen) or pale green-to blue (e.g. basal laminae). The addition of

osmium tetroxide provides clear staining of membranes and lipid-rich myelin sheaths [38, 39]

Photomicrographs were obtained with a Leica DM750 microscope (equipped with a 5M

pixels digital camera) with 10x and 100x objectives, and an Amscope T690C-PL microscope

(equipped with a 10M pixels digital camera) with a 40x objective. We transformed the images

to 16-bit grayscale and digitally enhanced their contrast using Fiji [40] (version = 2.9.0).

Images with the 40x lens were stitched using the stitching plug-in [41] available in Fiji.

Machine learning pipeline

Visual inspection of the photomicrographs revealed histological patterns that overlapped

between experimental groups (see Histological evaluation). Histopathological features
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secondary to inflammation and degeneration were compounded by mechanical damage

caused by the injection of either saline solution or LPS. We therefore chose to (i) reformulate

the classification labels for the ML pipeline into histological classes that reflect different types

of histopathological damage (Intact, Injured, and Injured+) and (ii) analyze voxels of the

regionally affected nerves, identified as the Regional pattern (see Fig 2). The number of voxels

included in this analysis was 821, 561, 374, and 731 (Intact, Injured, Injured+, and Regional,

respectively).

Fig 3 shows a diagram with the ML pipeline. QTI+ data from Intact, Injured, and Injured

+ classes were used for the train/test set in the ML pipeline in a voxel-wise fashion (A). We

trained a random forest model [42] (B) (80/20% fold) and conducted a feature relevance analy-

sis with Gini importance [42] using scikit-learn (version = 1.1.2, https://scikit-learn.org). We

tuned the hyperparameters for the random forest model using the grid search method in sci-

kit-learn with cross-validation (k = 4) enabled. The optimized hyperparameters are: number of

estimators [trees]=100, maximum depth = 6, splitting criteria = Gini impurity, minimum

number of samples required to be at a leaf node = 2, minimum number of samples required to

split an internal node = 7. The rest of the hyperparameters have the default values defined in

scikit-learn (version = 1.1.2). We classified each voxel in the Regional nerves with this model

(C and D). The resulting probability of class membership is visualized as a composite red-

green-blue (RGB) map (E), with each channel representing a tissue class: Intact:Blue, Injured:

Green, and Injured+:Red.

Feature relevance analysis is a complex subject with potential caveats. Previous work indi-

cates that Gini importance has two main problems: First, it tends to be biased towards features

with high cardinality [43]. This, however, does not apply to our data because they are on a con-

tinuum. Second, Gini importance reports statistics related to the training set [42]. Thus, we

also performed a feature relevance analysis by permutations on the test set [42]. After we

reported the accuracy/F1-Score results and feature analysis with the test set, we calculated a

bootstrapped estimator to determine the variance of the permutation feature analysis and

checked if the order of relevance in our results remained the same. To this end, we randomly

permuted the train/test partitions to perform 200 different experiments (using the same opti-

mized hyperparameters reported for the random forest model) to evaluate the reproducibility

of the permutation feature relevance analysis. We emphasize that this analysis was done after

the main analysis with the train/test set that is reported in the Machine learning pipeline

(Machine learning classification), and its only purpose is to check feature analysis biases

related to the original train/test partition.

Results

Experimental labels for DW-MRI data

Quantitative maps derived from QTI+ showed asymmetry between the intact and experimen-

tal nerves for most metrics (Fig 4). Fig 5A shows the per-animal average difference between

the intact (left) and experimental nerve (right), indicating considerable differences between

the two nerves. However, diffusion metrics from nerves in the experimental conditions (Fig

5B) showed a noticeable overlap. Fig 5C presents the overall diffusion metrics distribution for

all voxels by experimental groups.

Histological evaluation

Histological examination of sections stained with toluidine blue (see Histology) showed that

retinal ischemia induced diffuse axonal degeneration and mild gliosis. Nerves injected with

LPS also had reductions of axonal density and more glial cell infiltration. There was evidence
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of independent mechanical damage, as saline solution injections led to axonal degeneration

and gliosis ranging from mild to severe. Moreover, while retinal ischemia induced tissue injury

mostly in a spatially homogeneous fashion, nerves treated with either type of injection pro-

duced damage either homogeneously or only within confined regions of the nerve, with some

areas showing damage and others displaying a nearly intact structure. Thus, we manually

labeled each nerve based on the type and spatial pattern of histopathology, as (1) Intact; (2)

Fig 2. Labeling system based on histological patterns. Classes were assigned to each nerve after visual examination of

histology, based on the spatial pattern and type of histological characteristics. The left column represents the

experimental procedures, while the right column indicates the labels used for the identification of tissue types based on

diffusion properties. There were five specimens without histological data available (not included in analyses). Line

thickness represents the proportion of nerves mapping from experimental to histological labels.

https://doi.org/10.1371/journal.pone.0282549.g002

Fig 3. Diagram of the machine learning pipeline. We used the QTI+ data for all voxels labeled according to histology (Panel A: each

color-coded data point represents a voxel) as input to train/test the random forest model (B). We classified each voxel of the regionally-

affected nerves (Regional) (C) into histological damage classes (D). Finally, we projected the classified data back into an anatomic RGB

map that quantifies tissue damage (E).

https://doi.org/10.1371/journal.pone.0282549.g003
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Injured: characterized by globally reduced axonal density; (3) Injured+: displaying homoge-

neous and profound axonal loss and severe infiltration of glial cells and macrophages with

foamy appearance; and (4) Regional, with different regions of the nerves showing one of the

three histological types (Fig 2). There were five specimens with no histological data available

and were therefore excluded from all analyses. This classification system allowed us to perform

a spatial assessment of microstructural damage produced by the experiments (i.e., we used the

diffusion properties of the Intact, Injured, and Injured+ classes to identify the corresponding

histological patterns in the regionally affected nerves). Photomicrographs in Fig 6 show exam-

ples of the histopathological patterns identified. Panel A is a prototypical Intact nerve, charac-

terized by a large number of axons with clearly-defined myelin sheaths and bright intra-axonal

space, interspersed with angular glial cell processes. Panel B shows an Injured nerve, displaying

reduced axonal density, numerous collapsed axons with dark intra-axonal space (green

arrow), and reactive glial cells with large, amoeboid processes. Panel C shows an Injured+

Fig 4. Q-space trajectory imaging contrasts. A) Anatomical atlas reference (adapted from [44]). DW-MRI images

were obtained from the portion of the brain specimen indicated by the dashed blue box. B) Example of denoised

DW-MRI image with spherical b-tensor encoding (b = 2.8 ms/μm2) from the Ischemic group. C) Enlarged images

corresponding to the orange rectangle in panel B. QTI metrics for control (left) and experimental (right) optic nerves.

Abbreviations: fractional anisotropy (FA), microscopic fractional anisotropy (μFA), orientation coherence (Cc), mean

diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), isotropic kurtosis (Ki) and anisotropic kurtosis (Ka).

https://doi.org/10.1371/journal.pone.0282549.g004
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nerve, nearly devoid of axons with a considerable amount of glia in a reactive foamy state (red

arrow). S3 Fig provides further examples of these histopathological characteristics. Lastly,

panel D shows a Regional nerve, with large and clearly delimited regions that can be described

with the three aforementioned classes. As noted in Figs 2 and 3, this histological-type classifi-

cation was used to perform a voxel-wise ML-based classification from QTI+ metrics.

DW-MRI metrics based on histological labels

A voxel-wise inspection according to the histology-based classes of the right (experimental)

nerves revealed differences in the distributions for QTI metrics in groups (Fig 7A). Albeit their

large overlap, it is possible to visually separate the distributions. Group-wise analyses (Fig 7B)

showed considerable alterations of QTI metrics in all histopathological types, characterized by

reduced FA, AD, μFA, and Cc, and increased radial diffusivity and isotropic kurtosis (Ki).

Mean diffusivity showed slight reductions in the Injured and Injured+ conditions.

Machine learning classification

We trained a random forest model for the voxel-wise classification of histopathological classes

in nerves identified as having Regional abnormalities, according to the pipeline in Fig 3. The

overall classification accuracy was 80.11% and an F1-score of 79.4% (with a weighted average

for multiclass classification) to distinguish between the three histopathological classes. Fig 8A

shows the confusion matrix for the classification of the test data set. Fig 8B shows the results of

the feature relevance analysis. FA and AD (derived from QTI in this work, but also possible to

calculate with DTI) are the two most relevant features for the ML model. S4 Fig shows the per-

mutation feature analysis and the bootstrapped feature analyses, which confirmed the rele-

vance of FA, AD and Cc for classification, in that order.

Fig 5. Q-space trajectory imaging metrics by experimental group. A) Intact (Left) vs Experimental (Right) optic nerves. Data points correspond to

the average values of all voxels of each optic nerve, per subject. Lines connect the two optic nerves of each subject. B) Right (experimental) optic nerves’

metrics color-coded according to the experimental procedure. Semi-transparent markers show average values per animal; average values for each

experimental condition are indicated as large solid markers. C) Violin plots for the different experimental groups for each QTI metric.

https://doi.org/10.1371/journal.pone.0282549.g005
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In addition to illustrating the classification pipeline, Fig 3D shows voxels from Regional

nerves classified with the ML method. Fig 3E shows an example of classified voxels as an RGB

map. The majority of voxels within left nerves (Intact) are correctly classified (blue–Intact).

The right (experimental) nerves show most of the voxels identified as Injured, with spatial pat-

terns that correspond to histology (see Fig 6).

Fig 6. Histopathological patterns after experimental procedures. A: Intact nerve with a large number of axons and narrow glial processes. Axons

show bright axoplasm and dark surrounding myelin sheaths (blue arrow). B: Injured nerve with collapsed axons (green arrow), reduced number of

viable axons, and gliosis. C: Injured+ nerve with very few axons and large reactive glial processes with foamy interior indicative of myelin degradation

(red arrow). D: Regional nerve showing clearly separated areas (dashed white line) of either of the three histological patterns. The areas in the Regional

nerves have characteristics of the Intact, Injured, and Injured+ classes, making them a suitable fit for a machine-learning classification problem.

Photomicrographs of whole nerves acquired at 10x magnification; photomicrographs in colored squares acquired at 100x magnification.

https://doi.org/10.1371/journal.pone.0282549.g006
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An example voxel-wise classification of a single nerve (LPS injection and identified as

Regional, see Fig 2) shows the algorithm is sensitive to microstructural degeneration (Fig 9).

Voxels identified as Injured and Injured+ are larger in number in rostral slices (i.e., nearest to

the injection site), with more caudal slices gradually showing more voxels classified as Intact.

Fig 7. Q-space trajectory imaging metrics by the histology-based label. A) Voxel-wise scatter plots according to the histology-based labeling system.

Metrics from the Intact class (blue) are clearly different from those of the experimental classes. Metrics from Injured and Injured+ classes are

overlapped but still separable. The Regional class, being composed of areas of either Intact or any of the two injured classes, shows diffusion metrics

distributed across the metrics space. B) Violin plots for the histology-based labels for each QTI metric.

https://doi.org/10.1371/journal.pone.0282549.g007

Fig 8. Machine learning results. A: Confusion matrix for classification in the test set. B: Feature relevance from the random forest.

QTI-derived FA and AD (which can also be derived from DTI), are highly important for classification. With the exception of Cc,

metrics exclusively derived from QTI are less relevant.

https://doi.org/10.1371/journal.pone.0282549.g008
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Notably, photomicrographs of the same nerve at approximately the same levels as the

DW-MRI exhibit similar spatial patterns of injury and corresponding histopathological classes

as identified by the random forest. The vast majority of voxels in the left (intact) nerves are

correctly identified as Intact. S5 Fig shows three more examples of correct histopathological

damage classification.

Discussion

In this work, we explore the synergy of QTI metrics and ML for the non-invasive identification

of white matter histological damage. Our data show that these metrics are sensitive to altered

histological patterns. Three metrics (two that can also be derived using DTI and one exclusive

to multidimensional encoding methods) were the most relevant for the accurate classification

Fig 9. Voxel-wise classification of histological patterns. Rat histological example data showing Regional damage of the left and right (experimental)

nerves. The two optic nerves are shown in three different slices in rostro-caudal order. Photomicrographs of the same experimental nerve at

approximately the same locations show clearly demarcated areas of Injured and Intact histological patterns, that correspond to the voxel-wise

classification of the DW-MRI of the experimental nerve. The few voxels incorrectly classified as Injured in the left (control) nerve likely result from

partial volume effects.

https://doi.org/10.1371/journal.pone.0282549.g009
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of tissue damage. Notably, the metric achievable only through b-tensor encoding further

improved the results obtained from the ML pipeline.

The optic nerve has been widely used to evaluate white matter changes through DW-MRI.

A common approach is to induce retinal ischemia that results in Wallerian degeneration of the

retinal ganglion cells and their axons throughout the lesioned nerve, which reflects as specific

patterns of diffusion abnormalities [23, 45]. Differentiation between inflammation and axonal

degeneration through DW-MRI is an active topic of research. However, we did not observe

major differences between optic nerves mechanically damaged by the injection of saline solu-

tion, and those injected with LPS with the intent to induce inflammation, as both showed axo-

nal degeneration and gliosis of various degrees of severity. For this reason, this study focused

on examining the levels of severity of histopathology using ML methods, with the aim to

improve the diagnostic yield of DW-MRI.

Injections of the nerve produced enough tissue damage to reduce FA, similar to the reduc-

tions caused by retinal ischemia (Fig 5) [23, 45]. Decreased μFA was also observed in all experi-

mental conditions, indicative of an increase in isotropic diffusion profiles from the axonal loss

produced by retinal ischemia and tissue damage induced by injection of optic nerves (Fig 6).

This observation agrees with previous literature that suggests axonal loss decreases μFA [5, 8,

46]. Coherence, as seen with Cc, was also reduced in all affected nerves, which fits the observed

tissue disorganization of the experimental nerves. We hypothesize that in addition to the loss

of coherence, infiltration of glial cells may further reduce both indices of anisotropy. Overall,

the metrics derived from QTI overlapped among the experimental conditions (Fig 5B). This

prevented us from establishing a clear differentiation between inflammation and axonal

degeneration. However, as discussed in Histological evaluation, our experimental groups

shared histopathological characteristics with overlapping diffusion profiles. For this reason, we

cannot conclude whether QTI is capable of differentiating both pathological events.

We observed that mechanical damage varied from subtle axonal degeneration to the annihi-

lation of the entire axonal population (Fig 6). We therefore re-classified our data based on his-

tological findings and their spatial extent (Fig 2), with the Injured nerves (characterized by

mild axonal population loss) and Injured+ (distinguished by strong axonal population loss

and foamy reactive glia that usually appear only in advanced stages of degeneration [47–49]).

In addition, many injected nerves showed a mosaic of Intact, Injured, and Injured+ histopa-

thologies, which we set out to automatically classify based on the diffusion profiles derived

from nerves with spatially homogeneous tissue characteristics. As we were working with com-

plex eight-dimensional data from thousands of voxels, this was an ideal setting for an ML

application.

Random forest models were selected because 1) they are less prone to overfit; 2) they are

easier to interpret (individual estimators–i.e., decision trees–in the model can be inspected

and interpreted); 3) the variance in the estimators provides resilience to (i) noise and (ii) poor

quality data points; and 4) feature relevance analysis is straightforward. We obtained similar

accuracy results when using other state-of-the-art ML methods like XGBoost [50] (accu-

racy = 80.38%) and neural networks [51] (accuracy = 80.68%). This indicates that classification

performance is more related to the nature of our data than to the classification algorithm used.

The overall accuracy performance of the automatic classification using random forest was

high (80%). While the best distinction performance was between Intact and the two Injured

classes, there was a modest success in the differentiation between the Injured and Injured

+ classes (Fig 8A). Confusion between the two degrees of injury may be due to axonal loss

(present in both types) acting as the main microstructural characteristic driving the measured

diffusion properties. Other DW-MRI modalities specific to glial cells [52] or combined with

other MRI modalities like spectroscopy [53] could explain these cases.
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Feature relevance analysis (Fig 8B) revealed that FA and AD are the most relevant diffusion

metrics to differentiate between tissue types. This was expected, as both are sensitive to the

overall loss of anisotropy in white matter capturing the main effect of degeneration. In regions

of white matter with coherent axons (such as the optic nerves), FA can be reduced by the loss

of microscopic anisotropy, reduced coherence of these microenvironments, or both. Hence,

DTI metrics are sensitive but not specific. We expected features exclusive to b-tensor encoding

to improve the classification algorithm by providing additional information, given their speci-

ficity to certain properties of microstructure [11]. In this light, Cc should capture the increased

axonal dispersion characteristic of white matter degeneration [54], while μFA would inform of

the reduction of microscopic anisotropy. Indeed, Cc was the third most important feature in

the analysis. Nevertheless, Cc is correlated to FA (Cc by QTI definition is the ratio of FA2 to

μFA2) and therefore contributes less to the classification problem if FA is already included in

the analysis. Repeating the same pipeline using only QTI features revealed that Cc is the most

relevant feature of the analysis, followed by μFA, while preserving a similar classification per-

formance (not shown). We hypothesize that gliosis reduces μFA in a similar pattern in all

experiments, thus decreasing its efficacy as a predictor. We had also expected Ki (related to the

variance of sizes in the DTD model [5]) to increase as a result of glial infiltration. Ka might

explain the loss of micro anisotropy in the medium and is also related to axonal loss. The rela-

tively low explained variance in the data by the kurtosis metrics may be attributed to the bias

secondary to the assumption of the DTD model that μK is equal to zero [55], which is not the

case in degeneration [56], and therefore Ka and Ki may both be absorbing this effect. In this

work using a ML algorithm trained with data from white matter with a single coherently-

aligned axonal population, features achievable with DTI (FA and AD) captured the main prop-

erties of neurodegeneration relevant to the classification. However, orientation coherence (Cc)

and μFA could be important factors for the detection and staging of neurodegeneration in

white matter regions with crossing fibers or in gray matter, where FA is confounded by the

complexity of tissue architecture.

There are some limitations in this study. First, the experimental procedures (particularly

those related to direct nerve injections) produced overlapping histopathologies. This precluded

the distinction between axonal degeneration and inflammation, and limited the interpretabil-

ity of our findings. In particular, we cannot conclude from our data whether QTI is capable of

resolving between those two histopathological processes. However, careful examination of his-

tological slides allowed us to differentiate between Injured and Injured+ classes based on the

presence of foamy glial cells and the extent of axonal loss, which were identified by the random

forest algorithm based on diffusion metrics. Future work should try to minimize confounding

factors introduced by mechanical damage of the tissue by utilizing other experimental

approaches. Second, other histological methods can improve the distinction between different

histopathological processes. We used toluidine blue for its ability to provide accurate morpho-

logical details, as seen in our previous work [23]. Nevertheless, tissue preparation for this stain

is incompatible with other histological methods, such as immunohistochemistry or immuno-

fluorescence of glial cells, that could give additional information for histopathology classifica-

tion. Third, the slice thickness of DW-MRI was large (1 mm). Thick slices were acquired to

improve the signal-to-noise ratio, but partial volume effects could introduce inaccuracies in

the estimation of diffusion metrics, particularly for the Regional pattern as injured regions

vary along the nerve. Fourth, STE and LTE waveforms were tuned [7, 29], but this does not

ensure they have the same diffusion time window [57]. Diffusion time dependence could be an

important factor in neurodegeneration [3] and was not directly investigated or controlled for

in this study; further studies should give some insight into the contribution of time-dependent

diffusion to distinguish between types of histological damage. Last, ML applications benefit
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from large data sets. While our voxel-wise data set is not small, the overall accuracy of the

method could be improved with more data points.

There are other possibilities for the analysis of b-tensor encoding data. Like the diffusion

tensor, QTI is a signal representation [58]. There are other interesting avenues of analysis like

DTD imaging [59] that can extract direct DTD features or even extend it to multidimensional

MRI analysis to capture relaxometry effects [60, 61]. Approaches with biophysical models

using b-tensor encoding [62, 63] can be used to extract microstructural properties that cannot

be obtained without strong modeling assumptions using single diffusion encoding acquisi-

tions. Nevertheless, they are based on the standard model of white matter that is applicable for

healthy tissue, and it is unknown whether they would be adequate for the detection of severe

deviations (i.e., tissue damage) without modifications to the underlying assumptions. More

work is needed to test if these approaches to DW-MRI could identify tissue damage with high

sensitivity and specificity.

Machine learning methods provide a new paradigm to understand and use the advanced

methods available in the DW-MRI field. Although it serves as a proof of concept, the visualiza-

tion of tissue type probabilities as a color map offers a straightforward means of qualitatively

assessing the level of damage present at each voxel (Fig 9). The combination of spatial specific-

ity and the availability of quantitative diffusion metrics can be a powerful tool to evaluate and

diagnose microstructural changes in neurological disorders.

Conclusion

In this work, we explored the ability of b-tensor encoding methods to detect and differentiate

between different levels of white matter degeneration. Specifically, we explored the metrics

derived from QTI using state-of-the-art machine learning methods. The majority of QTI met-

rics are sensitive to microstructural changes induced by neuropathology. While classic DTI

metrics were the most important features for the training phase in the machine learning algo-

rithm, features exclusive to b-tensor encoding improved its precision.

Supporting information

S1 Fig. Protocol scheme. Full protocol scheme and example waveforms (b = 2.8 ms/μm2) used

in this study.

(TIF)

S2 Fig. b-tensor encoding example images. Example of preprocessed DW-MRI acquired by

b-tensor encoding (b = 2.8 ms/μm2) of a single slice from one representative animal in the reti-

nal ischemia group. Linear, planar and spherical tensor encodings (LTE, PTE, STE) and a

non-diffusion-weighted image (b = 0 ms/μm2) are shown. The yellow rectangle indicates the

optic nerves.

(TIF)

S3 Fig. Photomicrograph examples of histological classes. Photomicrograph samples of nine

different specimens in the study. Columns share unique histological characteristics that repre-

sent each class. Intact: Densely-packed myelinated axons (blue circles), and normally appear-

ing sharp, elongated glial processes (blue squares). Injured: Multiple collapsed axons (green

circles) interspersed with small viable axons (small blue circles), surrounded by enlarged ame-

boid glial processes (green squares). Injured+: There is no axonal population left, with abun-

dant large ameboid glial processes (green squares), many of which have foamy interiors (red

squares). Purple asterisks correspond to blood vessels.

(TIF)
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S4 Fig. Feature relevance analysis. A) Permutation feature relevance analysis in the test set.

B) Bootstrapped permutation feature analysis. FA and AD are the most important features.

Gini importance (B) showed Cc as the third-ranking relevant feature.

(TIF)

S5 Fig. Examples of regional histological damage and corresponding machine learning

classification based on MDE DW-MRI.

(TIF)
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