
RESEARCH ARTICLE

Mendelian randomization study on the causal

relationship between leukocyte telomere

length and prostate cancer

Bangbei WanID
1,2*, Likui Lu3*, Cai Lv2

1 Reproductive Medical Center, Hainan Women and Children’s Medical Center, Haikou, China,

2 Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital,

Haikou, China, 3 Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China

* 20204032024@stu.suda.edu.cn (LL); 939313612@qq.com (BW)

Abstract

Background

Leukocyte telomere length (LTL) is related to prostate cancer (PCa). However, the causal

relationship between them remains unknown. This study was aimed at identifying the causal

direction between LTL and PCa with Mendelian randomization (MR).

Methods

Single-nucleotide polymorphisms associated with LTL were identified from a genome-wide

association study (GWAS) involving 472,174 individuals. Summary-level data of PCa-

related GWAS were extracted from four cohorts comprising 456,717 individuals. An

inverse-variance-weighted (IVW) algorithm was used for MR. Sensitivity analyses were per-

formed with MR-Egger regression, IVW regression, leave-one-out test, and MR-Pleiotropy

Residual Sum and Outlier analyses. A meta-analysis was also performed to compute the

average genetically determined effect of LTL on PCa.

Results

A long LTL was associated with an increased risk of PCa in all cohorts, with odds ratios of

1.368 (95% confidence interval [CI]: 1.247 to 1.500, P = 2.84×10−11), 1.503 (95% CI: 1.243

to 1.816, P = 2.57×10−5), 1.722 (95% CI: 1.427 to 2.077, P = 1.48×10−8), and 1.358 (95%

CI: 1.242 to 1.484, P = 1.73×10−11) in the IVW analysis. Sensitivity analyses showed that

the genetically determined effect of LTL on PCa was stable and reliable. The meta-analysis

showed that the genetically determined per 1-standard deviation rise in LTL correlated sig-

nificantly with an average 40.6% increase in the PCa risk, with an average odds ratio of

1.406 (95% CI: 1.327 to 1.489, P < 0.001).
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Conclusion

The results of this study supported the causal hypothesis that the genetically determined

longer LTL was associated with a higher risk of PCa. This finding could serve as a basis for

therapeutic strategies for PCa.

Introduction

Prostate cancer (PCa) is a common malignant neoplasm in old men, particularly in the Occi-

dent, and the second leading cause of cancer deaths among men [1]. Most cases of PCa are dif-

ficult to diagnose in the early stage because of the hidden onset [2]. The progression differs

according to the pathological type and heterogeneity among cancer cells [3]. Currently,

approximately 90% of patients show local tumor progression at the time of the PCa diagnosis,

a contraindication for surgical treatments [4]. Therefore, diagnosing PCa at an early stage and

implementing effective interventions improve the prognosis of patients with PCa.

Telomeres are complexes consisting of DNA of tandem TTAGGG repeats, ranging from

several to 15 kilobases in length, and protein. They protect chromosomal and genetic stability

[5, 6]. Changes in telomere length are strongly associated with aging and the occurrence and

development of disease in humans [7–10]. During tumor progression, cancer cells can remain

biologically active and proliferate by regulating telomere in the tumor [11, 12]. Changes in

telomere length are closely related to the biological vitality of PCa cells and clinical characteris-

tics of patients with PCa [13–15]. Thus, telomere length is correlated with the occurrence and

progression of PCa. However, the causal relationship between them remains unclear.

Mendelian randomization (MR) is used to analyze the causal relationship between an expo-

sure and its outcome using single-nucleotide polymorphisms (SNPs) as instrument variables

[16, 17]. MR is similar to randomized controlled trials in overcoming the influence of residual

confounding factors and superior in cost-effectiveness, ease of implementation, and time-

consumption.

The aim of the present study was to utilise MR to elucidate the causal association between

leukocyte telomere length (LTL) and PCa. The inverse-variance-weighted (IVW) algorithm

was applied as the primary approach to illustrate potential causation. Reliability and robustness

were tested using MR-Egger, weighted median, simple mode, and weighted mode methods.

Considering the importance of LTL in human life, clarifying its potential causal impact on

PCa could help prevent PCa. To the best of our knowledge, this is the first study to compre-

hensively investigate the LTL and the risk of PCa.

Materials and methods

MR study design

Summary-level data of genome-wide association studies (GWASs) were extracted from the

IEU OpenGWAS database (https://gwas.mrcieu.ac.uk/), including four datasets related to PCa

(outcome) and one dataset related to LTL (exposure). These datasets were utilized to actualize

the two-sample MR analysis for illustrating the causal relationship between LTL and PCa.

Assumptions for the MR study

Performance of the MR study was set to conform with three fundamental assumptions. (1)

Relevance assumption: Genetic instrument variables (GIVs) must be strongly associated with
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the exposure (s) of interest. (2) Independence assumption: All confounders of the correlations

between GIVs and the outcome (s) should be measured. (3) Exclusion restriction: GIVs must

affect the outcome only through their effect on the exposure (s) of interest. Fig 1 shows the

assumptions and design of the MR study.

Data sources

Summary-level data of GWASs associated with LTL of the European population (472, 174

individuals from the IEU OpenGWAS Project cohort) were downloaded from the IEU Open-

GWAS database (GWAS ID: ieu-b-4879) [18]. SNPs associated with LTL were extracted as

GIVs based on these conditions: a genome-wide significant level (P< 5×10−8) and indepen-

dence among SNPs (r2 < 0.001; clumping distance, 10,000 kb). To confirm the independence

among SNPs, we used the PhenoScanner database (http://www.phenoscanner.medschl.cam.

ac.uk/) [19] to judge and remove SNPs associated with confounders. To calculate the GIV

power for MR, the F statistic was computed using the following formula: F = R2(N − K − 1)/K

(1 − R2), where R2 denoted the proportion of the variance of the LTL explained by each GIV

and its formula for calculation as follows: 2�EAF�(1 − EAF)�β [20], where EAF represents the

effect allele frequency of LTL, and β represents the estimated genetic effect of LTL; K denoted

the number of included SNPs in MR; and N represented the sample size of LTL in GWAS. The

GWAS summary statistics data associated with PCa from four European populations as out-

comes were obtained from the IEU OpenGWAS database. To analyze expediency in MR, the

datasets were classified as follows: cohort 1 (GWAS ID: ebi-a-GCST006085): 140,254 individu-

als (79,148 cases and 61,106 controls) from European Molecular Biology Laboratory’s Euro-

pean Bioinformatics Institute cohort [21]; cohort 2 (GWAS ID: finn-b-C3_PROSTATE):

95,213 individuals (6,311 cases and 88,902 controls) from the FinnGen biobank cohort; cohort

Fig 1. Flowchart of MR investigating the causal relationship between LTL and PCa. GIV assumptions: (1) GIVs must be strongly associated with LTL

(P< 5×10−8); (2) GIVs must not be correlated with unmeasured confounders of the LTL and PCa relationship; (3) GIVs should only affect the risk of PCa

through LTL. SNPs = single-nucleotide polymorphisms; LTL = leukocyte telomere length; PCa = prostate cancer; IVW = inverse-variance-weighted;

WM = weighted median.

https://doi.org/10.1371/journal.pone.0286219.g001
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3 (GWAS ID: finn-b-C3_PROSTATE_EXALLC): 80,996 individuals (6,311 cases and 74,685

controls) from the FinnGen biobank cohort; and cohort 4 (GWAS ID: ieu-b-85): 140,254 indi-

viduals (79,148 cases and 61,106 controls) from the IEU OpenGWAS Project cohort.

Bidirectional univariable MR analyses

To investigate the causality between LTL and PCa, a bidirectional univariable two-sample MR

analysis was implemented for LTL and PCa as both exposure and outcome. Furthermore, the

IVW [22] approach was used as the principal causal effect computing the pooled effect of all

SNPs. MR-Egger [23], weighted median [24, 25], simple mode [25], and weighted mode [25]

methods were used to validate the reliability and robustness of the results. The two-sample MR

analysis may display heterogeneity because of discrepancies in analysis platforms, experimen-

tal conditions, inclusion populations, and SNPs, thereby impacting the estimation of causal

effects. Therefore, the major IVW and MR-Egger algorithms were utilized to examine the het-

erogeneity. A P-value> 0.05 was regarded as no heterogeneity in the included GIVs, and the

impact of heterogeneity on the estimation of causal effects could be negligible. Based on the

aforementioned assumptions for the MR analysis, when a GIV directly influenced outcomes

without impacting LTL, the fundamentals of MR were infringe. Finally, whether or not pleiot-

ropy existed in the causal inference between LTL and PCa was tested. The Egger model’s inter-

cept was adopted to estimate pleiotropy statistically; a deviation from 0 denoted the absence of

directional pleiotropy [26]. The occurrence of pleiotropy in the analysis was identified using

MR-pleiotropy residual sum outlier (PRESSO) [27, 28]. Pleiotropy in the MR analysis was

unlikely at P> 0.05, and its effects were ignored. We employed the leave-one-out method and

IVW and MR-Egger regression algorithms for sensitivity analyses. The directionality that LTL

causes PCa was confirmed using the MR Steiger test, with statistical significance set as

P< 0.05.

All MR analyses were implemented using the TwoSampleMR package version 0.5.6 in R

version 4.1.2.

Meta-analysis

To precisely calculate the average effect of genetically predicted LTL causing PCa, we per-

formed a single-arm meta-analysis of the four PCa cohorts using the ‘meta’ package version

5.2.0. Heterogeneity among the casual effect from different cohorts was assessed using the chi-

squared-based Q and I2 tests. A random- (I2 > 50%) or fixed-effects (I2 < 50%) model was uti-

lized to pool the casual effect. Statistical significance was set as P< 0.05.

Results

Bidirectional univariable MR analysis results

To improve the reliability of the results, we selected four different PCa-related GWAS cohorts

as the outcome to analyze the effect of LTL on PCa. A total of 134 independent SNPs associ-

ated with LTL were used as GIVs to conduct univariable MR. However, the number of GIVs

ultimately included in the MR differs in the four cohorts. The reasons were as follows: (a) a

portion of GIVs were missing in PCa-related GWAS summary-level data; (b) a portion of

GIVs were removed because of pleiotropy. In cohort 1, a total of 134 independent SNPs associ-

ated with LTL were extracted from PCa-related GWAS summary-level data. Ten SNPs were

then removed because of pleiotropy. The rest of 124 SNPs were included to investigate the

effect size of the genetically predicted LTL on PCa. The IVW method showed an odds ratio

(OR) of 1.368 (95% confidence interval [CI]: 1.247 to 1.500, P = 2.84×10−11). In cohort 2, all
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130 independent SNPs associated with LTL were extracted from PCa-related GWAS sum-

mary-level data. 1 SNP was then removed because of pleiotropy. The remaining 129 indepen-

dent SNPs were utilized to calculate the effect size of the genetically predicted LTL on PCa.

The IVW method showed an OR of 1.503 (95% CI: 1.243 to 1.816, P = 2.57×10−5). In cohort 3,

a total of 130 independent SNPs associated with LTL were extracted from PCa-related GWAS

summary-level data. 2 SNPs were then removed because of pleiotropy. The rest of 128 inde-

pendent SNPs were used to compute the effect size of the genetically predicted LTL on PCa.

The IVW method showed an OR of 1.722 (95% CI: 1.427 to 2.077, P = 1.48×10−8). In cohort 4,

all 134 SNPs associated with LTL were extracted from PCa-related GWAS summary-level

data. 11 SNPs were then removed because of pleiotropy. The rest of 123 independent SNPs

were applied to assess the effect size of the genetically predicted LTL on PCa. The IVW method

showed an OR of 1.358 (95% CI: 1.242 to 1.484, P = 1.73×10−11). Table 1 shows these results.

The F statistics of all included SNPs were>10, indicating no weak-instrument bias (S1 Fig

and S1–S4 Tables).

To test the reliability of these results, four algorithms, including MR-Egger, weighted

median, simple mode, and weighted mode, were utilized to prove the causal direction from

LTL to PCa. The results congruously supported that genetically predicted LTL increase was a

risk factor of PCa (Figs 2 and 3).

Table 1. MR results of LTL on the risk of PCa.

Outcome Method No. of SNPs OR (95% CI) P P-het P-intercept

PCa (cohort 1) MR Egger 124 1.476 (1.240−1.757) 2.53×10−5 7.85×10−7 0.316

Weighted median 124 1.414 (1.236−1.618) 4.56×10−7

IVW 124 1.368 (1.247−1.500) 2.84×10−11 7.09×10−7

Simple mode 124 1.391 (1.086−1.781) 0.009

Weighted mode 124 1.404 (1.222−1.614) 4.72×10−6

MR-PRESSO (raw) 124 1.355 (1.255–1.455) 2.68×10−9

PCa (cohort 2) MR Egger 129 1.451 (1.029−2.046) 0.036 0.004 0.81

Weighted median 129 1.385 (1.064−1.803) 0.016

IVW 129 1.503 (1.243−1.816) 2.57×10−5 0.004

Simple mode 129 1.171 (0.653−2.099) 0.597

Weighted mode 129 1.356 (0.972−1.893) 0.076

MR-PRESSO (raw) 129 1.500 (1.305–1.694) 4.32E-05

PCa (cohort 3) MR Egger 128 1.744 (1.243−2.447) 0.002 0.052 0.929

Weighted median 128 1.540 (1.143−2.076) 0.005

IVW 128 1.722 (1.427−2.077) 1.48×10−8 0.059

Simple mode 128 1.459 (0.805−2.642) 0.215

Weighted mode 128 1.553 (1.107−2.178) 0.012

MR-PRESSO (raw) 128 1.513 (1.908–0.969) 1.01×10−7

PCa (cohort 4) MR Egger 123 1.417 (1.198−1.677) 8.55×10−5 5.61×10−5 0.554

Weighted median 123 1.411 (1.240−1.604) 1.63×10−7

IVW 123 1.358 (1.242−1.484) 1.73×10−11 6.42×10−5

Simple mode 123 1.417 (1.121−1.790) 0.004

Weighted mode 123 1.417 (1.247−1.610) 4.16×10−7

MR-PRESSO (raw) 123 1.344 (1.247–1.441) 2.18×10−9

LTL = leukocyte telomere length; PCa = prostate cancer; IVW = inverse-variance-weighted; OR = odds ratio; P-het = P-value for heterogeneity using Cochran Q test; P-

intercept, P-value for MR-Egger intercept; MR-PRESSO = Mendelian randomization-pleiotropy residual sum outlier; SNP = single-nucleotide polymorphism.

https://doi.org/10.1371/journal.pone.0286219.t001
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Sensitivity analyses were performed to evaluate the stability of the aforementioned results.

The Cochran’s Q test in the IVW (multiplicative random effects) (cohort 1: P = 7.09×10−7;

cohort 2: P = 0.004; cohort 3: P = 0.058; and cohort 4: P = 6.42×10−5) and MR Egger (cohort 1:

P = 7.85×10−7; cohort 2: P = 0.004; cohort 3: P = 0.052; and cohort 4: P = 5.61×10−5) models

suggested heterogeneity in the instrumental variables of the three cohorts (cohort 1, cohort 2,

and cohort 4), possibly resulting from true causality rather than violation of fundamental

assumptions in the MR analysis. Statistical evidence from the MR-Egger intercepts and the

MR-PRESSO global tests uniformly showed no horizontal pleiotropy. In addition, the leave-

one-out analysis indicated that no SNP altered the combined estimate, supporting the stability

Fig 2. Scatter plots of LTL with the risk of PCa. A–D, Effect of LTL-related SNPs on the PCa risk from four different cohorts. Scatter plot demonstrating

the effect of each LTL-associated SNP on PCa on the log-odds scale. Slopes of each line represent the causal association for each method. MR = Mendelian

randomization; SNP = single-nucleotide polymorphism; LTL = leukocyte telomere length; PCa = prostate cancer.

https://doi.org/10.1371/journal.pone.0286219.g002
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and reliability of our results (S2 Fig). The causal assumption of LTL and PCa was proven by

the MR Steiger test, and the impact of LTL on PCa was confirmed to be the correct causal

direction (P< 0.001).

Fig 3. Density plots of LTL with the risk of PCa. A–D, Effect of LTL-related SNPs on the PCa risk from four different cohorts. MR = Mendelian

randomization; SNP = single nucleotide polymorphism.

https://doi.org/10.1371/journal.pone.0286219.g003
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Moreover, reverse MR analyses were performed to verify the causal assumption of LTL and

PCa. The results suggested no indication of reverse causality from LTL to PCa (S3 Fig and S5

Table).

Meta-analysis results

The meta-analysis showed that a genetically predicted per 1-standard deviation rise in LTL

correlated significantly with an average 40.6% increase in the PCa risk, with an average OR of

1.406 (95% CI: 1.327 to 1.489, P< 0.001). Heterogeneity among the four cohorts was evaluated

using chi-squared-based Q and I2 tests. The results showed an acceptable heterogeneity among

the four cohorts (Q = 5.86, I2 = 48.8%, P = 0.12). Fig 4 shows the results of the meta-analysis.

Discussion

In this study, using the most recent and largest GWAS data of the European ancestry, the com-

bined MR and meta-analysis suggested that LTL impacting PCa was a distinct causality. The

genetically predicted 1-standard deviation increase in LTL was significantly associated with an

average 40.0% advance in the PCa risk.

Telomere is essential for maintaining chromosomal integrity, and its length is correlated

with cancer risk and progression [28, 29]. In pancreatic cancer, an observational study involv-

ing 472 cases and 1,071 controls showed that LTL correlated negatively with the risk for pan-

creatic cancer [30]. Similarly, in colorectal carcinoma, LTL in normal adjacent tissues was

longer than in cancer tissues, and longer LTL correlated positively with the good prognosis of

patients and negatively with a higher tumor stage [31]. Furthermore, LTL plays a vital role in

the occurrence and progression of PCa [31, 32]. A retrospective study involving 533 Austrian

patients with PCa followed-up for a median duration of 149 months showed that LTL was

closely related to the prognosis and that longer LTL predicted a lower overall survival rate [33].

In contrast, a recent study by Xu et al. [34] analyzed the association between LTL and aggres-

sive PCa and showed shorter LTL in patients with PCa with higher Gleason scores and that

shorter LTL correlated positively with biochemical recurrence of PC. The MR method con-

firmed that genetically predicted short LTL was related to an increased risk of biochemical

recurrence of PCa. Similarly, a retrospective study involving 317 African American patients

with PCa investigating the association between LTL and biochemical recurrence of PCa in

patients who underwent radical prostatectomy and/or radiotherapy showed that shorter LTL

correlated significantly with higher Gleason scores in patients with PCa. In addition, patients

Fig 4. Forest plots to visualize the results of the meta-analysis of the four different cohorts. Forest plots demonstrating the average genetically

determined effect of LTL on PCa. Presented OR and CI correspond to the average effects of LTL on PCa. I2 statistic and chi-squared-based Q were

used to evaluate the heterogeneity among different studies.

https://doi.org/10.1371/journal.pone.0286219.g004
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with PCa with shorter LTL were also distinctly associated with a higher risk of biochemical

recurrence [35]. Despite these retrospective studies suggesting a correlation between LTL and

the clinical characteristics and prognosis of patients with PCa, the causal relationship between

LTL and the risk of PCa remains uncertain. In the present study involving over 400,000 Euro-

peans showed that a longer LTL correlated with a higher risk for PC.

In a pan-cancer MR study, long LTL showed a significantly positive association with many

cancers, including glioma, serous low-malignant-potential ovarian cancer, lung adenocarci-

noma, neuroblastoma, bladder cancer, melanoma, testicular cancer, kidney cancer, and endo-

metrial cancer. Although the results of this MR study suggested that a correlation between LTL

and some cancers was not statistically significant, it preliminarily explained the trend of LTL

influence on those cancers, such as basal cell carcinoma, breast cancer, colorectal cancer, PCa,

esophageal cancer, pancreatic cancer, and head and cancer [36]. In addition, the study of Gao

et al. [37] also reported that LTL was causally correlated with the risk of PCa. Although the

above two MR studies also briefly illustrated the causal directional trend of LTL on PCa, the

level of evidence was weak. The present study supported the causal relationship between LTL

and PCa with a high level of evidence. First, the most recent and largest GWAS data of the

European ancestry were utilized to perform statistical analyses. Second, LTL-related GWAS

data from a large sample (472,174 individuals) were used to select effective instrumental vari-

ables, and all LTL data were standardized before analyses [18]. Third, the included SNPs were

more comprehensive, thereby effectively avoiding the bias of an actual pooled effect in the

analysis. Fourth, the statistical evidence from coherence and sensitivity analysis proved the sta-

bility and reliability of the results. Finally, the meta-analysis was used to further evaluate the

genetically determined average effect size of LTL on PCa. Mechanistically, the effect of LTL on

the risk of PCa partly attributes to overlong LTL seriously affecting immune cell function [34].

However, this study had some limitations. First, although our study suggested that a longer

LTL correlated with a higher risk of PCa, a short LTL may increase the risks of other diseases.

Therefore, we should carefully employ some interventions to prevent LTL in the short or long

term. Second, the telomere length was detected in leucocytes, and whether or not it will reflect

in the telomere length of other organ tissues is unclear. Third, GWAS data of the European

population were utilized, with questionable generalizability to non-European ancestries.

Finally, the potential biological mechanism of the effect of LTL on the risk of PCa is still

unclear. Hence, more molecular experiment is necessary to validate the finding of this study.

In summary, this study provided powerful evidence to support the causal hypothesis that

the genetically determined longer LTL was associated with a higher risk of PCa. In addition,

because of genetic variants, the effect of LTL on PCa is lifelong. Therefore, our findings could

serve as a basis for therapeutic strategies for PCa.
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