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Abstract \

The emergence of genome-wide association studies (GWAS) has identified genetic traits and polymorphisms that are associated with
the progression of nonalcoholic fatty liver disease (NAFLD). Phospholipase domain-containing 3 and transmembrane 6 superfamily
member 2 are genes commonly associated with NAFLD phenotypes. However, there are fewer studies and replicability in lesser-known
genes such as LYPLAL1 and glucokinase regulator (GCKR). With the advent of artificial inteligence (Al) in clinical genetics, studies have
utilized Al algorithms to identify phenotypes through electronic health records and utilize convolution neural networks to improve the
accuracy of variant identification, predict the deleterious effects of variants, and conduct phenotype-to-genotype mapping. Natural
language processing (NLP) and machine-learning (ML) algorithms are popular tools in GWAS studies and connect electronic health
record phenotypes to genetic diagnoses using a combination of intemnational classification disease (ICD)-based approaches. However,
there are still limitations to machine-learning - and NLP-based models, such as the lack of replicability in larger cohorts and under-
powered sample sizes, which prevent the accurate prediction of genetic variants that may increase the risk of NAFLD and its pro-
gression to advanced-stage liver fibrosis. This may be largely due to the lack of understanding of the clinical consequence in the majority
of pathogenic variants. Though the concept of evolution-based Al models and evolutionary algorithms is relatively new, combining
current international classification disease -based NLP models with phylogenetic and evolutionary data can improve prediction accuracy
and create valuable connections between variants and their pathogenicity in NAFLD. Such developments can improve risk stratification

within clinical genetics and research while overcoming limitations in GWAS studies that prevent community-wide interpretations.
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Introduction

Nonalcoholic fatty liver disease (NAFLD), one of the most
common diseases in the world, is characterized by adipose
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HIGHLIGHTS

e Novel genome-wide association studies have extensively
studied the genetic risk variants in nonalcoholic fattyl
disease (NAFLD).

e Applications of artificial intelligence can improve NAFLD
phenotyping from electronic health record data.

e The clinical consequences of most pathogenic genetic
variants are still undetermined.

e Evolution-based artificial intelligence algorithms can
improve genetic risk stratifications in NAFLD.

tissue deposition in the liver!'l, NAFLD is often associated
with a sedentary lifestyle, a high-fat diet, and obesity; as a
result, the most common ‘cure’ for NAFLD is weight loss.
Scientific evidence suggests that NAFLD can contribute to
insulin resistance and dyslipidemia and has been correlated
with the development of diabetes and the metabolic
syndrome!". Most people with NAFLD suffer from the less
complicated form, steatosis, which is simply defined by the
accumulation of fat in the liver. A certain percentage of
patients may suffer from Nonalcoholic steatohepatitis
(NASH), the more progressive form of NAFLD, which can
result in liver cirrhosis, and the accumulation of scar tissue can
eventually render the liver damaged beyond repair. If NAFLD
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and NASH were left untreated, extensive cirrhotic and fibrotic
changes can eventually progress to hepatocellular carcinoma
(HCC), treatment for which remains difficult. Amongst
patients with both NASH and cirrhosis, the risk of developing
HCC is high (12.8%) over a time period of 3 years!®!.

While the development of HCC is multifactorial, increased
iron absorption in NASH, insulin resistance, and certain
genetic polymorphisms are observed to have an important role
in its pathophysiology!>*.. Improvements in the prognosis of
end-stage liver cancer requires robust identification strategies
across NAFLD and NASH patients earlier in their care. As a
result, the heritability of NAFLD has emerged to become a
popular area of clinical research and has been extensively
studied in genome-wide association studies (GWAS). Genome
studies have linked various Single-Nucleotide Polymorphisms
on genes such as Phospholipase domain-containing 3
(PNPLA3) and MBOAT7 that are associated with hepatic
steatosis, fibrotic changes of the liver, and the acceleration of
HCC development in patients with metabolic syndrome (i.e.
insulin resistance, hypertension, obesity, etc.)®!. Evolution-
based artificial intelligence (AI) has emerged as a new tech-
nological model, which aims to improve variant identification
of NAFLD-associated genes. However, the lack of risk strati-
fication algorithms that could apply to international commu-
nities makes it challenging to accurately predict NAFLD-
associated variants across ancestries. This review highlights
the promising role of evolution-based Al in genome-wide
studies to stratify genetic risk variants in NAFLD progression,
improve risk stratification, and influence therapeutic
implications.

The emergence of GWAS in NAFLD

Several environmental and genetic factors play a significant role
in the heritability of NAFLD, ranging from 22 to 50%!°.

GWAS is a research strategy to discover genetic variations
statistically related to disease risk. In this approach, the gen-
omes of numerous individuals are scanned to identify genetic
variants that are more prevalent in people with the disease or
traits than those without the disease. These genomic variants
are often used to locate neighboring variants that are directly
responsible for the disease or trait once they have been found.
Across GWAS studies investigating NAFLD severity, the con-
dition is often identified based on visceral fat content and his-
tological fibrosis severity to accurately represent steatosis in
populations across clinical databases!”’8]. With consistent
improvements in the definition of NAFLD and NASH, GWASs
have greatly improved our understanding on its etiologies
and pathophysiology in at risk patients with metabolic
phenotypes®. There have been several studies linking non-
synonymous single-nucleotide polymorphisms in PNPLA3 and,
more recently, Transmembrane 6 Superfamily member 2
(rs58542926), which was originally associated with the nearby
neurocan (NCAN) genel”%1%, Following subsequent investi-
gations, it has been determined that both genetic relationships
are associated with clinically significant outcomes, including
steatohepatitis grade, cirrhosis or hepatic fibrosis stage, and, in
the case of PNPLA3, hepatocellular carcinoma in NAFLD
patients!* 17131,
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While variations in or near LYPLAL1 and PNPLA3 do not
affect serum lipid levels, those in or near neurocan (NCAN),
glucokinase regulator (GCKR), and PPP1R3B do. Glycemic
characteristics are also impacted by variations close to GCKR
and PPP1R3B. Thus, it demonstrates the genetic basis of
NAFLD and increases the variety of common genetic varia-
tions associated with this characteristic’ "%, Recent studies
using exome sequencing have correlated elevated alanine
amino transferase (ALT) with an HSD17B13 SNP (rs6834314)
in a general patient population and further demonstrated that
this polymorphism is linked to NAFLD. This is widely sup-
ported by two more investigations!'*"*!, In addition to the
PNPLA3 effect, the GWAS suggests that IL17RA and other
biologically significant genes play a significant role in the
severity of NAFLD!®l,

Commonly reported gene variants that shape liver
phenotypes in NAFLD

A case-only GWAS using standardized liver enzymes as a
quantitative phenotype found a strong association between
the PNPLA3 risk allele and higher ALT levels. The highest
effect was found for ALT at rs738409, with a P-value of 4.68
10 7171, Both AST and ALT were found to share a new
impact at 2p22 close to the Xanthine Dehydrogenase (XDH)
gene, which are expressed in the liver and involved in the
oxidative metabolism of purines. This enzyme catalyzes the
conversion of xanthine to uric acid and hypoxanthine to
xanthine. Therefore, XDH-produced uric acid and reactive
oxygen species may result in inflammation and oxidative
stress. Recent research has demonstrated a correlation
between the serum level of XDH and blood metabolic mar-
kers associated with obesity, including triglycerides, choles-
terol, and glucose!'®!. The transmembrane heparan sulphate
proteoglycan Syndecan-1 (CD138, SDC1), which is abun-
dantly expressed in the liver, also exerts metabolic effects and
is suggested to cause a strong impact on liver enzyme levels;
previous studies have corroborated with this hypothesis given
that NAFLD patients exhibit higher serum levels of syndecan-
111 In addition to these genes, recent reports have also
suggested that HSD17B13 is relevant to NAFLD through
several genetic polymorphisms linked to lower risks of
steatosis! >,

Contrary to PNPLA3 and LYPLALI1, variants near NCAN
(which encodes for an adhesion molecule), PPP1R3B (which
encodes for a protein that regulates glycogen breakdown),
and GCKR (which, by inhibiting glucokinase, regulates glu-
cose storage/disposal and provides substrates for de novo
lipogenesis) are linked to distinct alterations in serum and
liver lipids as glycemic traits'?'-*2!, Certain polymorphisms in
PNPLA3 and LYPLALT are known to induce hepatic steatosis
without the presence of common metabolic characteristics
such as insulin resistance and obesity in patient groups. These
distinct correlation patterns suggest that hepatic steatosis is
potentially regulated by various metabolic pathways, and is
not just limited to lipid dysregulation or oxidative stress to the
liver. Addressing genetic variation in the etiology of hepatic
steatosis may create new avenues for individualized treat-
ments, but there is a growing need to improve the accuracy
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and efficiency of these identification studies with modern
technology.

The influence of Al in clinical genetics research

Al has wide-ranging applications in clinical practice and stimu-
lates human intelligence in computer-based networks. In the
broad scheme of medicine, Al has been commonly known to
maintain electronic health records (EHR) and assist patient con-
sults, while machine-learning has been implemented to facilitate
surgical procedures and assist in radiographic diagnostics'*®!. In
clinical genomics, Al computer systems can replicate applications
requiring human intelligence through deep learning algorithms,
thus improving image-based diagnostics, EHR phenotyping, and
genetic variant classifications. Examples of these algorithms
include computer vision (image acquisition), time-series analyses,
automatic speech recognition, and Natural Language Processing
(NLP)24,

Convolution neural networks (CNN) drive the use of these
Al algorithms, which are computational systems that consist of
artificial neurons that take input data based on their trained
interpretations. CNN allows for deep learning by interpreting
features (i.e. diagnostics, imaging, procedure codes, and
sequencing data) from complex datasets to drive genomic
research. Though reports have found certain Al algorithms are
limited and impractical compared with human intelligence,
there have been major developments and improvements in
CNN-based algorithms for genomics analyses. A review led by
Dias in 2019 best summarizes adaptations that address the
limitations of current Al-algorithm including deep variant
caller algorithms to improve the accuracy of variant identifi-
cation in a genome, combined annotation dependent depletion
approach algorithms to predict deletions of variants. The use
of primate Al to identify known pathogenic variants using
cross-species analyses, and other CNN-based applications that
would improve phenotype-to-genotype mapping and vice-
versa 2. A summary of Al applications to genetics research is
shown in Figure 1.
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Figure 1. Hierarchical schematic of the artificial intelligence system and net-
works with specific applications to clinical genetics research. (Original work
created with biorender.com by HH). EHR, Electronic Health Record; NLP,
Natural Language Processing; CNN, Computer Neural Networks.

cognitive
& nml"-‘“"g

Pathogenicity | ,—
identification

Predictions of /
deleterious

variants

Strengths and Limitations to NLP and ML Algorithms
in NAFLD variant identification

NLP is one of the most commonly utilized Al-based algorithms
that can extract important clinical information from EHRs, such
as biopsies or images, and provide a molecular diagnosis with a
combination of genotypic and phenotypic information. In parti-
cular, Al-based NLP approaches are often used to connect EHR
phenotypes to genetic diagnoses through hierarchical statistical
models and are often used for phenotype-to-genotype diag-
nostics. By detecting certain terms from the natural human lan-
guage, NLP-based algorithms can computationally extract
documents from phenotypic inputs and derive genetic variants of
conditions. In NAFLD, the use of NLP in GWAS studies has risen
in popularity and use, as NLP has shown an accuracy in detecting
image-proven and biopsy-proven steatosis. A recent study led by
Van Vleck supported these findings. NLP performed better in
identifying NAFLD based on radiology notes and fibrosis scores
from biopsies compared to traditional approaches using ICD-
based approaches®’!. Given the propensity of NLP use in studies,
multiple ML algorithms have been employed to identify the
severity of NAFLD and its risk of progression to advanced disease
such as cirrhosis. The Path Al research platform established in
Boston trained a deep neural network to interpret over 600 liver
biopsies and showed high concordance with liver histopatholo-
gical interpretations made by trained pathologists. Such algo-
rithms have also shown wide applications in identifying
steatohepatitis from imaging, analyzing liver biomarkers such as
ALT or gamma glutamyl transferase, and fibrosis staging!>>71.
As a result, Al has bridged several gaps in the knowledge of
NAFLD progression, especially in risk stratification.

Despite major steps in identifying NAFLD variants underlying
disease pathogenicity and progression, limitations of ML and
NLP-based algorithms have been overlooked and may limit the
strength of studies and there is still more room for growth in
efficient algorithms that would stratify the risk of developing
advanced liver disease based on genetic variants in studies.
Current developments in Al models may be efficient, but the
clinical consequences of over 98% of pathogenic variants in
disease-associated genes have not yet been defined**=3%. This
may be the root cause of common limitations in NAFLD GWAS
studies, such as underpowered sample sizes and the lack of
replication due to the unknown association of certain variants>'l,
As a result, most GWAS studies are limited to small cohorts that
may not accurately represent the risks detected in populations.
Data from EHRs have the potential for errors in lab measures and
clinical diagnoses despite studies adjusting for confounding fac-
tors. This may also affect the clinical accuracy of quantitative
liver enzyme tests that are not entirely specific to NAFLD, thus
increasing the need for larger sample sizes and replication!®!!,

Given that the NAFLD population is at a higher risk of
developing HCC, it is crucial to identify variants that may
increase the risk of irreversible advanced-stage liver cirrhosis!®!.
Certain proposed models include genotype-to-phenotype pre-
dictions, which can improve risk stratification of NAFLD pro-
gression to HCC. However, current models are not equipped to
predict the risk of developing HCC based on genotypes asso-
ciated with liver phenotypes and do not represent causal rela-
tionships between risk factors. The accurate prediction of
phenotypes from genotypes poses a huge problem, as the effects
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Figure 2. A general schematic demonstrating the process of extracting phenotypic data with current Al-based state-of-the-art algorithms (i.e. NLP) and the
potential applications of evolution-based artificial intelligence models to analyze phylogenic data in GWAS studies. (Original work created with biorender.com by
HH). EHR, Electronic Health Record; ICD-10, International Classification of Diseases 10th Revision; GWAS, Genome-Wide Association Studies; NAFLD,

Nonalcoholic Fatty Liver Disease.

of genetic mutations are highly variable and can pose a barrier in
personalized risk stratification for NAFLD.

Evolution-based Al models in detecting genetic
variants and applicability to NAFLD GWAS

Evolution-based Al models are a topic of interest, as traditional
state-of-the-art models rely on known disease labels such as ICD
codes, which are subject to inaccuracies. By combining genomic
information with evolutionary and phylogenetic data (seen in
Fig. 2), trained algorithms can determine the propensity of dis-
ease-causing genes in their progression to disease-associated
carcinomas and improve risk stratification within clinical genet-
ics. One example of an evolution-based Al model is the evolu-
tionary model of variant effect (EVE), a project developed in
collaboration with the University of Oxford, Harvard, and the
Broad Institute to determine genetic variants of significance
related to a genetic condition*?!. By predicting the pathogenicity
of over 36 million variants in over 3000 disease-associated genes,
it was suggested that evolutionary information across species and
ancestries provide better evidence on single variants tied
with clinical phenotypes compared to traditional models.
Experimental results of EVE disseminated the function of var-
iants in BRCA1, TP53, MSH2, and PTEN with known disease
links, accurately predicting the function of variants®*.,

Though EVE is currently the only evolution-based Al model
created, evolutionary algorithms can supplement the function of
pre-existing ML models and optimize its function in interpreting
the risk of disease. In a study conducted by Ordikani, an evolu-
tionary ML algorithm utilizes a ‘genetic algorithm’, an optimizer
that is trained to evolve each proposed solution to reach the

optimal outcome that can determine the risk of cardiovascular
disease amongst patients in the Isfahan Cohort®*!, The effort in
estimating the occurrence of cardiovascular disease used a risk
assessment model called the eXplainable Persian Atherosclerotic
cardiovascular disease Risk Stratification, and the algorithm was
proven to have higher prediction accuracy than traditional chart
models, even in the absence of quantitative tests. The study
opened up the possibility of utilizing Darwin’s theory of evolution
to conduct risk prediction tests that may overpower the func-
tionalities of statistical models currently being used in genetic
algorithms. Multilevel selection genetic algorithms is also an
example of using evolutionary theory to use different reproduc-
tion models that compare the behavior of multiple variants
through fitness functions. A comparison of variants can adjust to
the diversity within a population between generations and can be
utilized for different conditions!®®!.

We propose that evolution-based Al models can improve the
current limitations in NAFLD GWAS studies. Given the varia-
bility in hepatic phenotypes within communities and risk factors
that increase the risk of progression of NAFLD, Al models, and
evolutionary algorithms can provide better associations of risk
factors in genotype-to-phenotype studies and improve risk-stra-
tification models in liver diseases. These models can shed insight
on whether certain genetic variants in identified NAFLD patients
increase the risk of advanced-stage liver disease and subsequent
cancer, given that there is a lack of literature surrounding the
genetic risk of HCC development. In future studies, newer models
can provide therapeutic avenues in personalized treatment within
communities and better insight into rare variants with unknown
pathogenicity that traditional methods do not address.
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Conclusion

As NAFLD patients remain at higher risk of developing HCC, it is
imperative to uncover the pathogenicity of rare variants and
improve early disease management. However, the current Al
models are not capable of predicting the risk of developing HCC
based on genotypes associated with liver phenotypes, hindering
personalized risk stratification for NAFLD. Al and ML, with the
combination of evolutionary data, hold great promise in opti-
mizing GWAS studies, improving current limitations, and aug-
menting subsequent identification of genetic variants correlated
with an increased risk of developing the NAFLD phenotype.
Therefore, we propose that future studies consider evolution-
based Al models, which can create valuable connections between
genetic variants and the risk of diseases progressing to advanced-
stage conditions. Further translational research exploring the
utility of evolution-based Al models in GWAS studies can provide
valuable evidence about its applications to NAFLD and its
influence on patient outcomes.
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