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Summary

COPD, one of the leading worldwide health problems, currently lacks truly disease-modifying medi-

cal therapies applicable to most patients. Developing such novel therapies has been hampered by

the marked heterogeneity of phenotypes between individuals with COPD. Such heterogeneity sug-

gests that, rather than a single cause (particularly just direct inhalation of tobacco products), devel-

opment and progression of COPD likely involve both complex gene-by-environment interactions to

multiple inhalational exposures and a variety of molecular pathways. However, there has been con-

siderable recent progress toward understanding how specific pathological processes can lead to dis-

crete COPD phenotypes, particularly that of small airways disease. Advances in imaging techniques

that correlate to specific types of histological damage, and in the immunological mechanisms of

lung damage in COPD, hold promise for development of personalized therapies. At the same time,

there is growing recognition that the current diagnostic criteria for COPD, based solely on spirom-

etry, exclude large numbers of individuals with very similar disease manifestations. This concise

review summarizes current understanding of the etiology and pathophysiology of COPD and pro-

vides background explaining the increasing calls to expand the diagnostic criteria used to diagnose

COPD and some challenges in doing so. Key words: COPD; pathophysiology; small airways disease;
nosology. [Respir Care 2023;68(7):859–870. © 2023 Daedalus Enterprises]

Introduction

The goals of this review are 2-fold: to summarize suc-

cinctly the current understanding of the etiology and

pathophysiology of the condition presently recognized as

COPD and to explain the increasing calls for an expanded

redefinition of COPD not based purely on spirometry.1-5

The focus is predominately on human data, with selected

supplementation on mechanisms from experimental studies. I

draw upon a variety of evidence, in particular from 2 ongoing

multi-center observational cohort studies, COPDGene6 and

SPIROMICS.7
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COPD Etiology and Pathology

Multiple Pathways to COPD Status

COPD is a highly prevalent, heterogeneous, variably pro-
gressive spectrum of conditions resulting primarily from
lung injury and repair following prolonged oxidative inha-
lational exposures.4,8-13 COPD has a long latency and is
greatly underdiagnosed;14,15 it can progress even when
inciting exposures are removed,16 suggesting that once its
underlying pathological processes attain momentum they
become self-sustaining. As a disease currently defined by
abnormal lung function, it is unsurprising but important to
appreciate that COPD can be reached not only by acceler-
ated loss of lung function, long postulated to be the primary
pathway,17 but also by failure to achieve normal lung func-
tion in early adulthood with subsequent normal age-related
decline18 or by both.19 Accordingly, early childhood expo-
sures20,21 and genetic causes of impaired lung growth22 may
account for as much of half of COPD cases, based on
accepted spirometry criteria, but many of those individuals
will not progress to severe disease.18,20 Inclusion of such
individuals with late mild COPD in clinical trials may
dilute the effect of potential disease-modifying agents tar-
geting specific molecular pathways.

Exposures Leading to COPD as Currently Defined

In industrialized nations, direct inhalation of tobacco

products has been long recognized as the principal causa-

tive exposure leading to COPD. In developing nations, by

contrast, air pollution (both indoor due to biomass fuel use

and outdoor) is a major contributor.23,24 Unfortunately,

almost all data on lung pathology in COPD come from

analysis of smoking-related disease in regions of high soci-

odemographic index (SDI). Far more work is needed on

other exposures as potential etiological agents before extrap-

olation to the Global South can be assured.

However, this etiological dichotomy based on SDI is

overly simplistic to explain disease status and outcomes in

individuals. Risks of COPD are not uniformly distributed

among residents of one high-SDI nation, the United States,

but instead reflect a complex mix of differences in race/eth-

nicity, social class, and geographic location.25-27 These fac-

tors are doubtless applicable worldwide and will probably

worsen due to climate change.28-30 COPD is also common

among never smokers in the industrialized world, with

apparent sex-based differences; eg, in the population-based

Rotterdam study, smoking history was absent in far more

females than males with COPD (27.2% vs 7.3%).31 Impor-

tantly, different oxidant inhalation exposures can interact to

drive adverse COPD outcomes.32,33 Collectively, these find-

ings imply the urgent need to reduce or eliminate all toxic

inhalational exposures.

Small Airways Disease Is a Prominent Early COPD

Pathology Initiated in Part by Loss of Local Innate

Immune Defenses

Small airways are defined as those < 2 mm in diameter;

in adults, they are stated to be distributed between the

fourth–14th (mean eighth)34 or eighth–22nd (mean 14th)35

generation of airway branching. This region is distal to the

point of maximal airway resistance and is characterized by

diminishing individual airway diameters but a rapidly

expanding total cross-sectional airway area. These distal

airways are uniquely susceptible to damage induced by

inhaled oxidative stresses such as smoking and air pollution

for several reasons. The small airways are the region where

gas transport switches from laminar or turbulent flow to dif-

fusion, which facilitates deposition of fine particles and

may enhance time of exposure to gas-phase irritants.

Additionally, as considered below, small airways are much

more dependent than the proximal airways on innate

immune defenses that are altered by smoking.

Changes in small airways are the best studied pathology

in COPD and likely the primary smoking-induced lesion in

most of those who progress to significant air flow obstruc-

tion.36 Elegant retrograde catheter studies in the 1960s dem-

onstrated that small airways are the major site air flow

obstruction in the human lung, with their contribution to

total peripheral resistance increased 4–40-fold in advanced

emphysema.37 A recent study using archival paraffin-

embedded lung sections also found damage and loss of ter-

minal and transitional bronchioles in spirometrically mild-

moderate COPD. Loss of small airways in Global Initiative

for Chronic Obstructive Lung Disease (GOLD) 1–2 patients

was significant in regions without emphysema, with a 40%

reduction in small airway numbers in those with GOLD

stage 1 obstruction.38 These studies indicate the importance
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of identifying small airway disease (SAD) early to develop

therapies to stop its progression. Clinical detection of SAD

by pulmonary function testing has been difficult, as the

process has minimal effect on FEV1, and even sensitive

techniques such as forced expiratory flow during the

middle half of the FVC maneuver (FEF25–75%) are highly

variable. Nevertheless, use of spirometry on large popu-

lations can overcome that limitation, and results demon-

strate the high global prevalence of SAD.39 Alternative

physiological methods to determine SAD include oscill-

ometry, determination of residual volume, profiling the

washout of inert gases, and machine learning approaches

to analyze expiratory flow patterns.

The proximate cause of SAD is smoking-induced reprog-

raming of airway epithelium in multiple ways that collec-

tively reduce small airway immune defenses.40,41 Healthy

airway epithelium comprises a diverse community of cell

types that all derive from basal progenitor cells (Fig. 1A).

Smoking epigenetically reprograms these progenitors, caus-

ing them to undergo not only hyperplasia but also skewed

maturation, with goblet cell expansion and loss of club cells

and ciliated cells.42,43 Hyperplastic goblet cells produce mu-

cus in greater amounts and with altered physical properties,

which the reduced numbers of ciliated cells have difficulty

clearing44 (Fig. 1B). The adverse effect of this change is

shown by the association of total sputum mucin concentrations
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Fig. 1. Epigenetic changes induced by smoking lead to progressive small airway damage and inflammation in early COPD. (A and C) Normal
small airways; (B and D) small airways in early COPD. A: Normal distal epithelium contains self-renewing basal cells, which differentiate into cili-

ated, mucus-producing goblet, and secretory (club) cells, joined by tight junctions that form an impermeable barrier. Mucus is separated from
the epithelial surface by a robust aqueous periciliary layer. B: Smoking induces hyperplasia of basal and goblet cells, squamous metaplasia,

loss of club and ciliated cells, decrease in the periciliary layer and ciliary damage and crowding, and junctional barrier loss. C: In normal small
airways, dimeric immunoglobulin A (IgA) (structure shown in inset) is transcytosed by the polymeric immunoglobulin receptor (pIgR) into the
mucosal lumen. pIgR cleavage at the luminal surface liberates secretory IgA, which prevents bacterial invasion. D: Smoking reduces pIgR

expression, leading to localized secretory IgA deficiency in small airways, allowing bacteria to invade and induce sustained airway inflamma-
tion. Illustration by Patricia Ferrer Beals. From Reference 40, with permission. NF-KB¼ nuclear factor kappa B; pIgR¼ polymeric immunoglob-

ulin receptor; IgA¼ immunoglobulin A.
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with multiple adverse COPD outcomes, including annualized

exacerbation rates, and with imaging or spirometric measures

of SAD.45 Visual scoring of mucus plugs detectable by com-

puted tomography (CT), predominately in subsegmental air-

ways, is associated with FEV1 and hypoxemia, independently

of emphysema and with a similar effect size.43 Hence, reversing

mucus hypersecretion could be one means of halting COPD

progression.

Equally or perhaps more important to SAD pathogenesis

is the local loss of host defenses resulting from epithelial

reprograming. CC16, a secretoglobin family member that is

the most abundant product of club cells, is reduced in smok-

ers and to even a greater degree in mild and severe COPD.46

In a transgenic murine cigarette smoke exposure model,

CC16 protected lungs by reducing lung nuclear factor kappa

B (NF-KB) activation.46 Reprogramming also causes loss of

translocation of dimeric secretory immunoglobulin A (sIgA)

into small airway lumens.47,48 In health, sIgA binds bacteria

and their products, leading to their elimination without induc-

ing inflammation. In small airways, sIgA must be translo-

cated by the polymeric Ig receptor (pIgR), which is speci-

fically downregulated by smoking48,49 (Fig. 1C). This process

is crucial, as it is now well recognized that even healthy lungs

are not sterile but instead are repeatedly exposed to oropha-

ryngeal bacteria.50 In the absence of luminal sIgA, these bac-

teria can adhere and invade the epithelium, inducing NF-KB

activation, which generates chemotactic molecules that attract

inflammatory cells49,51 (Fig. 1D). Bacterial clearance from

the lungs is further compromised by smoking and, to a greater

degree, COPD development due to reduced host defense

capabilities of the principal resident lung phagocytes,52-54

lung macrophages.55

These factors are directly relevant to the issue of why

only some individuals with identical oxidant inhalational

exposures develop COPD and why its manifestations are

heterogeneous in those who do. One plausible explanation

is focally stochastic interactions between epithelial-inva-

sive bacteria and weakened local immunity. In other words,

regional variation in host defenses, typified by focal loss of

CC16 and pIgR and exaggerated production of abnormal

mucus, sets the stage for variability in airway damage, both

between individuals and between different lung regions in

the same individual.56-58 Inheritable differences in bronchial

anatomy that affect deposition of inhaled or aspirated micro-

particles are also likely a component of variability.59,60 That

differences between individuals in the community composi-

tion of their oropharyngeal bacterial microbiome, the source

of microaspirated organisms, are another factor is plausible

but not entirely confirmed.61-64 It is clear that advanced

COPD is characterized by substantial changes in the commu-

nity composition of the lung bacterial microbiome. However,

whether changes in that community structure precede and

drive the development of lower respiratory tract damage

remains controversial.61-65

Immune Inflammation Can Drive SAD Progression to

Emphysema

The Hogg lab recently provided additional evidence on

how inflammation in terminal airways could lead to adja-

cent emphysema.66 Using micro-CT, they demonstrated

that loss of terminal bronchioles in COPD occurs in regions

of microscopic emphysematous destruction (average air

space size between 500–1,000 mm). Analysis of gene

expression there showed enrichment for interferon-gamma

and for the chemokines CXL9-11 that it induces. By the

CIBERSORT technique,67 they also identified enrichment

of CD8+ and CD4+ T cells and B cells.66

These findings extend a significant body of studies collec-

tively implying that adaptive immune mechanisms amplify

lung damage initiated by defective lung host defense.10,68-71

Evidence is particularly strong for a role for B cells in em-

physema pathogenesis,69,72-83 possibly facilitated by appear-

ance within distal lung parenchyma of organized lymphoid

follicles,84,85 which contain germinal centers that permit pro-

duction of high-affinity antibodies. This process is even seen

in panlobular emphysema due to alpha-1 anti-protease defi-

ciency (AA1PD), the quintessential evidence for the prote-

ase–anti-protease imbalance hypothesis of COPD pathology.

Explants from patients with AA1PD had notable CD4+ and

CD8+ T cell infiltration and lymphoid follicles that were

even more prominent that those from patients with usual em-

physema.86 Thus, auto-aggressive adaptive immune mecha-

nisms likely amplify distal lung damage initiated as SAD

into frank emphysema.

SAD Can Be Detected by Imaging Abnormalities That

Correlate to Histopathological Changes

Noninvasive detection of SAD in living individuals has

become possible by the imaging technique known as para-

metric response mapping (PRM)87 and related techni-

ques.88,89 Detailed cryo-CT analyses of human lung tissue

frozen in standardized inflation after resection confirm that,

at least in advanced COPD, the metric of functional small

airways disease, PRMfSAD (ie, persistently hyperinflated,

non-emphysematous lung regions), actually denotes small

airway pathology.90 This work has been extended by analyz-

ing longitudinal change in PRMfSAD and emphysema over

time in the COPDGene cohort.91 Results showed evolution

of initial areas of SAD into later centrilobular emphysema

(Fig. 2). These findings suggest that imaging might be used

as the outcome in clinical trials of agents designed to arrest

SAD, as has been used successfully to prevent emphysema

in AA1PD by augmentation therapy.92 Abnormal PRMfSAD

is not specific for the SAD of smokers, as it has also been

observed in never smokers with histologically confirmed

constrictive bronchiolitis resulting from exposures during

military deployment to Southwest Asia.93
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Additional Pathologic Processes Leading to COPD

Thus, the processes leading to SAD are sufficient to

induce centrilobular emphysema and may be the major path-

way in many individuals. However, SAD cannot explain the

complete heterogeneity of COPD phenotypes and is unlikely

even to be the only pathway to centrilobular emphysema

(Table 1). An alternative, not mutually exclusive, process is

loss of pulmonary microcirculation, which is supported by

evidence from both human pathological specimens94 and in

vitro and experimental animal models.95-100 Using dyna-

mic contrast-enhanced magnetic resonance imaging, the

Multi-Ethnic Study of Atherosclerosis COPD Study found

30% reductions in pulmonary microvascular blood flow

even in mild COPD; correlations were strongest with em-

physema and were independent of measures of SAD.101

Additionally, alveolar destruction might result from

induction of epithelial cell apoptosis, either following loss

of matrix attachments due to remodeling102 or from the

direct action of natural killer cells, which show enhanced

cytotoxicity of autologous epithelial cells, relative to never

smokers or non-obstructed smokers both in vitro103,104 and

in situ.105 Hence, the ultimate phenotype of any individual

with COPD almost certainly results from one or more path-

ological processes that will require tailored interventions.

Rationale for a Revised Definition of COPD

Is Airway Narrowing or Air Flow Limitation Universal

in Those With COPD Risk Factors?

Given this diversity of lung pathologies associated with

smoking and spirometrically mild COPD, the question arises:

do such exposures always induce airway narrowing or air flow

limitation? The answer is a resounding no, as demonstrated in

several groups of individuals with smoking histories. The first

is those with emphysema despite normal spirometry. An analy-

sis of the COPDGene cohort using visual reads according to

Fleischner Society criteria identified some degree of emphy-

sema in 44% of GOLD 0 participants.106 In a 5-y follow-up

study from a larger group in the same cohort, those who ini-

tially exhibited visually evident emphysema had significantly

greater changes in multiple parameters characteristic of COPD,

including FEV1/FVC.
107 Nevertheless, these individuals would

not currently be classified as having COPD based on spiromet-

ric criteria. In addition to radiographic detection of emphysema,

considerable data support the detrimental effect of low values

of diffusing capacity for carbon monoxide (DLCO), which is a

risk factor for death independent of the degree of air flow limi-

tation.108,109 The recent availability of reliable portable systems

to measure both spirometry and DLCO
110 should permit broader

use of this technique in cohort studies. These findings collec-

tively argue strongly for including in the spectrum of COPD

those with significant emphysema regardless of spirometry.

Additionally, in those with sufficient lifetime smoking his-

tory (10–20 or more pack-years), absence of air flow obstruc-

tion can still be associated with significant respiratory

symptoms characteristic of COPD, including respiratory events

compatible with exacerbations and empiric treatment using

bronchodilators, as described in both the SPIROMICS110 and

COPDGene112 cohorts.

5-year follow-upBaselineA

B

PRM fSAD -> emph:
Baseline fSAD Conversion to

follow-up emphysema

PRM fSAD -> emph:
Follow-up emphysema converted from

baseline fSAD

PRM baseline
FEV1: 57% predicted

FEV1/FVC: 0.41
fSAD: 44%, emphysema: 24% 

PRM follow-up
FEV1: 30% predicted

FEV1/FVC: 0.35
fSAD: 36%, emphysema: 35% 

Fig. 2. Illustration of changes in parametric response mapping (PRM)

metrics in a representative male patient with COPD. (A, B)
Representative coronal computed tomography sections of the same
individual at baseline (left) and after 5-y follow-up (right). A: All PRM

metric values are depicted as normal lung parenchyma (green), func-
tional small airway disease (fSAD, yellow) and emphysema (red). B:

Only those individual voxels that were classified as fSAD at baseline
(yellow) and which became emphysematous are shown. From
Reference 91, with permission. PRM ¼ parametric response map-

ping; fSAD¼ functional small airway disease; emph¼ emphysema.

Table 1. Pathological Processes Leading to Emphysema

SAD

Loss of pulmonary microvasculature

Direct apoptosis of airway epithelial cells

Epithelial cell death deriving from loss of matrix attachments

SAD ¼ small airway disease
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A third group currently excluded from the definition of

COPD merits consideration: those with preserved ratio but

impaired spirometry (PRISm)113 also termed restrictive spi-

rometry.114 This group is typically defined as FEV1/FVC> 0.7

and FEV1% predicted < 80% (Fig. 3, upper left quadrant),

although results are similar using lower limit of normal cri-

teria. This graph also illustrates how rigid cutoffs based on

spirometric values can misclassify; eg, some individuals

with disproportionally high FVC values relative to their

FEV1 (also still in the normal range) will be diagnosed by

GOLD criteria as having mild COPD (Fig. 3, lower right

quadrant) rather than being normal variants. This issue is

related strongly to age. Relative to the fixed-ratio defini-

tion, a cutoff based on lower limit of normal values for

FEV1/FVC diagnoses COPD less frequently in the el-

derly115,116 and more frequently in those# 45 y old.115

PRISmwas common at enrollment in the COPDGene cohort

(12.3%); many in this category initially appeared to have a clin-

ical phenotype similar to COPD, and many do transition over

time to frank COPD, frequently at GOLD stage 2 or greater.

Survival in those with PRISm was less than that of GOLD 0

subjects, that is, smokers without air flow obstruction.117

Congruent results were recently published from the Rotterdam

cohort,118 which showed that the survival of a similarly defined

PRISm group was much closer to that of patients with COPD

on average andworse than that of GOLD 1 subjects. Some indi-

viduals with PRISm in a separate cohort also showed significant

emphysema.119 Because the presence of significant interstitial

lung abnormalities was exclusionary in most analysis of

PRISm, the risk of it progressing to frank interstitial lung dis-

ease remains uncertain to my knowledge and worthy of

1

0.75

0.5

0.25

40 80

FEV1 (% predicted)

FE
V 1/F

VC

120 160

Fig. 3. Distribution of spirometry in the COPDGene cohort, which led to description of the preserved ratio but impaired spirometry (PRISm) phe-
notype. FEV1% predicted is plotted on the x axis while FEV1/FVC is plotted on the y axis. Dashed lines represent fixed-threshold criteria used

to delineate PRISm individuals (highlighted in blue upper-left quadrant), individuals with normal lung function (upper-right quadrant), those with
mild (lower-right quadrant), and moderate to severe COPD (lower-left quadrant). From Reference 112, with permission.

Exposure

Spirometry

CT imaging Symptoms

Fig. 4. Features used to define COPD in the COPD Genetic

Epidemiology Study (COPDGene). Exposure in the COPDGene
study includes individuals with a total of $ 10 pack-years smoking.

Computed tomography (CT) imaging includes individuals with
quantitative assessment showing$ 5% emphysema, a square root
of airway wall area for a standardized airway of 10 mm internal di-

ameter $ 2.5 mm, or $ 15% gas trapping. Symptoms include indi-
viduals with a Modified Medical Research Council dyspnea scale
$ 2 or chronic bronchitis. Spirometry includes individuals with

FEV1 < 80% predicted or FEV1/FVC < 0.7. From Reference 2, with
permission. CT¼computed tomography.
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investigation. PRISm has always been recognized to be a highly

heterogeneous group, but recent follow-up in COPDGene120

indicates that it is a highly fluid category, with subsequent

changes either to normal spirometry or obstruction. The useful-

ness of the PRISm category has been questioned,121 but it does

appear to be a prevalent group at risk for poor outcomes and

with largely unstudied responses to standard COPD treatments.

Importantly, all 3 of these common groups with lifetime

smoking exposures (emphysema with little to no obstruction,

symptomatic individuals with preserved spirometry, and

PRISm) highlight the shortcomings of basing the diagnosis

of COPD on spirometric cutoffs, whether fixed ratio or lower

limit of normal based. Based on these groups who might fit

under an expanded definition of the chronic lung condi-

tions resulting from the multitude of oxidative inhalational

exposures, it might be tempting to drop the “O” from the

acronym. However, such a move would lose the name rec-

ognition that this long-neglected condition is finally gain-

ing. It is recognized that the current spirometric diagnosis

of COPD has considerable specificity, but low sensitivity,

which has led to the proposal to recognize a broader group

of exposed individuals as having pre-COPD.122

The Dilemma of Redefining COPD

Thus, the current definition of COPD is increasingly rec-

ognized to be inadequate. The dilemma is how to replace it.

An analysis of the COPDGene cohort attempted to capture

COPD heterogeneity using spirometry and combinations of

CT imaging and symptoms. Based on logistic and Cox

regression models of actual outcomes, the classification

proposes a range of categories, including possible and prob-

able COPD (Figs. 4, 5).2 Efforts are already underway to

update and expand this classification.

However, one can imagine devising very different defini-

tions, depending on whether the goal is to define homogene-

ous endotypic groups for clinical trials versus an easy-to-

apply algorithm to aid disease management in primary care.

Similar tweaks would be needed for disability determination

and potentially other uses. Hence, an all-encompassing rede-

finition appears elusive in the present state of pathological

understanding. An alternative viewpoint is to cease consid-

ering COPD a unitary disease and instead accept it as a clin-

ical syndrome.4,123,124 In the meanwhile, every effort should

be made to continue to dissect the heterogeneity of this syn-

drome to identify true biological mechanism–defined endo-

types that will be susceptible to precision therapies.

Summary

Understanding of the biological and molecular pathways

leading to lung damage in COPD has increased greatly in the

last decade, but there is still much to be learned. Research is

urgently needed on the pathological correlates of inhalational
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2.82 (2.18-3.66)
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Odds of Change >350 mL in FEV1

(95% CI)a
Hazard Ratio for All-Cause
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No COPD
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CT imaging Symptoms
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CT imaging Symptoms
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Spirometry

CT imaging Symptoms
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CT imaging Symptoms
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CT imaging Symptoms

Exposure

Spirometry

CT imaging Symptoms

Fig. 5. Logistic regression and Cox regression models for FEV1 progression and all-cause mortality, respectively, with the proposed
COPDGene 2019 classification of categories. (A) Change in FEV1 assessment was done on n ¼ 4,925 participants who returned for phase 2
clinical follow-up. Adjusted for age at first visit, sex, race, pack-years, and current smoking. Bolded numbers indicate categories where the

95%CI did not include 1.0. Symbols as in Figure 4. From Reference 2, with permission.
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exposures other than tobacco smoking that lead to impaired

lung function and respiratory symptoms. Research on smokers

should embrace the diversity of lifetime lung function trajec-

tories and the heterogeneity of COPD by focusing on sub-

groups with chronologically early disease and those at

increased risk of rapid loss of lung function. Advanced tho-

racic imaging125 and the combination of genetic and multi-

omics risk scores126,127 promise to be the most efficient means

to define targetable pathological pathways for personalized

therapies. Finally, the current purely spirometric definition of

COPD is inadequate, but revisions will likely require different

definitions for disparate use cases.
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115. Güder G, Brenner S, Angermann CE, Ertl G, Held M, Sachs AP,

et al. “GOLD or lower limit of normal definition? A comparison with

expert-based diagnosis of chronic obstructive pulmonary disease in a

prospective cohort-study.” Respir Res 2012;13(1):13.
116. van Dijk W, Tan W, Li P, Guo B, Li S, Benedetti A, et al; CanCOLD

Study Group. Clinical relevance of fixed ratio vs lower limit of nor-

mal of FEV1/FVC in COPD: patient-reported outcomes from the

CanCOLD cohort. Ann FamMed 2015;13(1):41-48.

117. Wan ES, Fortis S, Regan EA, Hokanson J, Han MK, Casaburi R,

et al; COPDGene Investigators. Longitudinal phenotypes and mortal-

ity in preserved ratio impaired spirometry in the COPDGene Study.

Am J Respir Crit Care Med 2018;198(11):1397-1405.

118. Wijnant SRA, De Roos E, Kavousi M, Stricker BH, Terzikhan N,

Lahousse L, et al. Trajectory and mortality of preserved ratio impaired

spirometry: the Rotterdam Study. Eur Respir J 2020;55(1):1901217.

119. Wei X, Ding Q, Yu N, Mi J, Ren J, Li J, et al. Imaging features of

chronic bronchitis with preserved ratio and impaired spirometry

(PRISm). Lung 2018;196(6):649-658.

120. Wan ES, Hokanson JE, Regan EA, Young KA, Make BJ, DeMeo DL,

et al. Significant spirometric transitions and preserved ratio impaired

spirometry among ever smokers. Chest 2022;161(3):651-661.

121. Knox-Brown B, Amaral AF, Burney P. Concerns about PRISm.

Lancet Respir Med 2022;10(6):e51-e52.

122. Han MK, Agusti A, Celli BR, Criner GJ, Halpin DMG, Roche N,

et al. From GOLD 0 to pre-COPD. Am J Respir Crit Care Med

2021;203(4):414-423.

123. Agusti A, Bel E, Thomas M, Vogelmeier C, Brusselle G, Holgate S,

et al. Treatable traits: toward precision medicine of chronic airway

diseases. Eur Respir J 2016;47(2):410-419.

124. Sterk PJ. Chronic diseases like asthma and COPD: do they truly

exist? Eur Respir J 2016;47(2):359-361.

125. Labaki WW, Martinez CH, Martinez FJ, Galban CJ, Ross BD,

Washko GR, et al. The role of chest computed tomography in the

evaluation and management of the patient with COPD. Am J Respir

Crit Care Med 2017;196(11):1372-1379.

126. Moll M, Sakornsakolpat P, Shrine N, Hobbs BD, DeMeo DL, John C,

et al; SpiroMeta Consortium. Chronic obstructive pulmonary disease

and related phenotypes: polygenic risk scores in population-based and

case-control cohorts. Lancet Respir Med 2020;8(7):696-708.

127. Moll M, Boueiz A, Ghosh AJ, Saferali A, Lee S, Xu Z, et al; HAPIN

Investigators. Development of a blood-based transcriptional risk

score for chronic obstructive pulmonary disease. Am J Respir Crit

Care Med 2022;205(2):161-170.

Discussion

MacIntyre: I thought that was a

wonderful overview. I find it fasci-

nating that in 2022 we are, for the

most part, still defining COPD by

spirometry, a test first described in

the mid-19th century, and we are

rigidly adhering to that definition de-

spite this enormous amount of literature

showing us that the FEV1 is missing an

awful lot of chronic small airways

inflammation and emphysema. I think

this is of particular interest to our

pharma friends who manufacture and

market bronchodilators, drugs of only

limited value in small airway disease

and of no value in emphysema. We

need a whole new array of therapeutics

aimed at these different phenotypes.

That wasn’t really a question, more of a

comment. I also find it interesting, as

long as we’re discussing FEV1, that the

FEV1 still remains in the FDA as the

standard for approving drugs for

COPD. And again, as Jeff has shown us

very nicely, there’s an awful lot of

COPD out there that is not bronchodila-

tor responsive. Any other thoughts?

Haynes: I would extend that to say

that not only do we have this love

affair with FEV1 for diagnosis but also

determining whether therapy works.

There are a lot of data that show that

bronchodilators do work even if it’s

not reflected in the FEV1.
1

Mike Hess: I think that really hits it

on the head, the love affair with FEV1.

And I say this as a fellow registered

pulmonary function technologist, not

only is it an old test, it can be inaccu-

rate; it is highly dependent on tech-

nique and coaching. When I’ve spoken

with a few different clinicians who are

relatively new to the COPD world they

said, “Well what do we do, then?”; and I
say, “this is the best we’ve got. We

don’t have a blood marker; we don’t

have a lab test. We can look at some of

the imaging and use that, but we are

legally and regulatorily bound by this

FEV1 idea.” I definitely think it’s time

for an expanded definition. It also

reminds me that everything old is new

again because in some reading I’ve done

on chronic nonspecific lung disease

back in the 1960s Dutch definition, are

we going back to that and then develop-

ing phenotypes?

Carlin: I agree with everyone else here

in the room that I think the definition

certainly needs to be changed, but how

can we make it simple enough for a care

provider to make an accurate diagnosis

given the extreme limitations of time for

the patient-physician interactions? I

liken it back to what Tom Petty MD as

part of the National Lung Health

Education Program (which he founded)

said years ago, that in order to diagnose

an illness some type of “numerical”
foundation should be made. For exam-

ple, no one would diagnose hypertension

without a blood pressure measurement

or diagnose hyperlipidemia without a
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lipid or cholesterol measurement. While

spirometry may not be the absolute best

way to diagnose COPD, it still stands as

a cornerstone of the diagnosis.

Haynes: I would suggest that artificial

intelligence (AI) is the way we get there.

Expecting a primary care physician to

calculate all this and consider all of these

factors in the limited time they have is

unrealistic, but we certainly have AI,

and it would be easy to write software to

helpmake that diagnosis.

MacIntyre: I assume we’ll hear more

about this later on with COPD assess-

ment discussions, but it’s obviously

terribly impractical to require sophisti-

cated imaging (eg, CT scanning) to

detect emphysema. We need some-

thing simpler. Some things that come

to mind is using AI or something like

that to analyze the flows as the lung

gets smaller and the airways get smaller.

The FEF25–75 is way too crude, but

looking at the shape of the curve could

yield valuable information. This is the

so-called silent area of the spirometry

tracing. Impulse oscillometry is perhaps

another way of delving into the small

airways in the lung. And then I’ll put in

a plug for one of my personal favorites,

DLCO. We think of diffusion capacity as

a simple measurement of gas transport

across the alveolar capillary membrane.

However, ventilation distribution, intra-

pulmonary gas mixing, and the proper-

ties of the alveolar capillary membrane

might all be things impacting DLCO we

could use to look for emphysema.

Indeed, one of my favorite projects in

COPDGene is looking at the relationship

of DLCO and CT to determine emphy-

sema. There’s clearly a relationship

there; the r value is not huge, but it’s

real. So there may be tools that are a

little simpler than going into the CT

scanner to get at these small airway

abnormalities and emphysema.

Orr: I’d like to make a quick comment

on PFTs and diagnosis and share a little

concern about liberalizing the diagnostic

criteria. What I tend to see clinically is

that patients come to me without spirom-

etry and they’re already on triple therapy.

And I think that as long as the PFT

results are a reflex to bronchodilators,

and that dyspnea symptoms that are

uncontrolled are a reflex to more bron-

chodilators, we’re in a difficult situation.

I think there’s a lot of medication overuse

for things that aren’t really responsive to

these bronchodilator medications.

Mike Hess: That also crossed my

mind. We’ll have to thread that needle.

We already see people where, “ok, you
coughed, you smoked 20 years ago,

ergo you have COPD,” and now you’re

tagged with this forever, and you’re

going to be on this particular medica-

tion regimen, and that’s it. There is, I

think, a danger in oversimplifying.

Criner: I think one of the things, as

Brian [Carlin] mentioned, it’s not only

the primary care physicians but the ma-

jority of patients with COPD, and it’s

probably going to increase in people

who are in low- or middle-income coun-

tries. And you know, there are more

radiologists on Longwood Avenue in

Boston than there are on the whole con-

tinent of Africa. So some of these tools

that we use like CT scans or other elite

measurements are useful in characteriz-

ing the extent of the disease but are not

practical for the clinical diagnosis or to

be used in definitions. I think one of the

challenges is to be able, with an increas-

ing worldwide prevalence of chronic

obstructive lung diseases related to envi-

ronmental changes and changes in the

climate, is to be able to come up with a

diagnosis that’s established on physio-

logical and clinical principles that are

tied to mechanistic things that broaden

the diagnostic abilities that we have and

be able to triage patients to receive care

based on that. Some of the papers that

Jeff went through were SPIROMICS

papers by Prescott Woodruff.2,3 Those

subjects were treated because they were

symptomatic. And for the most part, in

any clinical trial, the clinicians get it

right. So, there’s much more to be

gained by milking the clinical history

and physical examination than we cur-

rently use, and I think we can do a bet-

ter job of trying to hone those skills.

MacIntyre: I think this is a great be-

ginning. These comments and ques-

tions are likely going to keep coming

up over the next day and a half, and

we’ll be referring back to this first talk.

REFERENCES

1. O’Donnell DE, Forkert L, Webb KA.

Evaluation of bronchodilator responses in

patients with “irreversible” emphysema. Eur

Respir J 2001;18(6):914-920.

2. Yee N, Markovic D, Buhr RG, Fortis S,

Arjomandi M, Couper D, et al. Significance of

FEV3/FEV6 in recognition of early airway dis-

ease in smokers at risk of development of

COPD: analysis of the SPIROMICS cohort.

Chest 2022;161(4):949-959.

3. Woodruff PG, Barr RG, Bleecker E,

Christenson SA, Couper D, Curtis JL, et al;

SPIROMICS Research Group. Clinical sig-

nificance of symptoms in smokers with pre-

served pulmonary function. N Engl J Med

2016;374(19):1811-1821.

This article is approved for Continuing Respiratory Care Education
credit. For information and to obtain your CRCE

(free to AARC members) visit
www.rcjournal.com

COPD ETIOLOGY, PATHOPHYSIOLOGY, AND DEFINITION

870 RESPIRATORY CARE � JULY 2023 VOL 68 NO 7


