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Abstract

Genome instability and aberrant alterations of transcriptional programs both play important roles 

in cancer. Single-cell RNA sequencing (scRNA-seq) has the potential to investigate both genetic 

and non-genetic sources of tumor heterogeneity in a single assay. Here we present a computational 

method, Numbat, that integrates haplotype information obtained from population-based phasing 

with allele and expression signals to enhance detection of copy number variations from scRNA-

seq. Numbat exploits the evolutionary relationships between subclones to iteratively infer the 

single-cell copy number profiles and tumor clonal phylogeny. Analyzing 22 tumor samples 

composed of multiple myeloma, gastric, breast, and thyroid cancers, we show that Numbat can 

reconstruct the tumor copy number profile and precisely identify malignant cells in the tumor 

microenvironment. We identify genetic subpopulations with transcriptional signatures relevant to 

tumor progression and therapy resistance. Numbat does not require sample-matched DNA data or 

a priori genotyping, and is applicable to a wide range of experimental settings and cancer types.
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Introduction

Copy number variations (CNVs) and loss of heterozygosity (LoH) events are major 

genome aberrations found in nearly all cancer cells. Characterization of CNVs in healthy 

and malignant tissues has informed the early detection, modes of progression, and 

resistance mechanisms of cancer. However, the functional impacts of CNVs on the overall 

cellular activity, and how they drive malignant transformation remain largely unclear. 

Genome instability is also a key contributor to intratumoral heterogeneity. Therapy-resistant 

subclones frequently arising in the course of treatment pose a major challenge to cancer 

therapies. In addition to genetic heterogeneity, resistance may also stem from changes in the 

epigenetic or regulatory state, though the relative importance of different mechanisms has 

been difficult to establish1. All such changes, however, including genomic alterations, are 

likely reflected in the transcriptional state of the cell.

Single-cell RNA sequencing (scRNA-seq) methods provide an excellent opportunity to 

bridge genetic heterogeneity with the overall cellular state. It has been demonstrated 

that CNVs can be inferred from transcript abundance as well as allelic imbalance 

in heterozygous SNPs2-5. Reliable inference of copy number states, however, remains 

challenging using either approach due to the sparse and noisy nature of single-cell 

measurements. Expression-based methods infer the presence of CNVs based on a general 

expectation that amplifications or deletions will on average result in up- or down-regulation 

of genes within the affected region of the genome, respectively. Such approach can produce 

false-positive results due to local variations in expression unrelated to genomic copy 

numbers6. Allele-based approaches examine deviations of the heterozygous allele frequency 

(“B-allele frequency” or BAF) caused by CNVs, and are less affected by sample or cell type 

variations2,5. They are hindered, however, by data sparsity and allele-specific transcriptional 

stochasticity in single cells7.

Existing approaches for CNV detection from scRNA-seq do not use the prior knowledge of 

haplotypes, or the individual-specific configuration of variant alleles on the two homologous 

chromosomes, which can enable more sensitive detection of allelic imbalance. Although 

current sequencing technologies are generally not haplotype-resolved, population-based 

phasing provides means to computationally phase variants of an individual using population 

haplotype frequencies8,9. The estimated haplotypes are highly accurate within adjacent 

genomic regions, with a typical span of 50kb - 1Mb, but are subject to phase switch errors 

that accumulate with longer genomic distance10. Nonetheless, population-based phasing 

has been successfully applied to characterize chromosomal aberrations in the context of 

germline polymorphisms as well as cancer evolution, mainly using DNA sequencing/array 

genotyping data11-14. The utility of phasing in detecting CNV signals from scRNA-based 

assays, however, has not been explored. We hypothesized that prior phasing information 

would be particularly impactful in the context of sparse coverage provided by scRNA-seq.

Finally, single-cell sequencing provides a unique opportunity to dissect genetically 

heterogeneous subpopulations, which are masked in bulk measurements. Since scRNA-seq 

yields limited coverage per cell, methods that use allele information typically rely on 

aggregating information across cells (forming in silico “pseudobulk” profiles) to confidently 
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define aberrations2,5. This approach, however, will only increase statistical power if the 

aberrations are shared between the cells included in the pseudobulk, and could lead to 

a dilution of signal with the inclusion of genetically distinct cells. Therefore, reliable 

identification of subclonal CNV events depends on the accurate inference of clonal cell 

populations.

We therefore developed a computational method, Numbat, which integrates expression, 

allele, and haplotype information derived from population-based phasing to 

comprehensively characterize the CNV landscape in single-cell transcriptomes. Numbat 

employs an iterative approach to jointly reconstruct the subclonal phylogeny and single-cell 

copy number profile of the tumor sample. Applying our method to 22 tumor samples 

(59878 single cells) representing a variety of cancer types and genomic complexity, we 

show that Numbat reconstructs high-fidelity copy number profiles from scRNA-data alone, 

and accurately distinguishes cancer cells from normal cells in the tumor microenvironment. 

Within heterogeneous tumors, Numbat readily identifies distinct subclonal lineages that 

harbor allele-specific alterations. Numbat does not require sample-matched DNA data or a 
priori genotyping, and is applicable to a wide range of experimental settings and cancer 

types.

Results

Sensitive CNV detection using haplotype information

Prior phasing information can effectively amplify weak allelic imbalance signals of 

individual SNPs induced by the CNV, by exposing joint behavior of entire haplotype 

sequences and thereby increasing the statistical power11,14. To examine the extent to 

which expressed heterozygous SNPs can be detected from scRNA-seq data, we genotyped 

common germline SNPs (>5% population frequency) in 22 tumor samples sequenced 

by high-throughput droplet-based protocols (Supplementary Table 1). The density of 

the detected heterozygous SNPs along the genome and the per-cell SNP coverage vary 

by sample and datasets (16-68 SNPs/Mb and 159-1045 counts/cell; Supplementary Fig. 

1a,b). A large proportion of the SNPs is detected within intronic regions, although with 

lower coverage than SNPs within UTR and exonic regions (Supplementary Fig. 1c,d). To 

demonstrate the feasibility of population-based phasing in such coverage setting, we first 

analyzed a triple-negative breast cancer sample (TNBC4) that contains wide-spread loss of 

heterozygosity. The observed allele counts in chromosome arms with complete LoH allowed 

us to confidently phase alleles (P < 0.05, two-sided binomial test) into their respective 

haplotypes. We performed population-based haplotype phasing using a reference-based 

phasing algorithm, Eagle28, with respect to two different population genome reference 

panels: TOPMed and 1000 genomes (1000G)15,16.

We found that population-based phasing was effective at inferring the haplotype of long 

stretches of expressed SNPs (mean: 11.6 SNPs, IQR 2-15, TOPMed). SNPs within the same 

gene were phased with especially high accuracy (96.8%) as compared to co-expression 

based phasing (83.7%)17. Furthermore, population-based phasing was also able to infer 

the haplotype across genes, producing perfectly phased blocks containing on average 3.8 

genes (IQR 1-5) and achieving a between-gene phasing accuracy of 79.8%. In contrast, 
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co-expression based phasing relies on haplotype-specific expression of alleles within the 

same gene and cannot phase across genes. The ability to infer phasing between genes 

is particularly useful for CNV inference, as it provides a potential means to overcome 

stochastic allele-specific expression (ASE) effects which give rise to bursts of gene-specific 

allelic imbalances in individual cells. ASE is prevalent in normal diploid cells, due to 

a combination of amplification bias, transcriptional bursting18 or cis-regulatory effects19. 

However, in diploid regions the direction of ASE is independent between genes; that 

is, given a transcriptional burst of a gene from a maternal chromosome, the neighboring 

genes would be on average equally likely to show bursts from either maternal or paternal 

chromosomes. In contrast, the presence of a CNV would result in a consistent allelic bias 

among a stretch of neighboring genes towards a particular chromosome. The knowledge 

of haplotypes provided by population-based phasing enables allelic bias signals to be 

aggregated across SNPs in consecutive genes, thus overcoming noise resulting from ASE 

(Supplementary Fig. 2).

Hidden Markov models have been effectively used to detect allelic imbalances from noisy 

signals2,5,11,14,20,21. The conventional allele-focused approach (haplotype-naïve HMM, such 

as that used by HoneyBADGER) infers the presence of events by the increased variance 

of allele frequencies in the affected regions (Fig. 1a, first panel)2,5,20,21. On the other 

hand, a haplotype-aware HMM exploits signed deviations of phased haplotype frequencies 

to gain additional statistical power (Fig. 1a, last panel)11,14. The aberrant genome state is 

represented by a pair of mirrored states with reciprocal transitions to account for phase 

switch errors in the population-derived haplotypes, which can shift between the more 

abundant haplotype (major haplotype) and the less abundant haplotype (minor haplotype, 

Extended Data Fig. 1b). To reflect the decay in phasing strength over longer genetic 

distances, we introduced site-specific phase switch probabilities between haplotype states 

(Methods). This gives rise to an inhomogeneous Markov chain where the haplotype 

transition probabilities are an exponential function of inter-SNP distance (Extended Data 

Fig. 1a,b).

To benchmark the extent to which phasing helps with inferring CNVs and single-cell 

genotypes from scRNA-seq based on allele data, we used the existing cell annotation of 

TNBC4 and five multiple myeloma (MM) samples with matched WGS to create tumor-

normal mixture pseudobulk profiles for a range of tumor cell fractions (clonality: 0-100%, 

Supplementary Figs. 3,4). Compared to the naïve model, the haplotype-aware allele HMM 

readily identified subtle allelic imbalances that would otherwise be invisible (Fig. 1b) and 

achieved a higher AUC at low tumor fractions (Fig. 1c). Phasing also improved CNV 

detection sensitivity at low coverage settings and for amplification events (Supplementary 

Fig. 5). We then asked whether we can confidently test for the presence of individual 

CNVs in single cells using the event characteristics obtained from the pseudobulk profile. 

Accurately phased haplotype is crucial for identifying genotypes of individual cells, as it 

helps overcome the sparse SNP coverage by aggregating allele counts over affected regions2. 

In a naïve HMM, the assignment of alleles to either haplotype is solely based on the 

observed allele frequencies (an allele is classified as major if its BAF is higher than 0.5), 

whereas a haplotype-aware HMM combines evidence from prior phasing information and 

observed allele data to reconstruct haplotypes a posteriori. Using the BAF-based allele 
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classification in the all-tumor pseudobulk as ground truth, we found that our haplotype-

aware HMM achieved higher allele classification accuracy in aberrant regions especially 

at low tumor cell fractions (Fig. 1d,e). As a result, allelic imbalances were more readily 

discernable in individual tumor cells using posterior allele assignments from the haplotype-

aware HMM (Fig. 1f,g, Supplementary Fig. 5). Therefore, incorporating population phasing 

signal enables more sensitive characterization of allelic imbalances, and hence CNVs and 

LoH events, from scRNA-seq data.

Allele-specific copy number inference from transcriptomes

Both the allelic imbalance, which reflects relative copy number of the two homologous 

chromosomes, as well as the changes in expression magnitudes, which reflect the total 

chromosomal dosage, provide signals for characterizing genome aberrations2,5. To integrate 

these two types of signals, we designed a joint HMM based on a generative statistical 

framework (Methods, Extended Data Fig. 2). We expanded the state space of the haplotype-

aware allele HMM by combining the expected expression shifts and allele frequencies 

corresponding to each copy number configuration (Methods, Extended Data Fig. 1c, 

Supplementary Fig. 6). To increase robustness, Numbat models gene expression as integer 

read counts using a Poisson Lognormal mixture distribution, and accounts for overdispersion 

in the allele counts (e.g., due to allele-specific detection or transcriptional bursts) using a 

Beta-Binomial distribution. The resulting HMM simultaneously calls significantly altered 

regions and determines their allele-specific copy number states (Fig. 2a). The expression and 

allele signal in single cells can similarly be integrated to produce probabilistic estimates of 

event presence in single cells (Fig. 2b).

Existing methods infer copy number variations relative to the median ploidy, which can 

dilute signals of aberrant regions or mistake neutral regions for aberrant due to baseline 

shifts caused by hyperdiploidy or hypodiploidy22. To identify the diploid baseline, Numbat 

adopts a two-step approach: first, allelically balanced regions are identified through an 

allele-only HMM. The balanced regions are then clustered based on the expression shifts, 

and the cluster with the lowest average fold-change is designated as diploid regions 

(Supplementary Methods).

To validate the performance of copy number inference using the Numbat joint HMM, 

we turn to scRNA-seq data of the 5 multiple myeloma samples with sample-matched, flow-

sorted WGS. We detected CNV events from the malignant plasma cells using the Numbat 

joint HMM, Numbat expression-only HMM, and three other methods (HoneyBADGER, 

InferCNV and CopyKat). We found that the copy number events identified by Numbat 

are highly concordant with the corresponding DNA profiles (Fig. 2c, Extended Data Fig. 

3), achieving higher overall accuracy (precision: 99.2%, recall: 95.4%) than other methods 

(Fig. 2d). Although the number of expressed SNPs varies by event size, incorporating 

allele information significantly improved the overall event calling performance (Fig. 2d 

and Supplementary Fig. 7a). The results are generally not sensitive to specific choices of 

hyperparameters used to configure the HMM (Supplementary Fig. 7b). In addition, Numbat 

correctly identified copy-neutral loss of heterozygosity (CNLoH) events in two samples 

(chr1p of 47491-Primary, chr5 of 59114-Relapse-1), which are invisible to approaches that 
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consider only expression magnitude, including InferCNV and CopyKAT (Fig. 2c). When 

tested on non-malignant cell populations, Numbat made the fewest number of false-positive 

calls, demonstrating its specificity (Supplementary Fig. 8). Numbat also out-performed other 

methods on CNV testing on a single-cell level (Fig. 2e).

Numbat correctly identified the diploid baseline in all 5 cases, whereas the copy number 

estimates produced by the other three methods are often confounded by baseline shifts 

caused by hyperdiploidy (e.g., 37692-Primary and 47491-Primary; Fig. 2c). This issue is 

particularly pronounced in a pre-malignant breast cancer sample (DCIS1), where CopyKAT 

denoted chromosomes 3, 9, 10, 15 as deleted, and chromosomes 1, 7q, 14 as copy-neutral 

(Supplementary Fig. 9a). In contrast, Numbat analysis using both allele and expression data 

revealed that chromosomes 3, 9, 10, 15 are largely allelically balanced and therefore likely 

remain in diploid state, whereas chromosomes 1, 7q, 14 carry wide-spread allelic imbalance 

around ⅔ fraction and are likely in triploid state (Supplementary Fig. 9b).

Inferring tumor clonal architecture and evolutionary history

scRNA-seq is commonly used to examine a full spectrum of cell states within the tumor 

microenvironment, including different malignant, immune and stromal subpopulations, 

whose classification is often unknown in advance. Therefore, reconstructing the single-cell 

copy number aberrations in heterogenous cell populations requires the inference of clonal 

populations and genomic aberrations at the same time. In heterogenous tumors, cells with 

distinct genotypes can generally be assumed to have originated from a common cell of 

origin, and are thus related to each other via a phylogeny. Their evolutionary relationships, 

if known, can be exploited to improve CNV detection by sharing information across cells in 

the same lineage23. On the other hand, given an estimated single-cell copy number profile, a 

CNV-based tumor phylogeny can be inferred24,25.

To perform joint inference of single-cell CNV profiles and the associated subclonal 

phylogeny, Numbat adopts an alternating optimization procedure. In each iteration, Numbat 

first identifies CNVs in each branch of the clonal phylogeny using the joint HMM on 

pseudobulk expression and allele profiles (Fig. 3a). Cells are aggregated into pseudobulks 

by subtrees defined by the lineage hierarchy, enabling detection of shared CNV events. The 

CNV calls are then resolved into consensus segments based on the overlap and likelihood 

evidence (Supplementary Fig. 10). Numbat then evaluates the likelihood evidence for each 

unique event in individual cells using a Bayesian hierarchical model, producing a matrix 

of posterior probabilities of CNVs by cell (Fig. 3b). Next, to recover the tumor clonal 

architecture, Numbat infers a single-cell lineage tree using a maximum-likelihood perfect 

phylogeny approach26 (ScisTree), fully propagating the uncertainty in single-cell CNV 

calls (Fig. 3c). The genotype probabilities are used to search for an optimal tree topology 

using nearest neighbor interchange (NNI), and mutations are placed on the tree based on 

maximum likelihood. Clonal populations with distinct genotypes can then be determined 

from the simplified mutational history (Supplementary Methods). Finally, Numbat uses the 

inferred single-cell phylogeny to form more precise lineage-specific pseudobulks, iteratively 

optimizing single-cell copy number profiles and tumor phylogeny. By default, Numbat 

initializes the phylogeny by hierarchical clustering of window-smoothed expression signals.
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Reliable classification of tumor and normal cells

Precisely distinguishing the malignant cells within heterogeneous cell mixtures is a well-

established problem3,6. Since the non-malignant cells do not share aberrations with the 

tumor, the tumor population should be isolated as a distinct clade in the reconstructed 

phylogeny (Fig. 3c). To systematically benchmark Numbat’s ability to recover this simplest 

clonal architecture and hence distinguish tumor cells from non-malignant cells in the tumor 

microenvironment, we analyzed 5 triple-negative breast cancer (TNBC) samples and 5 

anaplastic thyroid cancer (ATC) samples in addition to 8 MM samples (Supplementary 

Table 1). We defined true tumor cell clusters based on the expression of well-established 

cell type or tumor-specific markers (EPCAM for TNBC27, KRT8 for ATC28, MZB1 for 

MM) as well as aneuploidy status (Methods). The tumor versus normal cell classification 

performance of Numbat was similar to that of CopyKAT in the two solid tumor panels and 

significantly higher in the MM panel (Extended Data Fig. 4). The average classification 

accuracy for Numbat was 98.4% on TNBC and 98.5% on ATC series, whereas CopyKAT 

produced an average accuracy of 98.1% on TNBC and 98.5% on ATC series (Extended 

Data Figs. 5,6). In the MM panel, we found that Numbat maintained a stable performance 

(98.7%) whereas CopyKAT misclassified clusters of cells in five out of eight samples 

(Extended Data Fig. 7), resulting in lower accuracy (74.7%). The reduced performance 

of CopyKAT in the MM series is likely due to the lower sequencing coverage per cell 

and the less pronounced chromosomal aberrations in those samples. Numbat integrates two 

orthogonal lines of evidence (expression and allele) for aneuploidy status in each cell, 

thereby enhancing signal and reducing the possibility of deriving erroneous conclusions 

from either source of information alone (Extended Data Figs. 5-7).

Haplotype-aware CNV analysis reveals subclonal complexity

Accurate detection of subclonal CNVs is a key challenge in characterizing tumor 

heterogeneity, as both allelic and expression signals diminish with decreasing cellular 

fraction. Numbat’s iterative inference of clonal populations and genomic aberrations 

should improve subclonal CNV estimation in genetically heterogenous cell populations. 

To systematically evaluate the extent to which the Numbat iterative strategy provides 

an advantage for the detection of subclonal CNVs, we applied Numbat to tumor-normal 

mixtures at various proportions (10-90%) from the five MM samples with matched WGS. 

We found that the Numbat iterative approach outperformed pseudobulk HMM as well as 

other methods across different tumor cell fractions, for both amplifications and deletions 

(Extended Data Fig. 8). To test Numbat’s ability to resolve tumor subclonal structures, 

we analyzed a gastric cell line sample (NCI-N87) profiled by paired scRNA-seq and 

scDNA-seq29. From the scRNA-seq data, Numbat closely recapitulated the single-cell CNV 

landscape and subclonal architecture reconstructed by scDNA-seq (Extended Data Fig. 9). 

The accuracy of the consensus and subclone-specific CNV calls are robust to parameter 

variations (Supplementary Fig. 7c and Extended Data Fig. 9e). Similarly, the clonality 

predictions for most samples show high stability after the second iteration (Supplementary 

Figs. 11-13). The effect of the iterative update is most pronounced when the starting point 

is suboptimal (e.g., initializing with one cluster or with random trees; Supplementary Figs. 

12b,c and 13b,c).
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Application of Numbat to TNBC and ATC datasets identified pronounced subclonal 

structures in four samples (TNBC1, TNBC5, ATC1, ATC2; Fig. 4, Extended Data Fig. 

10). In particular, we found that allelic imbalances frequently contributed to the clonal 

complexity of tumors. For example, in TNBC1, Numbat inferred a branching phylogeny 

composed of two major subclonal lineages undergoing concurrent evolution (Fig. 4a). The 

two lineages share early CNLoH events on multiple chromosomes (e.g., chromosomes 

1p, 13, 14, 17, and 19; Fig. 4a). Numbat also identified subclonal CNLoH events on 

chromosomes 3p and 22q that are exclusive to the minor lineage (Fig. 4b,c). Such copy-

neutral events do not exhibit deviations in expression magnitude and can only be identified 

through allele analysis (Supplementary Fig. 14a). In addition, Numbat revealed that the 

major lineage carries an imbalanced amplification on chr16 whereas the minor lineage 

carries an allelically-balanced amplification on the same chromosome. Although both 

lineages carry an amplification on chr15 with similar increase in expression magnitudes 

(Fig. 4b), their haplotype frequencies appear to be mirrored (Fig. 4d), indicating that 

different homologous copies of the chromosome were duplicated in the evolutionary history 

of the two clones (Fig. 4e). Another example of an unusual clonal divergence pattern can be 

seen in ATC1. While the overall expression profile suggested that ATC1 harbors a relatively 

simple genome (Supplementary Fig. 14b), Numbat’s analysis revealed two diverging tumor 

lineages with reciprocal aberrations. While one subclone harbors an amplification on chr7 

and a CNLoH on chr17, the other harbors a CNLoH on chr7 and an amplification on 

chr17 (Fig. 4f-i). Recent studies using scDNA-seq data revealed that such multi-allelic and 

mirrored CNVs are prevalent sources of tumor heterogeneity30,31. These events, however, 

have not been previously inferred from scRNA-seq due to limited resolution in allele 

analysis and the lack of signal in the overall expression profile. These examples illustrate 

that the integration of phased allele data with expression signals can aid in the detection 

of subclonal alterations and lineage relationships reflecting dynamic clonal complexity of 

evolving tumors.

Earlier studies have shown that mitochondrial variants can also be used to detect 

subclonal populations in single-cell data32,33. We find that the distribution of the detected 

mitochondrial variants is consistent with the subclonal structure predicted by Numbat in the 

four samples examined above (Fig. 4a,f; Extended Data Fig. 10; Supplementary Fig. 15). 

However, due to the sparse coverage of mitochondrial RNA from 3’ scRNA-seq protocols, 

we detected a low number of mutations (1-9) per sample, which were only able to capture a 

limited number of subclones.

Interplay between genetic and transcriptional heterogeneity

The decomposition of genetic subclones from scRNA-seq provides an opportunity to jointly 

characterize genetic and transcriptional heterogeneity during the course of tumor evolution. 

In particular, acquired copy number alterations can be used as natural genetic barcodes 

in conjunction with characteristic expression signatures to track the behaviors of clonal 

populations across time. We therefore applied Numbat to investigate the clonal evolutionary 

history of a therapy-resistant multiple myeloma (Patient 27522) with four sequential samples 

(primary, remission, first relapse, second relapse). Numbat identified three tumor subclones 

(g1-g3): one that harbors only ancestral deletions on chromosomes 13 and 22 (g1), one that 
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harbors an additional chr1p deletion (g2), and one that has acquired a chr16q deletion (g3; 

Fig. 5a-c). Both subclonal alterations are supported by DNA sequencing at the respective 

timepoints (Supplementary Fig. 16). At primary diagnosis, the tumor was only composed 

of clones g1 and g2, both of which appeared to be undetectable at the time of remission. 

However, clone g1 survived the therapy and reappeared at the first relapse. Furthermore, 

clone g1 also gave rise to clone g3, which continued to expand during subsequent therapy, 

and became the dominant tumor subclone at the second relapse (Fig. 5c).

The tumor cells in the primary sample separate into two distinct expression-based clusters 

(e1 and e2; Fig. 5c). While the ancestral clone g1 is found in both e1 and e2, the derived 

subclone g2 appears to be restricted to cluster e1. This suggests that a large-scale shift in 

the transcriptional landscape gave rise to the two distinct tumor subpopulations (e1 and e2), 

which predated the chr1p deletion event within e1 (Fig. 5d). An alternative explanation 

is that with the acquisition of chr1p deletion, g2 tumor cells lost the ability to enter 

transcriptional state e1. Integrating both aspects of heterogeneity, we resolved three main 

subpopulations in the primary sample: cells in expression cluster 1 with wildtype chr1 

(e1g1), cells in expression cluster 1 with chr1p deletion (e1g2), and cells in expression 

cluster 2 (e2g1). Since g1 was the major cell population that re-emerged after remission, we 

asked whether it was derived from e1g1 or e2g1 cells in the primary sample. The g1 cells 

in the relapse sample carried the expression signatures of e1, as evidenced by the shared 

differentially expressed genes (Supplementary Fig. 17), indicating that the relapsed tumor 

likely originated from e1g1 cells in the primary sample (Fig. 5d).

We next investigated the transcriptional differences between tumor subpopulations using 

differential expression and pathway enrichment analysis, separating likely cis (i.e., genes 

residing within the CNV region) and trans (i.e., genes residing outside of the CNV region) 

effects. Comparing e1 and e2 cells with the same copy number background (e2g1 vs e1g1) 

in the primary tumor, we found that e2 cells have higher activation of the tumor necrosis 

factor α (TNFα) signaling pathway (Fig. 5g, Supplementary Table 2). It has been shown 

that TNFα triggers the release of IL-6, a myeloma growth factor, by activating nuclear factor 

kappa B (NFκB)34. Comparing e1 cells with and without the chr1p deletion (e1g1 vs e1g2), 

we found that cells with chr1p deletion have higher activation of pathways associated with 

cell cycle (G2M checkpoint and E2F targets), indicating a hyper-proliferative phenotype 

(Fig. 5h, Supplementary Table 2). Differential gene expression analysis between e1g1 and 

e1g2 cells revealed 6 significantly differentially expressed genes in cis of the chr1p deletion 

event and 141 genes in trans (Fig. 5e). All 5 DE genes in cis of the deletion are significantly 

down-regulated. The genes involved in the enriched pathways do not overlap significantly 

with the deleted region (P=0.23, E2F targets; P=0.54, G2M checkpoint; two-sided binomial 

test), indicating that those transcriptional changes may be driven by processes other than 

the CNVs we have detected. The two genetic subclones in the second relapse sample (g1 

and g3) do not separate into distinct expression clusters (Fig. 5c). Direct comparison of 

their expression patterns, however, revealed 12 significantly differentially expressed genes in 

cis and 34 in trans of the deletion (Fig. 5f), and showed that the cells carrying chr16q 

deletion have significantly downregulated interferon gamma (IFNγ) response pathway 

(Fig. 5i, Supplementary Table 2). Similar to the previous case, the genes involved in the 

enriched pathways do not overlap significantly with the deleted region (P=0.83, two-sided 

Gao et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



binomial test). IFNγ signaling plays an important role in tumor cell clearance by immune 

surveillance, and its dysregulation is associated with immune evasion and poor response to 

immunotherapy35. This is consistent with the more aggressive phenotype of clone g3, which 

achieved clonal dominance after several rounds of therapy (Fig. 5c).

Discussion

Tumor plasticity and the resulting therapy resistance can be driven by both genetic and 

non-genetic mechanisms, such as large-scale chromatin remodeling or aberrant activation 

of transcriptional programs1,36. The interplay between genetic and non-genetic mechanisms 

and their relative importance remains poorly understood. Methods that can reliably infer 

genetic alterations from a cell’s transcriptome have the potential to illuminate these effects 

by characterizing both aspects of intratumoral heterogeneity at single-cell resolution.

Compared to DNA-based approaches, scRNA-seq provides limited coverage of alleles 

and suffers from transcriptional noise. Numbat attempts to address these challenges by 

incorporating prior haplotype information obtained from population-based phasing. We 

show that prior phasing information can be integrated with allele and expression signals 

in a Hidden Markov model to enhance detection of subclonal copy number alterations from 

scRNA-seq data. The increasing availability of population-scale genetic data encompassing 

diverse ancestries should improve the power of this approach to patient samples from 

different genetic backgrounds8,15,16. The sensitivity of the Numbat haplotype-aware HMM 

can be further improved by more accurate haplotype information from other techniques, 

such as long-range haplotype phasing that takes advantage of individual relatedness37 or 

experimental approaches that resolve haplotypes38.

Reconstructing the single-cell copy number profile from heterogenous cell populations 

requires the inference of clonal populations and genomic aberrations at the same time. 

Numbat solves this problem by iteratively inferring the tumor phylogeny using detected 

aberrations and refining single-cell copy number estimates by exploiting the structure of 

the tumor phylogeny. Application to three tumor series (ATC, TNBC, MM) showed that 

Numbat precisely distinguished normal and malignant cells (marked by aneuploidy) in the 

tumor microenvironment and revealed additional subclonality within the tumor population. 

However, Numbat shares a common limitation with the existing methods in that determining 

the number of confident subclones still relies on manual inspection of the tumor phylogeny 

and copy number profile2-5.

Tumor baseline ploidy estimation is a challenging problem in copy number analysis22,39. 

Existing methods infer copy number variations relative to the median ploidy, which can be 

confounded by hyperdiploidy or hypodiploidy22. Numbat attempts to address this problem 

by adopting a strategy previously developed for DNA analysis22,40. This approach was 

effective, correctly identifying diploid regions in 5 tumor samples with WGS validation. 

However, challenges remain in tumors with genome-wide abberations (e.g., TNBC1) or 

tumors that have undergone whole-genome duplication, in which cases manual curation is 

still necessary. Further improvements will be needed to robustly determine copy number 

baseline in tumors with complex copy number profiles.
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Allele-specific CNV analysis has shown major advantages over total copy number analysis 

in studies of cancer genomes30,31,41. Although variations in chromosomal dosage are 

often discernable from large-scale gene expression changes, CNLoH events and haplotype-

specific alterations can only be detected using allele information. Numbat analysis of 

previously published tumor samples revealed additional subclonal complexity resulting from 

haplotype-specific alterations, highlighting the importance of allele-specific copy number 

analysis. Finally, to demonstrate the type of integrative analysis enabled by Numbat, we 

used it to characterize the genetic and transcriptional subpopulations in a serial multiple 

myeloma sample. Comparing the gene expression patterns of tumor subclones revealed that 

many of the transcriptional changes relevant to cancer progression and therapy resistance 

ocurr in trans and are not direct consequences of the aberrations. A variety of mechanisms, 

including other genetic mutations, epigenetic or regulatory changes may mediate these 

effects. Dissecting their contribution to the expression state and the overall phenotype of the 

cells remains a challenge. Among other advances, improved methods integrating genetic and 

epigenetic information will be needed to fully resolve the impact of genome instability on 

tumor cell states30.

Methods

Pre-processing of scRNA-seq data.

We used the Cell Ranger (v6.0.2, 10x Genomics) software suite to process the raw FASTQ 

or BAM files obtained from the previously published studies. We only included cell 

barcodes present in the gene expression count matrices or cell type annotation provided 

with the original publication. We used conos42 (v1.4.1) to perform multi-sample integration, 

clustering, and generation of graph embeddings.

Genotyping and phasing from scRNA-seq data.

To identify heterozygous and homozygous germline SNPs, we used cellsnp-lite43 (v1.2.2) 

to generate allele counts for a panel of known common SNPs (population allele frequency 

> 5%). SNPs with variant allele frequency (aggregating all cells) between 0.1 and 0.9 were 

identified as heterozygous. SNPs with ≥ 10 reads covering the alternate allele with VAF 

= 1 were identified as homozygous. We then use Eagle2 (v2.4.1) to phase the identified 

heterozygous SNPs using the 1000 Genomes and TOPMed reference panels.

Co-expression based phasing.

To perform phasing using single-cell expression data, we used the previously published 

scphaser package, which phases heterozygous alleles based on their co-expression 

patterns17. We ran scphaser with minimum number of reads of 1 (min_acount = 1) and 

a fold-change cutoff of 3 (fc = 3) for genotyping and then phased the alleles using the 

exhaustive search mode (method = “exhaust”), with allele counts as input (input = “ac”) and 

no weighting based on allele counts (weigh = FALSE).

Statistical modeling of expression and allele data.

We formulate a generative model for the observed UMI counts per gene and the observed 

allele counts per SNP site (Extended Data Fig. 2). This model generalizes to both 
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pseudobulk and single-cell setting. We aim to infer the DNA state for each marker, denoted 

as g = (cp : cm) where cm is the number of maternal copies and cp is the number of paternal 

copies. Note that in single cells, cp and cm can take any non-negative integer value. For 

example, in diploid regions, g = (1:1) whereas in a heterozygous loss of the maternal 

chromosome, g = (1:0). Since a pseudobulk can contain a mixture of cells in diploid state 

and cells in altered state, cp and cm can take any continuous value in the non-negative domain. 

For convenience, we reparameterize g as the change in total chromosome dosage relative to 

the diploid state (ϕ) and haplotype fraction (θ) as follows:

ϕ = cm + cp
2 , θ = cp

cm + cp

which are the targets of inference. Note that in single cells, ϕ and θ take on discrete values. 

In pseudobulks, ϕ ∈ [0, ∞) and θ ∈ [0, 1], which depend both on the mixture proportion and 

the underlying genotype (Supplementary Fig. 6).

We observe two types of markers: expression counts per gene and allele counts per SNP. 

Gene expression counts are only emitted once per gene whereas allele counts are emitted at 

each SNP. Let N be the total number of genes measured in the transcriptome. For gene i, we 

denote the gene expression count as Xi, which we model using a Poisson-Lognormal (PLN) 

distribution:

Xi ∼ PoisLogNorm(μ + log(lλi
∗) + log ϕ, σ2) (1)

Here l is the total library size and λi
∗ is the baseline expression magnitude for gene i in the 

reference profile. Shared between all genes, μ and σ2 are hyperparameters representing the 

bias and variance in the log expression fold-change between the observation and reference 

profile. The hyperparameters μ and σ2 are unknown a priori and need to empirically 

estimated for each cell or pseudobulk with respect to a specific reference profile. Restricting 

to genes in diploid regions, the maximum likelihood estimates of μ and σ are:

(μ, σ) = argmaxμ, σ∏i

N p(Xi ∣ λi
∗, l, ϕ = 1, μ, σ2) (2)

These baseline parameters are then used to configure the emission probabilities for CNV 

detection.

For allele data, we use Y j to denote the observed variant allele count of the jth SNP, and mj

to denote the total allele count (sum of reference allele count and variant allele count). Once 

the variant alleles are phased, Y j is the paternal allele count. We model paternal allele count 

for SNP j using a Beta-Binomial distribution:

Y j ∼ BetaBinom(mj, θγ, (1 − θ)γ) (3)

where γ is a hyperparameter that represents the inverse overdispersion in allele counts.
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Phase switch probabilities.

We model the occurrence of phase switch errors from population-based haplotype phasing 

along the genome using a Poisson process with a uniform rate v. Between two adjacent 

SNPs with genetic distance (in centimorgan) d, the number of phase switches W  can be 

modeled by a Poisson distribution:

W ∼ Poisson(vd)

The probability of two SNPs being discordant in phase is therefore a function of genetic 

distance:

ps(d) = ∑w = 1, 3, 5, …

(vd)we−vd

w! = 1 − e−2vd

2 (4)

In practice, we fix v = 1 to predict phase switch probabilities based on genetic distance.

Haplotype-aware Hidden Markov model.

We designed an HMM that integrates expression deviation and haplotype imbalance signals 

to detect CNVs in cell population pseudobulk profiles. Depending on the copy number 

configuration, cellular fraction, and haplotype state (major or minor), each aberrant copy 

number state can exhibit a continuum of expression fold-changes ϕ and haplotype fractions 

θ (dashed lines in Supplementary Fig. 6). We therefore define a set of discrete hidden states 

z ∈ Z = {1, 2, …, 15} to capture the joint behavior of (ϕ, θ) across the continuous space of 

CNV signals (black dots in Supplementary Fig. 6). Each of the 15 states emits a gene read 

count Xi and a paternal allele count Y j according to the probability mass functions specified 

by Equations (1) and (3) with the associated state parameters (ϕz, θz). That is,

Xi ∣ Zi = z ∼ PoisLogNorm(μ + log(lλi
∗) + log ϕz, σ2)

Y j ∣ Zj = z ∼ BetaBinom(mj, θzγ, (1 − θz)γ)

The transition probabilities are specified by t and ps, where t is the transition probability 

between copy number states, and ps is the transition probability between haplotype states 

(i.e., phase switch probability between major and minor haplotypes; Extended Data Fig. 1). 

t is homogeneous in the Markov chain whereas ps is site-specific. To reflect LD decay, we 

model ps as a monotonically increasing function of genetic distance from the previous SNP 

according to equation (4). The full transition matrix of the joint HMM can be found in 

Supplementary Table 3.

To infer the hidden copy number states, we use the Viterbi algorithm to identify the most 

probable copy number states for each marker position. Since contiguous genomic segments 

can occupy distinct copy number states, which cannot be captured by a single set of ϕ and 

θ, we use one set of minimum-threshold parameters (log ϕmin and θmin) to initially identify 

all detectable CNVs with various deviation magnitudes. Intuitively, lower threshold choices 

favor detection of more subclonal events. By default, we fix logϕmin = 0.25 and θmin = 0.08. 
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To avoid over-segmentation caused by large local deviations, we re-join any segments 

containing fewer than 10 genes with adjacent segments to obtain the final segmentation. 

The true underlying dosage ratio and haplotype frequency are event-specific and are 

estimated separately for each CNV segment by maximizing the total model likelihood. 

Finally, we obtain the haplotype classification of major/minor alleles based on the posterior 

marginal probability at each SNP, computed from the forward-backward algorithm using the 

maximum likelihood estimates of (ψ, θ).

Testing for multi-allelic CNVs.

A CNV is determined as multi-allelic if it is confidently (alpha level of 10−4) assigned to 

distinct CNV types in different subclone pseudobulk profiles.

Single-cell CNV evaluation.

We make inferences on the underlying genotype of individual cells jointly using the 

observed expression and allele counts. First, using the diploid regions identified in 

pseudobulk analysis, we estimate the cell-specific expression fold-change bias and variance 

(μ and σ2) by maximum likelihood according to equation (2). In cases where diploid regions 

contain less than 5% of the genes, we include genes in CNLoH regions to estimate μ and 

σ2. In a given genomic region of a given cell, the posterior probability of each genotype is 

obtained by

p(G = g X , Y ) =
∏i p(Xi ∣ G = g)∏j p(Y j G = g)p(G = g)

∑g ∈ G ∏i p(Xi ∣ G = g)∏j p(Y j G = g)p(G = g)

where the likelihood functions are defined according to the generative model described 

before. The posterior alteration type probabilities from the pseudobulk analysis are 

propagated as single-cell genotype priors. We note that Y  represents phased allele counts 

using posterior haplotypes obtained from the HMM, which takes into account both prior 

phasing information and observed allele frequencies of each SNP. The posterior haplotype 

should span the entire CNV event and allow allele counts to be aggregated across the whole 

region. Since the effect of allele-specific expression is minimal when aggregating across 

large number of genes, we simply use a Binomial likelihood for the allele counts (i.e., γ = ∞
in the Beta-Binomial model). Although the maternal and paternal copy number can take 

any non-negative integer value in single cells, in practice we only consider seven possible 

genotypes: g ∈ {(1:1), (2:0), (1:0), (2:1), (3:1), (2:2), (0:0)}.

CNV filtering.

To reduce the number of false positive CNV calls, we filter the events called from the 

Numbat joint HMM based on statistical evidence. We define the log likelihood ratio (LLR) 

of a CNV event in a pseudobulk profile as

LLR = LLRx + LLRy = log p(X G = g)
p X G = (1:1)

+ log p(Y G = g)
p Y G = (1:1)
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We define the entropy of the posterior distribution of a CNV event in single cells as

H(p) = − p log2(p) − (1 − p) log2(1 − p)

which captures the degree of uncertainty in the inference.

Maximum-likelihood phylogeny inference using uncertain genotypes.

We implement a modified version of a recently described approach (ScisTree26) to infer 

a maximum-likelihood perfect phylogeny based on uncertain genotypes. Using the cell by 

CNV genotype probabilities obtained before, we compute a distance matrix between cells 

using the Euclidean distance measure. We then construct two candidate trees using the 

Neighbour-joining and UPGMA algorithms. The candidate tree with the highest genotype 

likelihood (as defined in 26) is used as the initial tree. We then search for an optimal tree 

topology that maximizes the genotype likelihood using the nearest neighbor interchange 

(NNI) algorithm.

Posterior assignment of cells to copy number profiles and clades.

Given K genomic segments, we denote copy number profile j by Cj = (gj
1, gj

2, …, gj
K). We can 

obtain the posterior probability that a given cell harbors copy number profile Cj by

p(Cj X , Y ) =
∏k p(Xk gj

k)∏k p(Y k gj
k)p(Cj)

∑j ∏k p(Xk gj
k)∏k p(Y k gj

k)p(Cj)

For example, the posterior probability that a cell is diploid in every region is p(C0 ∣ X, Y), 
where C0 = ((1:1), (1:1), …, (1:1)). The posterior probability that a cell belongs to a specific 

clade (in particular, the tumor lineage) in the phylogeny is then equal to the sum of the 

probabilities that the cell harbors each of the possible genotypes included in the clade.

WGS copy number analysis.

We used hmftools44 to perform unmatched CNV analysis of the WGS data from the 

MM dataset. The COLBALT (v1.11) and AMBER (v3.5) modules were used to obtain 

the log read depth ratios (logR) and the BAF profiles, respectively. The PURPLE (v3.2) 

module was used to determine total copy number, tumor ploidy and purity. We performed re-

segmentation of the logR data using the pcf function of copynumber R package45 (v1.32.0), 

with a gamma parameter of 12000. Significantly altered segments were determined by a 

threshold of logR > 0.25, logR < −0.25, and BAF > 0.75 for amplifications, deletions, and 

CNLoH, respectively.

Single-cell DNA-seq copy number analysis.

We used CopyKit (v0.1.1; https://github.com/navinlabcode/copykit) to perform 

preprocessing, quality control, and analysis of scDNA-seq data. For each cell, read coverage 

is collected for variable-length genomic bins with a resolution of 220kb46. The segmentation 

was performed using the CBS algorithm (alpha = 1e-9), and integer copy number calls 
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were derived using a ploidy of 1.94 as reported by the original publication29. Using the 

integer copy number calls, we performed hierarchical clustering using Manhattan distance 

and Ward2 linkage. A normal cell with diploid genome was added as an outgroup to root the 

tree.

Benchmarking the effect of population-based phasing on the detection of allelic 
imbalance.

Using the cell annotations of TNBC4 from the original paper, we created subsampled 

datasets (total of 500 cells) composed of different tumor cell fractions. We defined 

chromosome arms with complete LoH using allele frequencies in the all-tumor pseudobulk 

(MAF > 0.95; Supplementary Fig. 3). Using this setup, we performed three sets of 

benchmarking experiments. First, to benchmark the effect of prior phasing on the detection 

of subclonal allelic imbalance from heterogenous cell populations, we randomly sampled 

genomic segments with a fixed length (10Mb) from known aberrant regions for each mixture 

proportion. We additionally sampled segments from the all-normal pseudobulks to serve as 

true negative examples. We then scored the allele profile of each sampled segment using the 

haplotype-naïve HMM and the haplotype-aware HMM. Using these scores, we calculated an 

AUC for each tumor-normal mixture proportion. Second, to benchmark the effect of prior 

phasing on allele classification (major vs minor haplotype) from mixture pseudobulks, we 

defined ground truth haplotypes in known LoH regions using the observed BAFs in the 

all-tumor pseudobulk (BAF < 0.5, minor; BAF ≥ 0.5, major). We classified the alleles using 

the haplotype-naïve HMM and the haplotype-aware HMM for each cell mixture. We then 

calculated the proportions of alleles correctly classified as a measure of model performance. 

Third, to benchmark the effect of prior phasing on single-cell event detection, we split 

the cells into training (70%) and testing sets (30%). We classified the alleles using the 

two models in known aberrant regions with pseudobulk profiles created using cells from 

the training set, and then used the obtained haplotypes to calculate CNV probabilities in 

single cells from the test set. The existing tumor versus normal annotations were used as 

ground truth labels for each cell and each event. We calculated an overall AUC (aggregating 

across events) for each tumor-normal mixture fraction. The pseudobulk and single-cell CNV 

detection benchmarks were also performed on the multiple myeloma dataset, where LoH 

and amplification events were defined using the matched WGS for each sample.

Benchmarking CNV detection accuracy.

We evaluated the overall copy number profile reconstruction quality by Numbat and 

three other methods (CopyKAT v1.0.8, InferCNV v1.8.1, HoneyBADGER v0.1) using 

5 MM samples (from distinct patients) with sample-matched flow-sorted WGS. Since 

Numbat, HoneyBADGER, and InferCNV identify CNVs from pseudobulks, we supplied the 

pseudobulk profile made from all tumor cells. For CopyKAT, we summarized the consensus 

tumor copy number profile by averaging the copy number intensities for each genomic 

bin across all tumor cells. Since CopyKAT does not explicitly call copy number events, 

we applied a threshold of +0.03 and −0.03 to identify amplified and deleted segments. 

For HoneyBADGER, we used a minimum deviance threshold of 0.1 for expression HMM 

and included all heterozygous SNPs as input to the allele HMM. We took the union 

of events identified by the allele and expression approach. For InferCNV, we used the 
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recommended parameters for 10x (denoise = TRUE, cutoff = 0.1) and performed CNV 

calling using the “consensus” i6 HMM mode. All other parameters are kept as the default 

setting otherwise and the HCA lung collection was used as diploid reference47. When 

cell-type-specific references could not be provided as input, we supplied the averaged 

expression profile. To evaluate CNV detection performance, we computed precision and 

recall based on the extent of overlap between the predicted aberrant regions and the true 

aberrant regions defined by WGS. All types of events were considered (amplifications, 

deletions, CNLoH). To benchmark single-cell CNV testing accuracy, we first defined the 

boundaries and alteration types of individual CNV events from the DNA profile for each 

sample. We did not include regions that appear to be affected by complex events (e.g., 

chr14 of 58408-Primary; Extended Data Fig. 3) or subclonal events (e.g., chr16q deletion 

in 27522-Relapse-2; Extended Data Fig. 3) as judged from the DNA profiles. We then 

computed a score of each event for each individual cell using the four different methods. 

For Numbat and HoneyBADGER, the event posterior probability was used as the score. For 

InferCNV and CopyKAT, we defined the score as the average smoothed expression intensity 

in the region affected by the event. Scores of CNLoH events is set to 0 for all allele-agnostic 

approaches. As an approximation of the single-cell genotype ground truth, we assumed that 

the CNV events are present in all tumor cells and absent in all normal cells. For each event, 

we calculated an AUC based on the single-cell event scores from each method.

Benchmarking tumor versus normal cell classification accuracy.

We identified true tumor cells in the three datasets based on combined evidence of 

expression-based clustering, cell type or tumor-specific marker expression, and aneuploidy 

evidence. For the ATC and TNBC series, the tumor versus normal cell labels from the 

original publication were used, and expression of tumor-specific markers (EPCAM for 

TNBC, KRT8 for ATC) were used as visual reference in Extended Data Figs. 5,6. We 

excluded ATC5 from the benchmark due to the lack of clear expression of KRT8. For the 

MM series, we used the cell type annotation from the original study to identify malignant 

plasma cells and the expression of MZB1 as visual reference in Extended Data Fig. 7. In one 

of the samples (27522-Relapse-2), both normal and malignant plasma cells are present, and 

the malignant plasma cell cluster was identified by upregulated FGFR3 expression (due to 

t(4;14) translocation) as described in the original publication48. To evaluate performance, we 

calculated classification accuracy based on the ground truth labels and the predictions made 

by the two methods. For Numbat, cells with aneuploidy probability > 0.5 are designated as 

tumor and normal otherwise. For CopyKAT, the tumor/normal predictions from the original 

paper were used for the TNBC and MDA series, and for the MM dataset, predictions 

were generated by running CopyKAT using the default parameters and the same expression 

reference supplied to Numbat.

Numbat run parameters.

Numbat was run using the default parameters unless otherwise specified (log ϕmin = 0.25, 

θmin = 0.08,γ = 20, transition probability t = 10−5, maximum cost τ = 0.3, initial number of 

clusters k = 3, CNV overlap tolerance = 0.45, minimum pseudobulk size of 50 cells, LLR 

threshold of 5, entropy threshold of 0.5, maximum of 2 iterations). For TNBC1, since 
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shared diploid regions could not be identified, we manually supplied chromosomes 13,14,19 

(containing CNLoH) as baseline to Numbat. Since NCI-N87 is a cell line sample and does 

not contain normal diploid cells, we used the SNP density HMM to detect clonal LOH 

regions with a transition probability of t = 10−4. For the longitudinal analysis of patient 

27522 presented in Fig. 5, we used the normal B cells from the same patient as expression 

reference. The HCA lung collection was used as the expression reference for all other 

analyses47.

Gene set enrichment analysis.

We used the LIGER R package (v2.0.1) to perform the gene set enrichment analysis 

between cell populations. Hallmark gene sets (n=50) were obtained from MSigDB49. Only 

genes with at least one read count in at least 5 cells were used as input. 10,000 random 

permutations were used to compute empirical P values. We used the Holm-Bonferroni 

method to adjust for multiple comparisons within each analysis. Significantly enriched gene 

sets were filtered by Q value < 0.05 and that the sign of the edge value is consistent with the 

enrichment direction (i.e., a positive enrichment is consistent with a positive edge value, and 

a negative enrichment is consistent with a negative edge value).

Differential gene expression analysis.

We used the Mann Whitney U test implemented in pagoda250 (v1.0.9) to identify confident 

differentially expressed genes between subclones. We used the default parameter settings, 

with a Z score threshold of 3.

Identification of transcribed mitochondrial mutations.

We applied the MQuad method32 (v0.1.6) to identify mtRNA mutations from scRNA-seq 

samples. We used the default parameters recommended for 10x data (minDP=5). We filtered 

the variants by variant allele frequency > 5% in more than 5 tumor cells.

Statistical analyses and visualization.

Custom statistical analyses and visualizations were performed in R (v4.1.2). The fishplot 

package51 (v0.5.1) was used to visualize tumor clonal structures.
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Extended Data

Extended Data Fig. 1. Haplotype-aware Hidden Markov models.
a, Phase switch probability as a function of genetic distance, estimated from alleles phased 

from LoH regions in TNBC4. Genetic distance is measured in centimorgan (cM). Error 

bar represents 95% CI derived from a binomial test. The center of the error bar represents 

the observed fraction of phase switches. b, Schematic of conventional and haplotype-aware 

allele HMM. t, copy number state transition probability. ps, phase transition probability. c, 

Schematic of the Numbat joint HMM. Only three copy number states (neutral, deletion, 

amplification) are included for illustrative purposes.
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Extended Data Fig. 2. Probabilistic model of gene expression and allele counts from 
transcriptome sequencing experiments.
cm, number of maternal chromosome copies. cp, number of paternal chromosome copies. λi, 

observed gene expression magnitude of gene i. λi
∗, reference gene expression magnitude of 

gene i. μ and σ2, global bias and variance in gene expression. πj, fraction of paternal alleles 

of SNP j. γ, global inverse overdispersion of allele-specific detection. l, library size. mj, total 

allele count of SNP j. Xi, observed molecule counts for gene i. Y j, observed paternal allele 

count for SNP j.
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Extended Data Fig. 3. WGS validation of Numbat CNV calls from scRNA-seq data.
For each sample, the DNA profile (top) is juxtaposed with the copy number profile 

inferred by the Numbat joint HMM (bottom). Gray vertical bars represent centromeres 

and gap regions. logR, log coverage ratio. BAF, B-allele frequency. logFC, log expression 

fold-change. pHF, paternal haplotype frequency. BAMP, balanced amplification.
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Extended Data Fig. 4. Tumor versus normal cell classification accuracy of Numbat joint model, 
Numbat expression-only model, and CopyKAT.
Each dot represents a distinct sample (TNBC, n = 5; ATC, n = 4; MM, n = 8). Center line, 

mean. ATC5 was excluded from the benchmark due to lack of clear expression of tumor 

marker KRT8.
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Extended Data Fig. 5. Numbat reliably distinguishes tumor and normal cells (TNBC series).
The aneuploidy probability is shown as a color gradient (red: high, blue: low). For each 

sample (row), the series of figures (columns) respectively show the aneuploidy probabilities 

by expression evidence, those by allele evidence, those by combined evidence, CopyKAT 

prediction (binary 0 or 1), and marker gene expression in a t-SNE embedding of gene 

expression profiles.
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Extended Data Fig. 6. Numbat reliably distinguishes tumor and normal cells (ATC series).
The aneuploidy probability is shown as a color gradient (red: high, blue: low). For each 

sample (row), the series of figures (columns) respectively show the aneuploidy probabilities 

by expression evidence, those by allele evidence, those by combined evidence, CopyKAT 

prediction (binary 0 or 1), and marker gene expression in a t-SNE embedding of gene 

expression profiles.
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Extended Data Fig. 7. Numbat reliably distinguishes tumor and normal cells (MM series).
The aneuploidy probability is shown as a color gradient (red: high, blue: low). For each 

sample (row), the series of figures (columns) respectively show the aneuploidy probabilities 

by expression evidence, those by allele evidence, those by combined evidence, CopyKAT 

prediction (binary 0 or 1), and marker gene expression in a t-SNE embedding of gene 

expression profiles.
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Extended Data Fig. 8. CNV detection performance as a function of tumor cell fraction.
At each tumor cell fraction, tumor cells were subsampled and mixed with randomly 

sampled normal cells at the corresponding proportion. Precision, recall and F1 scores were 

calculated based on the detected segments from scRNA-seq data and the ground truth copy 

number profiles (from WGS) in 5 multiple myeloma samples. For Numbat, two methods 

are compared: pseudobulk joint HMM (Numbat-HMM) and iterative optimization (Numbat-

iterative) with no minimum pseudobulk size limit. a, Performance for all event types 

(amplification, deletion, and CNLoH). b, Performance for amplifications. c, Performance 

for deletions.
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Extended Data Fig. 9. Numbat analysis of gastric cell line (NCI-N87) scRNA-seq data and 
validation by scDNA-seq.
a, Single-cell copy number landscape and subclonal structure reconstructed by scDNA-seq 

data. Gray vertical bars represent gap regions. A rooted hierarchical clustering tree is shown 

on the left. Three subclones were defined by cutting the tree with k=3. Red asterisks denote 

salient subclonal events. b, Single-cell CNV landscape and subclonal structure inferred 

from the paired scRNA-seq data by Numbat. The original prediction was composed of four 

subclones. The uppermost two clones were merged and denoted as the “major” clone. Red 

asterisks denote validated subclonal events. c, Subclone-specific copy number profiles. For 

each subclone, the top track shows CNV calls made by clone-specific Numbat HMM; the 

bottom track shows DNA copy number profile of a representative cell from that subclone. 

Gao et al. Page 27

Nat Biotechnol. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gray vertical bars represent gap regions. d, Numbat recapitulates clonal fractions measured 

by scDNA-seq. e, Stability and accuracy of Numbat CNV calls for each subclone with 

respect to parameter variations. F1 scores were computed by comparing DNA profiles for 

each subclone with the best-matching subclone CNV profiles predicted by Numbat. Circles 

denote F1 score from initialization with a random tree. Red triangles mark default parameter 

values.

Extended Data Fig. 10. Single-cell copy number profile and phylogeny reconstructed by Numbat 
(TNBC and ATC).
Branch lengths correspond to the number of CNV events. Blue dashed line separates 

predicted tumor and normal cells. Confident subclones are highlighted and marked by red 
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dashed rectangles. The vertical bar on the left of each panel shows cell type ground truth. 

In TNBC5 and ATC2, the second vertical bar on the left of the panel shows variant allele 

frequency of a clone-associated mtRNA mutation. For ATC2, results from the subsampled 

dataset (including aneuploid cells and 50 randomly sampled normal cells) are shown. In 

ATC5, some tumor cells were likely mis-annotated as normal in the original annotation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Population-based haplotype phasing enables sensitive detection of subclonal allelic 
imbalances in single-cell transcriptomes.
a, Schematic of using haplotype information to detect allelic imbalance. BAF, B-allele 

frequency. Simulated BAF signals are shown for a neutral and aberrant region harboring 

subclonal CNV. After BAF is transformed into haplotype frequency based on phase 

information, CNV signals become apparent and can be segmented. b, Example of statistical 

phasing signal uncovering subclonal LoH in TNBC4 tumor-normal cell mixtures that are 

undetectable using BAF deviation. LLR, log-likelihood ratio. LoH, loss of heterozygosity. 

c, Performance of LoH detection in tumor-normal mixtures with and without haplotype 

phasing (“phasing” and “naive”). AUC, area under the ROC curve. d, Example of 

population-based phasing informing allele classification into major/minor haplotypes. e, 

Performance of allele classification accuracy in tumor-normal mixtures. f, Example of 
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population-based phasing improving detection of LoH in single cells. g, Performance of 

LoH detection in single cells.
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Figure 2: Numbat achieves accurate copy number inference via joint evaluation of gene 
expression, allele fraction, and prior haplotype phasing information.
a, DNA copy number profile of a multiple myeloma sample juxtaposed with that inferred 

by the Numbat joint HMM. logFC, log expression fold-change. pHF, paternal haplotype 

frequency. logR, log coverage ratio. BAF, B-allele frequency. Gray vertical bars represent 

centromeres and gap regions. b, Cell type annotation and posterior probability of CNV 

events in single cells visualized on a t-SNE embedding of gene expression profiles. c, Copy 

number events detected by WGS, Numbat, and other methods. Gray vertical bars represent 

gap regions. BAMP, balanced amplification. BDEL, balanced deletion. d, Performance 

of CNV event detection by different methods. Each dot represents a distinct sample. e, 
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Performance of single-cell CNV testing by different methods. Each dot represents a distinct 

CNV event (n=39). Center line, mean.
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Figure 3: Iterative strategy to identify tumor subclones.
a, Numbat aggregates data from single cells into pseudobulk profiles by major clades in 

the single-cell phylogeny, and runs a haplotype-aware HMM on each pseudobulk profile 

to identify lineage-specific CNVs. b, Numbat evaluates the presence of each CNV in 

each cell probabilistically using a Bayesian hierarchical model. c, Numbat then infers a 

maximum-likelihood phylogeny that captures the evolutionary relationships between single 

cells.

Gao et al. Page 36

Nat Biotechnol. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Numbat reveals additional complexity in tumor subclones through allele-specific copy 
number analysis.
a, Single-cell CNV landscape and reconstructed phylogeny of TNBC1. Branch lengths 

correspond to the number of CNVs. Blue dashed line separates predicated tumor and 

normal cells. The first vertical bar on the left shows cell type ground truth. The second 

vertical bar on the left shows variant allele frequency of a clone-associated mtRNA mutation 

(4076C>T). b, Pseudobulk CNV profile of the major and minor lineage. Gray vertical bars 

represent centromeres and gap regions. logFC, log expression fold-change. pHF, paternal 

haplotype frequency. c, Posterior CNV probability of shared and lineage-sepcific CNVs in a 

t-SNE embedding of gene expression profiles. d, Major haplotype frequency in single cells. 

Only cells with at least 5 total allele counts in the region are shown. Center line, median; 

box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. e, Schematic of 

copy number state of chr15c in the major and minor lineage. M, maternal. P, paternal. 

The designation of maternal and paternal chromosomes is arbitrary. f, Single-cell CNV 

landscape and reconstructed phylogeny of ATC1. g, Pseudobulk CNV profile of the major 

and minor lineage. h, Posterior CNV probability of subclonal multi-allelic CNVs in a t-SNE 
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embedding of gene expression profiles. i, Schematic of copy number states of chr7 and 

chr17 in the major (top) and minor (bottom) lineages.
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Figure 5: Tracking clonal evolution of a therapy-resistant multiple myeloma using Numbat.
a, Integrated single-cell CNV landscape and phylogeny of plasma cells from all four 

samples. b, Pseudobulk CNV profile of three main tumor subclones. Gray vertical bars 

represent centromeres and gap regions. c, Clonal evolutionary history integrating genetic 

and transcriptional alterations. Top, t-SNE embedding of gene expression profiles colored 

by genetic clones. The embeddings are created separately for each sample. Only cells 

with >90% posterior classification confidence are shown. Bottom, change in tumor clonal 

composition over time. At each time point, only clones with more than 5% cellular fraction 

are shown. d, Genetic and transcriptional alterations in the proposed evolutionary history. 

e, Differentially expressed genes between e1g2 (observation) and e1g1 (reference) cells. f, 
Differentially expressed genes between e1g3 (observation) and e1g1 (reference) cells. g, 
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GSEA plot of the TNFα signaling pathway in e2g1 relative to e1g1 cells. h, GSEA plots of 

the E2F target and G2M checkpoint pathways in e1g2 relative to e1g1 cells. i, GSEA plot of 

the IFNγ pathway in e1g3 relative to e1g1 cells.
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