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Abstract
Objectives  To conduct brainstem MRI shape analysis across neurodegenerative parkinsonisms and control subjects (CS), 
along with its association with clinical and cerebrospinal fluid (CSF) correlates.
Methodology  We collected demographic and clinical variables, performed planimetric and shape MRI analyses, and determined 
CSF neurofilament-light chain (NfL) levels in 84 participants: 11 CS, 12 with Parkinson’s disease (PD), 26 with multiple system 
atrophy (MSA), 21 with progressive supranuclear palsy (PSP), and 14 with corticobasal degeneration (CBD).
Results  MSA featured the most extensive and significant brainstem shape narrowing (that is, atrophy), mostly in the pons. CBD 
presented local atrophy in several small areas in the pons and midbrain compared to PD and CS. PSP presented local atrophy 
in small areas in the posterior and upper midbrain as well as the rostral pons compared to MSA. Our findings of planimetric 
MRI measurements and CSF NfL levels replicated those from previous literature. Brainstem shape atrophy correlated with 
worse motor state in all parkinsonisms and with higher NfL levels in MSA, PSP, and PD.
Conclusion  Atypical parkinsonisms present different brainstem shape patterns which correlate with clinical severity and 
neuronal degeneration. In MSA, shape analysis could be further explored as a potential diagnostic biomarker. By contrast, 
shape analysis appears to have a rather limited discriminant value in PSP.
Key Points 
• Atypical parkinsonisms present different brainstem shape patterns.
• Shape patterns correlate with clinical severity and neuronal degeneration.
• In MSA, shape analysis could be further explored as a potential diagnostic biomarker.

Keywords  Multiple system atrophy · Progressive supranuclear palsy · Shape analysis · Neurofilament protein · 
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PSP-RS 	� PSP-Richardson’s syndrome
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Introduction

Structural MRI has been widely studied in the differential 
diagnosis of neurodegenerative parkinsonisms: Parkinson’s 
disease (PD), multiple system atrophy (MSA), progres-
sive supranuclear palsy (PSP), and corticobasal degenera-
tion (CBD). Many studies have focused on the brainstem 
due to its frequent involvement in atypical parkinsonisms 
(AP: PSP, MSA, CBD). Atrophy of the midbrain in PSP 
[1–3] or the pons in MSA [4, 5] is a well-known example. 
Structural MRI brainstem measures include morphological 
markers (“hummingbird” sign in PSP[6]; “hot cross bun” 
sign in MSA [7]), quantitative measures (midbrain ante-
rior–posterior diameter and brainstem midsagittal areas or 
volumes) [8], and specific ratios [9–11]. Several of these 
measurements can discriminate between PD, PSP, and MSA 
in isolation [10–12] or combined with other biomarkers [13]. 
However, results have been variable for morphological [14] 
and the antero-posterior diameter of the midbrain [8, 9].

An alternative approach is shape analysis, which detects 
local narrowing in specific regions of complex structures, 
as opposed to conventional volumetric analysis only report-
ing changes in the overall volume [15]. This technique has 
been used in neurodegenerative parkinsonisms to study local 
atrophy patterns in the basal ganglia, the thalamus, and the 
hipoccampus [16–21], but not the brainstem, nor its CSF 
biomarkers correlates either, to the best of our knowledge.

With the hypothesis that brainstem MRI shape analysis 
might differentiate neurodegenerative parkinsonisms, we 
aimed at characterizing and comparing brainstem shape 
changes across these conditions, as well as analyzing the 
clinical and biological correlates of shape changes. As sec-
ondary goals, we intended to replicate prior findings of cer-
ebrospinal fluid (CSF) levels of neurofilament-light chain 
(NfL) and automatic measures of the pons to midbrain ratio 
(PM) ratio.

Methods

Design

This is a cross-sectional study of patients recruited between 
2015 and 2020 at the Parkinson’s Disease & Movement Dis-
orders Unit of the Hospital Clinic in Barcelona as part of 
different research projects implying the availability of both 
high-field MRI and CSF samples for almost each participant.

Participants

There was not a formal sample size calculation, but 
rather a post hoc analysis of the aforementioned projects 

considering that sample size was in the range of prior pub-
lished studies on this topic, along with the uniqueness of 
our cohort due to having available both MRI and CSF data 
in almost all patients (unlike previous published litera-
ture where MRI shape analyses were not correlated with 
CSF findings) [16–21]. Hence, we included 84 subjects 
from two prospective biomarkers studies (Supplementary 
Fig. 1) conducted at our unit with 32 participants pre-
viously described in two reports on CSF cytokine levels 
and longitudinal clinical progression in MSA, respec-
tively, thus not overlapping with the current study [22, 
23]. All diseased-participants fulfilled the “probable” (or 
“clinically established” in PD) category of their respec-
tive diagnostic criteria [24–27]. CS were individuals 
over > 55 years, undergoing intradural anesthesia for knee 
surgery who, as per thorough clinical history and exami-
nation (including a Montreal Cognitive Assessment [28] 
(MoCa) score ≥ 26), did not have any neurological or psy-
chiatric condition. Vascular or drug-induced parkinsonism, 
large vascular MRI abnormalities, and Alzheimer’s disease 
CSF biochemical profile in patients with corticobasal syn-
drome [29] were exclusion criteria. The study received 
approval by the Ethics Committee. All participants signed 
informed consent.

Clinical procedures

Movement disorders specialized neurologists (Y.C., C.P., 
A.P.) collected the following demographic and clinical varia-
bles of all participants: age at disease onset, sex and age and 
disease duration at the time of the study procedures. Cogni-
tion was assessed by means of the MoCa [24] (except Mini 
Mental test (MMSE) [30] in MSA as part of an independ-
ent protocol [23]). Motor assessments were based on the 
Unified Multiple System Atrophy Rating Scale (UMSARS) 
[31] in MSA patients, the PSP Rating Scale (PSPRS) [32] 
in PSP, and the subscale of the Unified Parkinson’s Disease 
Rating Scale (UPDRS part III) [33] in all subjects except in 
MSA subjects. Hoehn and Yahr classification (HY) [34] was 
obtained for all the participants. Disability assessment was 
based on the Schwab and England Activities of Daily Living 
(SEADL) scale [35].

CSF collection, storage, and analyses

CSF samples were obtained via lumbar puncture at the 
L3–L4 level with a 22-gauge needle, between 8 and 10 
a.m. The first 2 mL was used for routine studies. CSF was 
processed within 30 min of collection, centrifuged at 2000 
rcf and 4 °C for 10 min, and stored at − 80 °C [36]. CSF 
NfL levels were measured with a commercial ELISA kit 
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(Umandiagnostics, Sweden). The samples were run together 
with blank (sample diluent), the (prepared) calibrator solu-
tions, and the appropriate control always in duplicate (a sin-
gle concentration value in pg/mL was calculated as the mean 
of the duplicates; all with a variation coefficient < 20%).

MRI acquisition

MRI was performed within 2 months of lumbar puncture. MRI 
was acquired with a 3-T Prisma Siemens scanner, including sag-
ittal T1-weighted volumes acquired with 3-dimensional magnet-
ization prepared rapid gradient echo (3D-MPRAGE) sequences 
with TR = 2.4 s, TE = 2.22 ms, FlipAngle = 8; and isometric 
voxel size of 0.8 × 0.8 × 0.8mm3. Regarding the participants 
coming from previous studies (see above), 23 subjects were 
acquired with TE = 2.98 ms, TR = 2.98 s, and voxel size 1 × 1 × 1 
mm3. The T1-weighted MRI acquisition parameters for the other 
10 subjects ranged from TE = 2.17 to 6.30 ms, TR = 14.40 ms 
to 2.4  s, and voxel sizes between 0.94 × 0.94 × 0.94 and 
1.2 × 1.05 × 1.05 mm3. Details on the number of acquisitions 
with each protocol per group can be found in Supplementary 
table 1. Supplementary Fig. 2 shows the compatibility between 
acquisition protocols in planimetry metrics and shape analyses.

Morphometric MRI measurements

Brainstem automatic measures (Supplementary Fig. 3)

Brainstem structures were parcelled using the Brainstem 
Bayesian FreeSurfer module [37]. First, for each subject, the 
T1-weighted image was aligned with a template in the MRI 
to identify the midsagittal plane. To account for variability in 
the alignment, 10 slices around the central sagittal slice were 
evaluated to identify the midsagittal slice, which was defined as 
the one containing the smaller midbrain area. To automatically 
assess midsagittal midbrain area (MA) and midsagittal pontine 
area (PA), the number of voxels segmented as midbrain and 
pons in the midsagittal slice were counted and multiplied by 
voxel size and PM was calculated. To validate the results of 
the automated measurements, the MA and PA measurements 
were replicated manually (Supplementary Fig. 4), as previ-
ously described [38], by two independent anatomical experts 
(“Manual 1” and “Manual 2”) blinded to clinical information. 
After the validation of the automatic method, the remaining 
stages were automatically performed.

Shape analysis

Pons and midbrain regions obtained from the FreeSurfer Brain-
stem Bayesian parcellation module were merged and mod-
elled using Spherical Harmonics Point Distribution Models 
(SPHARM-PDM) obtained from the SlicerSALT software 
(http://​salt.​slicer.​org/) [15, 39]. For each subject, a brainstem 

surface containing 1002 vertices was generated and centered in 
a common space. Morphological vertex-level group differences 
were analyzed using a multivariate functional shape data analysis 
(MFSDA) [40], including age as a covariate, due to significantly 
younger age in MSA vs. the other subgroups (see results), in 
keeping with known age at onset of these conditions [41]. Mul-
tiple comparisons were controlled by family-wise error (FWE) 
(corrected significance threshold ≤ 0.05). Finally, the distance 
between each vertex in the subject mesh and the corresponding 
vertex in the control average mesh was correlated with CSF NfL, 
UPDRS, PSPRS, UMSARS, and SEADL by Spearman partial 
correlation covaried for age. We interpreted narrowing as atrophy 
and enlargement as lack of atrophy or compensatory enlargement 
in a region near an atrophic area.

Statistics

Sample size was defined on a pragmatic basis considering pre-
vious studies and the rarity of atypical parkinsonisms. Qualita-
tive variables are presented as frequencies and were compared 
by means of Fisher’s exact test. Quantitative data are presented 
as median/interquartile range (IQR) and were compared using 
Kruskal–Wallis test or Mann Whitney’s U-test, as appropriate. 
CSF and morphometric quantitative MRI biomarkers were com-
pared between diagnostic groups using non-parametric analysis 
of covariance with age as covariate. To study the influence of 
CSF and MRI biomarkers (independent variables) on clinical 
variables (dependent variables) in parkinsonian disorders, we 
first transformed into ranges the independent variables and then 
applied multiple linear regression limiting covariables to age to 
minimize the risk of overfitting. For statistical purposes, HY was 
converted to a binary variable as HYbin: I-II vs. III-V.

To verify intra-rater and automatic-to-manual agree-
ment, intraclass correlation coefficients (ICC) of agree-
ment and consistency were calculated. These were con-
sidered as poor (ICC < 0.40), fair (0.40–0.59), good 
(0.60–0.74), and excellent (0.75–1.00) [42].

Statistical tests were two-tailed, with significance set 
at ≤ 0.05, corrected for multiple comparisons by false-dis-
covery rate (FDR) [43] (except for shape analysis, FWE-cor-
rected; see above). Subject missing values in a particular field 
were not included in the analysis for that particular outcome. 
Data analysis was carried out using Stata 16.0 (Stata Corp) 
for Windows and IBM SPSS statistics software version 24.0 
(Armonk, NY:IBM Corp).

Results

Demographic and clinical data

We included 21 patients with PSP (14 PSP-Richardson’s 
syndrome (PSP-RS), 6 PSP parkinsonism (PSP-P), and 1 

http://salt.slicer.org/
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PSP-progressive gait freezing (PSP-PGF)), 14 CBD, 26 
MSA (18 MSA-parkinsonian (MSA-P) and 8 MSA-cerebel-
lar (MSA-C)), 11 PD, and 12 control subjects. The clinical 
diagnosis was neuropathologically confirmed in three par-
ticipants (PD, CBD, and MSA; 1 each). Demographic and 

clinical data are shown in Table 1. There were no significant 
differences in disease duration, sex, and age between groups, 
except for MSA patients who were younger than PSP, PD, 
and CBD. There were no significant differences in UPDRS, 
HY, MoCa, and SEADL across the parkinsonian disorders. 

Table 1   Comparison of demographic and clinical data across the different study groups

Quantitative variables are presented as median [IQR] and compared between groups using Kruskal–Wallis or Mann–Whitney U tests as appro-
priate
Categorical variables are presented as absolute frequency (proportion) and compared between groups using Fisher’s exact test
† At the time of the lumbar puncture and MRI (expressed in years)
* p values results are presented FDR-corrected
Statistical significant differences between groups are marked in bold

PSP (n = 21) CBD (n = 14) MSA (n = 26) PD (n = 11) CS (n = 12) p value*

Age† 74.5 [70.0–77.4] 69.8 [67.7–74.7] 62.3 [55.1–66.8] 74.7 [64.9–77.1] 71.8 [62.7–73.7] All groups: 0.001; PSP/CBD: 
0.315; PSP/MSA: < 0.001; 
PSP/PD: 0.768; PSP/CS: 
0.162; CBD/MSA: 0.001; 
CBD/PD: 0.759; CBD/CS: 
0.872; MSA/PD: 0.030; 
MSA/CS: 0.058; PD/CS: 
0.457

Gender (females) 7 (33.3) 11 (78.6) 11 (42.3) 6 (54.5) 5 (41.7) All groups: 0.218; PSP/CBD: 
0.072; PSP/MSA: 0.758; 
PSP/PD: 0.469; PSP/CS: 
0.818; CBD/MSA: 0.140; 
CBD/PD: 0.594; CBD/CS: 
0.218; MSA/PD: 0.818; 
MSA/CS: 1; PD/CS: 0.810

Disease duration† 5.4 [3.1–7.3] 5.1 [3.7–6.8] 3.8 [2.5–6.4] 7.8 [1.2–13.5] - All groups (except CS): 0.759; 
PSP/CBD: 1; PSP/MSA: 
0.457; PSP/PD: 0.832; CBD/
MSA: 0.558; CBD/PD: 
0.768; MSA/PD: 0.540;

UPDRS 37 [26–44] 48 [42–65] - 29 [23–43] - PSP/CBD/PD: 0.191; PSP/
CBD: 0.118; PSP/PD: 0.697; 
CBD/PD: 0.218

UMSARS - - 44 [32.5–67.5] - -
PSPRS 35 [30–43] - - - -
HYbin
(HY < 3)

4 (19.05) 5 (35.71) 8 (30.77) 6 (54.55) All groups (except CS): 0.440; 
PSP/CBD: 0.631; PSP/MSA: 
0.697; PSP/PD: 0.155; CBD/
MSA: 1; CBD/PD: 0.631; 
MSA/PD: 0.457

MoCa 19 [16–25] 19 [9.5–26.5] - 20.5 [10–27] 26 [26–28.5] PSP/CBD/PD: 0.997; PSP/
CBD: 0.972; PSP/PD: 0.923; 
PSP/CS: 0.020; CBD/PD: 
0.818; CBD/CS: 0.118; PD/
CS: 0.789

MMSE - - 28 [26.5–30] - -
Schwab and 

England
60 [45 – 75] 45 [40–60] 50 [40 – 75] 85 [50 – 95] 100 [97.5 – 100] All groups (except CS): 0.138; 

PSP/CBD: 0.144; PSP/MSA: 
0.859; PSP/PD: 0.439; PSP/
CS: 0.001; CBD/MSA: 
0.118; CBD/PD: 0.111; 
CBD/CS: 0.001; MSA/PD: 
0.218; MSA/CS: 0.001; PD/
CS: 0.051
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MSA patients presented a median of 28 points in the MMSE 
(normal value ≥ 24).

CSF biomarkers

These are summarized in Supplementary table 2. CSF NfL 
levels were significantly higher in atypical parkinsonisms 
vs. PD and CS.

MRI quantitative measures

Automatic and manual measures are summarized in Supple-
mentary table 2 and Supplementary table 3, respectively. For 
inter-rater agreement and consistency coefficients, see Sup-
plementary table 4. MRI quantitative automatic measures at 
group level demonstrated that in PSP the MA was significantly 
reduced, except when comparing with CBD, and the PM ratio 
was significantly increased when comparing with all the other 
groups. CBD patients presented significantly lower MA com-
pared to PD and CS, and the PM ratio was significantly lower 
when compared to PSP and higher when compared to MSA and 
PD. Finally, MSA patients presented significantly lower PA than 
PSP, PD, and CS, and lower PM ratio than PSP and CBD. Sig-
nificant associations of CSF and automatic MRI measures with 
clinical variables are summarized in Supplementary table 5.

Shape analysis

Comparison of brainstem shape across parkinsonian 
disorders and control subjects

Areas with statistically significant shape differences 
are shown in Fig. 1. MSA was the group with the most 

extensive significant atrophy of the pons and midbrain 
when compared to PD and CS and mainly in the lateral 
inferior pons (including the middle cerebellar peduncle) 
when compared to PSP. CBD presented significant atro-
phy in several small areas in the pons and midbrain when 
compared to PD and CS. PSP presented significant atro-
phy in the upper posterior midbrain and small areas in 
the rostral pons when compared to MSA. For descriptive 
purposes, distance maps between average group shapes 
can be found in Supplementary Fig. 5 and information 
regarding the parcellation of the brainstem for the cor-
responding shape analysis in Supplementary Fig. 6.

Association of brainstem shape and clinical variables

We found significant positive correlations between higher 
motor scales’ scores (UMSARS in MSA, PSPRS in PSP, 
and UPDRS in CBD and PD) and greater brainstem shape 
atrophy across the different parkinsonisms (Fig. 2). Spe-
cifically, in MSA, these positive correlations were present 
mostly in 2 small areas in the rostral upper midbrain and 
in a greater area in the dorsal and lateral pons. In CBD, 
scattered areas of positive correlations were seen in the 
pons. In PSP, these were present in the central posterior 
midbrain, the dorsal pons, the lateral midbrain, and the 
lateral and inferior rostral pons. In PD, positive correla-
tions were seen in a few small areas in the rostral and 
dorsal pons.

We also found significant predominantly negative cor-
relations between SEADL scores and brainstem shape 
alterations (that is, the more atrophy the lower SEADL 
scores) in CBD, PSP, and PD. Specifically, negative 
correlations predominated in the midbrain in CBD and 

Fig. 1   Mean distance between the average shape of each pair of 
groups, significant results. Color areas represent the distance between 
average shapes in the regions where significant differences between 
groups are observed (p < 0.05, FWE corrected). Warm to cold color-

map showing areas in blue where the first group is significantly nar-
rower than the second group and red for the opposite case. The ver-
tical barcode represents the distance between groups in millimeters, 
4.3 mm being the maximum distance found between the two groups
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PSP, and were scattered through the midbrain and the 
pons in PD. In MSA, there was a more mixed pattern of 
both negative and positive correlations (that is, atrophy 
or enlargement of brainstem shape was related to lower 
SEADL scores depending on the area) with the negative 
correlation surfacing in the middle posterior pons.

Association of brainstem shape and CSF NfL

A positive correlation between CSF NfL levels and shape 
(the higher CSF NfL levels, the more atrophy in these areas) 
in PSP, MSA, and PD was seen in several small midbrain 
and pons areas. In CBD, significant negative correlations 

Fig. 2   Correlation maps 
between clinical variables and 
shape atrophy in PSP, CBD, 
MSA, and PD compared to 
controls. The left column 
shows all the correlation values 
and the right column only the 
significant ones. Blue represents 
positive correlations and red 
negative correlations. All analy-
ses covaried for age at inclusion



4546	 European Radiology (2023) 33:4540–4551

1 3

(enlargement of these areas related to increased NfL) were 
seen (Fig. 3).

Discussion

We herein report for the first time: (1) different brainstem 
atrophy patterns across neurodegenerative parkinsonisms 
with remarkable differences in MSA; (2) local atrophy asso-
ciation with clinical and CSF variables across the spectrum 
of degenerative parkinsonisms. In addition, we have repli-
cated previous findings of PM ratio [44, 45] and CSF NfL 
levels [46] in degenerative parkinsonisms.

The novelty from our study comes from brainstem 
shape analysis. Shape analysis has become of increasing 
interest in neurodegenerative diseases, as Alzheimer and 
Parkinson’s disease. Significant shape differences have 
been found between PD and control subjects in different 
subcortical structures, including the subthalamic nucleus 
[16], the globus pallidus [17], and the striatum [18, 19]. 
To our knowledge, studies comparing shape differences 
between atypical parkinsonism and healthy controls have 
only been performed in PSP [20, 21]. Moreover, only one 
study has focused on shape analysis differences between 
neurodegenerative parkinsonian disorders, focusing on 
subcortical supratentorial structures instead of the brain-
stem with a small sample size (5 PSP, 6 CBD, 9 PD, 12 
healthy controls), and reporting significant local bilateral 

atrophy in the ventral anterior and ventral lateral thalamus 
in PSP + CBD vs. the other groups [47].

To interpret narrowing as atrophy and enlargement as 
inflammation or regional elastic compensation, first we 
compared diseased vs. control groups, then compared dis-
eased groups, shifting from an atrophy vs. non-atrophy 
paradigm to an atrophy-differences one. In this vein, our 
results show a gradation ranging from a more extensive 
affectation in MSA, followed by CBD to a more limited 
one in PSP (Fig. 1). Shape analysis results are interpreted 
based on the brainstem architecture. When a global atro-
phy is present in the brainstem nuclei, we found signifi-
cant atrophy in a larger part of the brainstem surface due 
to collapse of the brainstem scaffold. On the other hand, 
when atrophy is present in superficial structures, such 
as the motor tracts contained in the crus cerebri or the 
midbrain tectum, we obtain more localized significant 
atrophy surfaces. Hence, comparing MSA vs. controls, we 
found global surface atrophy of the pons due to atrophy 
of the middle cerebellar peduncles (lateral region) and an 
anterior–posterior collapse possibly driven by changes 
in pontine nuclei and transverse fibers. Midbrain surface 
anterior and posterior alterations (colliculi and tectum), 
with no significant results in the lateral regions, may also 
indicate an anterior–posterior collapse. Involvement of 
corticospinal tract in MSA [26] or of a wider region of 
the crus cerebri or part of the substantia nigra was also 
found, since atrophy of the central nuclei such as the 
raphe would not lead to a collapse in a structure so distal 

Fig. 3   Correlation between 
NfL and shape atrophy in the 
diseased groups with respect 
to controls. The left column 
shows all the correlation values 
and the right column only the 
significant ones. Blue represents 
positive correlations and red 
negative correlations. All analy-
ses covaried for age at inclusion
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thanks to the robust architecture of the brainstem. In MSA 
vs. PD, local atrophy was similar but more restricted, 
whereas in MSA vs. PSP higher atrophy in the middle 
cerebellar peduncles was consistent with previous imag-
ing and pathological knowledge [10, 48]. In the case of 
CBD, focal atrophy in the tectum and several small areas 
in the pons was observed [49].

The similar atrophy gradation of MSA and CBD vs. CS 
(more marked) and vs. PD (more limited) is clinically and radi-
ologically plausible since PD is the diseased group with lesser 
brainstem affection [2], hence lying between APs and CS.

Greater atrophy in PSP in the superior colliculus (upper 
midbrain) indicates greater dento-rubro-thalamic tract and 
red nucleus involvement (Fig. 4) in keeping with vertical 
sight limitation in PSP patients, to which the superior col-
liculus is critical [50]. We interpret the rather restricted nar-
rowing in PSP as follows: while in PSP atrophy is important 
in the whole midbrain as captured by other measures (MRPI 
or PM ratio), its predominance in the tectum could turn the 
rather spared cerebral peduncles into “shape-preserving 
structures” that might account for lesser ability of MRI 
shape analysis to detect midbrain atrophy. Alternatively, 
the inclusion of different PSP phenotypes, some of them 
with lesser burden of brainstem pathology [2, 51], might 
have increased the variability and reduced the significance 
of shape results in this group.

Correlations with clinical and CSF variables

Greater brainstem shape atrophy was associated with worse 
motor state in all parkinsonisms and worse daily living func-
tion scores in CBD, PSP, and PD, while in MSA patients 
the correlations with SEADL were mixed: the negative cor-
relation (the more narrowing, the lower SEADL) arose in 
the posterior middle pons, where tegmental pontine nucleus 
involvement has been correlated with severe MSA-related 

orthostatic hypotension, one of the most disabling MSA 
symptoms [52]. The positive correlations (enlargement 
related to lower SEADL) might be due either to a ceiling 
effect or to relative enlargement of certain areas in the setting 
of atrophy of diseased regions.

The association of greater atrophy with higher NfL 
levels in PSP, MSA, and PD is in keeping with the notion 
that CSF NfL levels indicate neuroaxonal damage. The 
finding of higher NfL associated with lesser atrophy in 
CBD is difficult to interpret. A stochastic association is 
unlikely due to stringent FWE correction and multivari-
ate analyses. An alternative explanation is that it could 
reflect ongoing neuronal injury in areas still undergoing 
inflammation before atrophy [53]. In CBD, post-mortem 
[54] and in vivo studies [55] have demonstrated micro-
glial activation in areas associated with tau pathology 
including the brainstem.

APs presented higher CSF NfL levels compared to PD 
and CS, but no significant differences among themselves, 
with increasing NfL levels significantly associated with 
disease severity, in agreement with previous literature 
[56, 57].

Shape analysis provides novel and complementary 
information with respect to other traditional atrophy 
metrics and can contribute to a better understanding of 
the pathological processes. First, compared to traditional 
indices based on planimetric measurements, shape analy-
sis provides 3D sensitivity, that is, it is able to detect 
changes in all the structure, not only in the MR slice of 
interest. In this sense, clear differences between MSA and 
PSP were found by shape analysis out of the midsagittal 
plane. With regard to other methods quantifying atrophy 
as a decrease in the total volume of the anatomical region, 
since they provide one only measure for the whole region, 
they might not be sensitive to scenarios where the differ-
ence is not only the global decrease or volume but rather 

Fig. 4   Diagram of the midbrain 
anatomy at the level of the 
superior colliculi. The diagram 
highlights the important contri-
bution of the cerebral peduncles 
to the midbrain shape, which 
might turn these structures, 
rather spared in PSP, into 
“shape-preserving structures” 
in contrast to more large shape 
collapse of the pons in MSA 
due to more extensive pontine 
involvement in this condition
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the specific location of the volume decrease (as shown in 
the comparison between MSA and PSP).

Our study is not without limitations. The different sub-
groups size is relatively small, yet in the range of previ-
ous published studies on MRI shape in parkinsonisms 
[17, 20, 21] and remarkable considering the rareness of 
the atypical parkinsonisms, as well as the fact that it is 
challenging having both MRI and CSF from the same 
subjects, which is unique to our study relative to prior 
literature [16–21]. Moreover, we have applied statistical 
correction for multiple comparisons and limited covari-
ables in regression analyses to age at inclusion, thus 
respectively minimizing the risk of stochastic results and 
of overfitting. On the other hand, the fact that the sample 
size is small increases the risk of statistical error type 
II, that is, falsely rejecting the alternative hypotheses. 
As our study is positive with several significant find-
ings, the potential limitation of our sample size would 
be that of underestimating, rather than overestimating, 
our findings. Neuropathological diagnosis confirmation 
is lacking in most cases. However, those having come 
to autopsy were confirmed, and for the rest strict diag-
nostic criteria were applied and cases with corticobasal 
syndrome with CSF Alzheimer-profile were excluded. 
The sample size was small, yet in the range of previous 
studies [2, 13, 58]. We considered MSA patients as a sole 
group but did not assess separately MSA-C and MSA-
P. However, MSA-C and MSA-P share involvement of 
the same brain structures including the brainstem and 
accordingly in the diagnostic criteria the radiological 
findings of one variant are accepted to assist the diagno-
sis of the other one [26, 59]. Age differed among groups 
as expected since MSA usually has younger age at onset 
[41], but we covaried analyses for age and moreover it 
is unlikely that differences in age drove the results when 
most significant differences were obtained in the MSA 
(that is, the younger) group. Another limitation is the 
difference in T1-weighted MRI parameters as partici-
pants came from different projects. Although de novo 
acquisitions were acquired with the same acquisition 
protocol, the images from previous projects had been 
acquired with different parameters. The automatic meth-
ods for brainstem segmentation have shown to be robust 
against differences in acquisition parameters [60]. On 
the other hand, recent studies have shown that shape 
features are more robust to acquisition parameters than 
features related to volume or intensity [61], pointing to 
reliability of shape analysis even in case of differences 
in acquisition.

In conclusion, we have found different patterns of 
local brainstem atrophy across atypical parkinsonisms 
by means of MRI shape analyses in association with 
clinical and CSF indicators of disease severity. More 

specifically, shape analysis might be further explored 
as a potential MSA diagnostic biomarker. In contrast, 
and despite its significant clinical and CSF correlations, 
in PSP shape analysis appears to be of rather limited 
discriminant value. Our results remain preliminary and 
additional prospective studies of larger cohorts will help 
confirm or not our findings and should further assess the 
combination of MRI shape analysis and CSF biomarkers.
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