
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports

An automated framework
for evaluation of deep learning
models for splice site predictions
Amin Zabardast 1,3, Elif Güney Tamer 1,3, Yeşim Aydın Son 1 & Arif Yılmaz 2*

A novel framework for the automated evaluation of various deep learning-based splice site detectors
is presented. The framework eliminates time-consuming development and experimenting activities
for different codebases, architectures, and configurations to obtain the best models for a given
RNA splice site dataset. RNA splicing is a cellular process in which pre-mRNAs are processed into
mature mRNAs and used to produce multiple mRNA transcripts from a single gene sequence. Since
the advancement of sequencing technologies, many splice site variants have been identified and
associated with the diseases. So, RNA splice site prediction is essential for gene finding, genome
annotation, disease-causing variants, and identification of potential biomarkers. Recently, deep
learning models performed highly accurately for classifying genomic signals. Convolutional Neural
Network (CNN), Long Short-Term Memory (LSTM) and its bidirectional version (BLSTM), Gated
Recurrent Unit (GRU), and its bidirectional version (BGRU) are promising models. During genomic
data analysis, CNN’s locality feature helps where each nucleotide correlates with other bases in its
vicinity. In contrast, BLSTM can be trained bidirectionally, allowing sequential data to be processed
from forward and reverse directions. Therefore, it can process 1-D encoded genomic data effectively.
Even though both methods have been used in the literature, a performance comparison was missing.
To compare selected models under similar conditions, we have created a blueprint for a series of
networks with five different levels. As a case study, we compared CNN and BLSTM models’ learning
capabilities as building blocks for RNA splice site prediction in two different datasets. Overall, CNN
performed better with 92% accuracy ( 6% improvement), 89% F1 score ( 8% improvement), and 96%
AUC-PR ( 4% improvement) in human splice site prediction. Likewise, an outperforming performance
with 96% accuracy ( 11% improvement), 94% F1 score ( 16% improvement), and 99% AUC-PR ( 7%
improvement) is achieved in C. elegans splice site prediction. Overall, our results showed that CNN
learns faster than BLSTM and BGRU. Moreover, CNN performs better at extracting sequence patterns
than BLSTM and BGRU. To our knowledge, no other framework is developed explicitly for evaluating
splice detection models to decide the best possible model in an automated manner. So, the proposed
framework and the blueprint would help selecting different deep learning models, such as CNN vs.
BLSTM and BGRU, for splice site analysis or similar classification tasks and in different problems.

The human genome annotation efforts benefit from the recent advances in RNA sequencing and transcriptomics
studies, while splice site detection has become a significant research question. However, there is no guideline for
selecting the best model for this task. Here we present a novel framework for automated evaluation of various
deep learning-based splice site detectors. The framework eliminates time-consuming development by provid-
ing automated experiments for different models, architectures, and configurations to obtain the best model for
a given RNA splice site dataset. Identification of the precise location is a critical challenge in human genome
annotations. Therefore, determining the exon-intron boundaries of the genes is essential for identifying a gene
structure. Splice sites determine the exon-intron and intron-exon boundaries that regulate RNA splicing, a post-
translational modification process that converts pre-mRNA molecules to mature mRNAs.

Also, alternative mRNAs can be obtained from the same gene sequence through the process known as alter-
native splicing. So, correct splice site recognition is critical for proper protein structure formation. Splice sites
are typically composed of four conserved nucleotides: the donor sequence GT (GU for pre-mRNA) at the 5′ (at
the exon-intron boundaries) and the acceptor sequence AG at the 3′ end (at the intron-exon boundaries) as in

OPEN

1Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara,
Turkey. 2Institute of Data Science, Maastricht University, Maastricht, The Netherlands. 3These authors contributed
equally: Amin Zabardast and Elif Güney Tamer. *email: a.yilmaz@maastrichtuniversity.nl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-34795-4&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

Fig. 11. The splice sites that contain GT-AG sequences are called canonical splice sites. Likewise, splice sites do
not contain GT-AG dimers called non-canonical splice sites.

Mutations in splice regions are linked with a variety of diseases. Most of these mutations are single nucleotide
substitutions with consequences ranging from complete exon skipping to a nearby pseudo 3′ or 5′ splice site or
conservation of the mutated intron. Moreover, mutations can introduce new splice sites within an exon or intron.
Frasier syndrome, Myotonic dystrophy, Retinitis pigmentosa, and Spinal muscular atrophy are just a few of the
many diseases caused by splice site mutations2–4. Several sequencing-based methodologies for identifying splice
sites have been developed5,6. However, conducting wet lab studies to classify candidate splice site variants is not
always feasible for clinical applications, so fast and accurate in-silico predictions of splice sites are needed. Many
tools were developed for splice site prediction, but there is still no gold standard tool for clinical use to predict
the effect of splice site variants. Therefore, in the literature, the methodologies need to be compared.

Many splice site annotation and prediction tools annotate and predict splice sites; many tools have been
developed with different strategies, such as Fruit Fly Splice Predictor, Human Splicing Finder, RegRNA (A
Regulatory RNA Motifs and Elements Finder), ESEfinder (Exonic Splicing Enhancers finder), GeneSplicer, and
SpliceMachine. GeneSplicer uses the Decision Tree Algorithm with Markov models to train for signals around
the splice sites7. SpliceMachine utilizes Support Vector Machines (SVMs) to solve this problem8. There are also
other studies based on SVMs, artificial neural networks (ANN), and Random Forest (RF) algorithms for the
identification and prediction of splice sites9–11. In addition, Bayesian networks12 and Maximum Entropy Distri-
bution (MED) models13 are applied to the splice site prediction problem. In addition to these approaches, deep
learning-based algorithms have also been applied to genome analysis.

Deep Learning algorithms, in general, are learning algorithms with an ensemble architecture that transforms
data into various representations prior to classification/regression steps. Various deep learning algorithms are
developed based on a central theoretical framework, which has effectively dealt with complex pattern recognition
challenges in recent years. A deep neural network comprises several layers of perceptrons. A fully connected
(dense) network input of a neuron in one layer is a linear combination of neuron outputs of the previous layers.
A network that uses convolution operation to build layers is known as Convolutional Neural Network (CNN)14.
CNN is beneficial when the data have some inherited local correlation. Deep Neural Networks, such as the
Recurrent Neural Network (RNN)s, can be adapted to process long sequential data formats, where data is related
to the prior information, and the neurons form a cycle. The output of a layer forms an input of the next layer,
which allows the algorithm to have a theoretically infinite memory of the data sequence15. As a result, RNNs can
take the sequential data as an input and generate sequential data as an output. RNNs provide a process of a more
extended range of context information. However, there are some limitations of RNNs, such as the requirement
of pre-segmented training data and vanishing gradient problems16,17. Long Short-Term Memory (LSTM) has
successfully overcome these problems by allowing the constant unobstructed flow of error information between
the input and output of each cell18. Bidirectional LSTM (BLSTM) based RNNs use forward and backward layers
that allow access to a more extended range context in both directions19,20.

A local positive correlation exists in DNA/RNA sequences, and the sequence resembles a one-dimensional
image. Convolutional layers are perfect for extracting information in such scenarios. Also, the strength of the
relationship of bases in the genomic sequence is inversely related to their distances, rationalizing the use of

Figure 1.   Splice sites are four conserved nucleotides: the donor sequence GU at the 5′ and the acceptor
sequence AG at the 3′ end of an intron. After the splicing process pre-mRNA is converted to mature mRNA.

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

CNNs21. In comparison, LSTMs are valid network structures for processing sequential data like text and time
series. So, BLSTM utilizes the genomic data’s sequential nature. Since the DNA/RNA sequence can be interpreted
from both directions and there is no difference between them, BLSTMs are used as a direction invariant model.

Several studies used CNN and RNN to analyze the genetic data patterns in recent literature. Jaganathan et al.
have used ResNet22 like structures, named SpliceAI, to analyze Genome sequences as large as 10,000 nucleotide
bases23. They have achieved a top-k accuracy of 95% using GENCODE24 data for training and validation. Zhang
et al. have used simple CNNs, named DeepSplice, to analyze the GENCODE24 data for splice variant detec-
tion with 96.1% accuracy25. Another simple CNN approach proposed by Zuallaert et al. (SpliceRover) has also
achieved up to 96% accuracy on different datasets of prior research26. Wang et al. have also used a CNN-based
method (SpliceFinder) for predicting splice sites using the Ensembl genome database project’s27 data28. Splice-
2Deep is another CNN based-approach using the Ensembl genome database29. As an example of Bidirectional
RNN-based approaches, Sarkar et al. have used different RNN-based networks, such as vanilla RNN, LSTM,
and Gated Recurrent Unit (GRU) structures, to analyze NCBI’s Genbank data30 and achieved 99.95% accuracy31.
Dutta et al. have used an RNN-based approach, specifically BLSTM, to predict splice junctions on a dataset
generated from GENCODE annotations32. Both CNN and BLSTM-based networks can be used successfully to
analyze genomic data33. Researchers have also tried a combination of CNNs and Bidirectional RNNs (henceforth
referred to as “Hybrid Methods”. For example Alam et al. have tried a hybrid approach by combining CNNs and
BLSTMs34. They reported their utmost accuracy as 98.8% on the HS3D dataset35. Also, CNN and BLSTM hybrid
method has been shown to outperform CNN on the HS3D dataset36.

Various approaches with seemingly different architectures, as summarized in Table 2, do yield significant
and highly accurate classification results on the different datasets for the prediction of splice sites. Overall, these
results show that it is possible to classify splice sites using a deep neural network successfully. However, gen-
eralization of those performance results to all models is difficult; First, all the different layers of a Deep Neural
Network are responsible for the regularization effects. However, when two architectures are deep and their inner
structures are different, it is difficult to isolate the contribution of a specific part of each network. Additionally,
both CNN and BLSTM model-based approaches with convolutional layers and Bidirectional LSTM cells are used
in genomic studies and bioinformatics, but the principles for deciding the best approach based on the dataset’s
internal structure are not clear.

Considering previous CNN and BLSTM-based splice site prediction models, in this study, we aim to compare
these two promising networks’ performances to answer which Deep Neural Network approach is a better fit for
the splice site prediction and similar problems. To our knowledge, no comprehensive comparison of BLSTM and
CNN in splice site detection for various configurations has been reported. Therefore, there was a need to compare
two different deep learning-based methods using standard datasets. Consequently, we designed a comparative
experiment to aid in developing custom deep learning architectures based on CNN, BLSTM, or BGRU.

Methodology
The novel framework for the automated evaluation of various deep learning-based splice site detectors eliminates
time-consuming development and experimenting activities for different codebases, architectures, and configura-
tions to obtain the best models for a given RNA splice site dataset. Therefore, it facilitates using the best models
for the researchers working on RNA splicing site analysis.

The framework operation is explained as a flowchart, as shown in Fig. 2. The framework can execute different
deep learning architectures, such as CNNs, LSTMs, and GRUs, even if they are structurally different. Changing
network depth from 1 to N in the framework is also possible. As seen on the flowchart, a network architecture is
first selected. Then all experiments for various depth for the selected deep learning architecture is automatically
performed. The resulting performance plots are automatically generated for each network for extensive evalu-
ation. The set of experiments is repeated automatically for the following architecture. The process is finalized
when experimenting with all deep architectures and models are finished.

The various network configurations are evaluated on the same datasets as in “Data” section. Convolutional
and recurrent method performances are compared as representative deep learning approaches for the splice site
prediction problem. Computation of these models may be explained with following mathematical expressions.

Mathematical expressions for convolutional neural network (CNN) model.  CNNs consists of
convolutional layers which are characterized by an input map, a bank of filters and biases b. The output of a
convolution layer with stride 1 and single convolution kernel is:

Here, oli = f (xli) : the output of any activation function, l: is the lth layer, x: is one dimensional input with dimen-
sion H, w: is the kernel with dimension k and iterator m, wm

l  : the weight vector connecting neurons of layer l
with neurons of layer l − 1 , bl : bias at layer l, xli : the convolved input vector and kernel at layer l and bias, oli : the
output vector at layer l, f(.): the activation function, ReLU for all layers except last layer which uses softmax.

Backpropagation and optimization.  For backpropagation there are two updates performed, for the
weights and for the gradients. In order to calculate the change for single weight parameter wm′ , it is need to com-
pute ∂E

∂wl
m′

 . Error is calculated for E is error calculated with
In splice site prediction models, maximum likelihood estimation function is used for loss computation in

training process of models. In training of models, the objective is to minimize the loss function. Gradient descent

(1)xli =
∑

m

wl
mo

l−1
i+m + bli

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

optimization was used in the framework to reduce the loss. The basic idea for gradient descent assumes that
the loss functions are generally convex functions. If weights are updated in the opposite direction of the gra-
dients, i.e. in descending direction, the weights are expected to reach the global minima. In back-propagation,
the weights are updated by computing the gradient of loss function with respect to the output that needs to be
back-propagated.

Similarly recurrent networks are trained using LSTM and GRU models. The LSTM model paremeters are com-
puted as follows follows. An LSTM consists of input gate, forget gate and output gate.

Mathematical expressions for Long Short‑Term Memory (LSTM) model.  A standard LSTM unit
is composed of a cell, an input gate, an output gate and a forget gate. The cell stores values for arbitrary time
intervals, and the three gates control the flow of information into and out of the cell. Forget gates decide what
information to discard from a prior state by assigning a previous state, compared to a current input, a value
between 0 and 1. A (rounded) value of 1 indicates that the information should be kept, whereas a value of 0

(2)L = − 1
N

N
∑

i=1

[oilog(ôi)+ (1− oi)log(1− ôi)]

(3)δli =
∂E

∂xli

(4)
∂E

∂xli′
=

k1−1
∑

m=0

δ
i′−ml+1wl+1

m f ′
(

xl
i′

)

(5)
∂E

∂wl
m′

=

H−k1
∑

i=0

δli o
l−1
i+m′

Figure 2.   Automated deep learning model evaluation framework for splice site prediction. Selected Deep
learning models CNN, LSTM, BLSTM, GRU or BGRU are trained for available datasets.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

indicates that it should be discarded. Using the same approach as forget gates, input gates decide which pieces of
new information to store in the existing state. The LSTM network can sustain useful long-term dependencies by
selectively outputting appropriate information from the current state.

The input gate function shown in Eq. (6). is used to evaluate the importance of new information carried by
the input.:

Forget gate function in shon Eq. (7). is used to decide whether to keep the information from the previous time
step or forget it:

Similarly output gate function is shown in Eq. (8):

LSTM model input cell input activation vector is computed using:

LSTM cell state vector is computed using:

LSTM hidden state vector also known as output vector of the LSTM unit:

In the equations above, the terms may be explained as: xt : input vector to the LSTM unit, ft : forget gate’s activa-
tion vector, it : input/update gate’s activation vector, ot : output gate’s activation vector, ht : hidden state vector also
known as output vector of the LSTM unit, c̃t : cell input activation vector, ct : cell state vector, wi ,wf ,wo, : weights,
bi , bf , bo, : biases.

Mathematical expressions for Gated Recurrent Unit (GRU) model.  The GRU is similar to an LSTM
with a forget gate, but it has fewer parameters than an LSTM because it does not have an output gate. Because
to their comparable designs and often similarly performance, GRU and LSTM can both be seen as variations
of each other. GRU employs update and reset gates to tackle the vanishing gradient problem of a regular RNN.
Essentially, there are two vectors that determine what information should be transmitted to the output. They are
unique in that they can be trained to retain knowledge from a long time ago without being washed away by time
or to discard information that is unnecessary to the prediction.

The update gate function shown in Eq. (12) enables the model to determine how much past knowledge (from
earlier time steps) must be passed on to the future.

The model’s reset gate is used to determine how much of the past knowledge to forget is shown in Eq. (13):

Here, GRU candidate activation vector is computed as follows:

Then, GRU output vector:

In the equations above the terms may be explained as: xt : input vector to the GRU unit, ft : forget gate’s activa-
tion vector, it : input/update gate’s activation vector, ot : output gate’s activation vector, ht : hidden state vector also
known as output vector of the LSTM unit, c̃t : cell input activation vector, ct : cell state vector, wi ,wf ,wo : weight
matrices, bi , bf , bo : biases.

Mathematical expressions for BLSTM and BGRU models.  BLSTM and BGRU models are bidirec-
tional versions of consists of LSTM and GRU cells as in unidirectional models. However, they one more LSTM
layer, namely forward and backward layers to read the input sequence which reverses the direction of informa-
tion flow. This means that the input sequence flows backward in the additional LSTM layer. Then the outputs of
forward and backward layers are combined from both forward and backward layers by averaging.

We applied the following principles to ensure that the specific differences were reduced and that the network
designs were comparable:

1.	 The experiments are separated into multiple groups (based on the family of the network) with multiple levels
(based on the complexity of the network within the same family). Each level is directly comparable to its

(6)it = σ(wi[ht−1, xt] + bi)

(7)ft = σ(wf [ht−1, xt] + bf)

(8)ot = σ(wo[ht−1, xt] + bo)

(9)c̃t = tanh(wc[ht−1, xt] + bc)

(10)ct = ft ∗ ct−1 + it ∗ c̃t

(11)ht = ot ∗ tanh(c
t)

(12)zt = σ(wz[ht−1, xt] + bz)

(13)rt = σ(wr[ht−1, xt] + br)

(14)h̃t = tanh(wh[xt , rt ∗ ht−1] + bc)

(15)ht = rt ∗ ht−1 + (1− zt) ∗ h̃t

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

counterpart from the other family. Multiple levels in the same family group are comparable on the grounds
of complexity.

2.	 Smaller networks are preferred to lower the possibility of deviation between two groups, which is expected
to be higher if broader (and deeper) networks are used.

3.	 The amount of network’s trainable parameters for the same levels should be approximately the same between
two groups of families (Table 1). Since the learning capacity is directly proportional to the number of train-
able parameters, we can make the networks more comparable by keeping the number of trainable parameters
and their growth rate similar in each network.

4.	 Neural networks are created from many components, each of which has a role in regularizing the network.
The reusable parts of the two families’ networks are kept the same to control the architecture.

Networks in each group are structurally similar but different in their design. A summary of the number of train-
able parameters for each experimental setup is presented in Table 1.

The finalized framework of the proposed blueprint is presented in Fig. 3, and the details are explained in
the “Results” section. These networks included a maxpooling layer to limit the number of trainable variables.
In addition, we used Stochastic Gradient Descent (SGD) for the optimization method, and the loss function is
cross-entropy.

Model selection criteria.  To compare the performances of various deep learning architectures, we identi-
fied the most frequently used architectures as CNN, BLSTM, and BGRU, which are reviewed in Tables 2 and 3.
Therefore we focused our experiments on these models. Additionally, as Sarkar et al. used GRU and achieved
good performance31, we included GRU and LSTM in the experimental models.

Also, these architectures are a good fit for the characteristics of genomic data. Firstly, there is a local relation-
ship between a base and other bases in its vicinity in genomic data. A CNN architecture effectively interprets these

Table 1.   Number of trainable parameters in different networks with different layers.

5 Layers 4 Layers 3 Layers 2 Layers 1 Layer

BLSTM 993 871 759 647 535

BGRU​ 891 795 699 603 507

CNN 683 631 579 527 475

Figure 3.   Framework allows processing of blueprints for different network architecture groups. This blueprint
allows the comparison of networks with convolutional layers or recurrent cells such as BLSTM, which can also
be used with other compatible methods.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

local relationships37. Secondly, genomic data is sequential and recursive architectures—such as BLSTMs—are
effective in interpreting sequential data38.

Genomic sequences can be analyzed better if they are inspected forward and reverse directions. The use of
unidirectional networks may cause the loss of valuable information. In order to validate this expectation, we
also experimented with unidirectional networks. Results of unidirectional and bidirectional versions of GRU
and LSTM architectures are presented in “Results” section.

Data.  In evaluating our framework, we experimented with two splice prediction datasets, the HS3D and the
C. elegans, where the details of the datasets are as follows.

HS3D dataset.  We used the HS3D dataset in our experimental design35. This dataset includes 609,909 140 base
pair(bp) long sequences located around splice sites. In true class, the splice site is located precisely in the DNA
sequence’s middle on the 70th and 71st bps including only canonical GT-AG motifs. The false class was created

Table 2.   Overview of the deep learning-based methods for splice site detection available in the literature:
(D) Donor, (A) Acceptor, Acc. (Accuracy), Sn. (Sensitivity), Sp. Specificity. a The approximate values were
taken from the graphs since exact values were not given in the paper. Only imbalanced dataset results were
mentioned for DeepSS. b The number of true and false splice site sequences was not mentioned.

Reference Base Architecture Data Sequence numbers/lengths Measure Performance

DeepSplice43 CNN
Input layer
2 Conv layers
1 Dense layer
Output layer

GENCODE 291,030 (true)
271,937 (false) 120 nt

Donor Acceptor

Acc. 0.907 0.893

Sn. 0.917 0.873

Sp. 0.897 0.913

SpliceRover26 CNN

Input layer
2 conv layers+
Max pooling layer
1 Dense layer
Output layer

NN269
1324 (true) (D)
4922 (false)(D)
1324 (true) (A)
5553 (false)(A)

15 nt(D)
90 nt(A)

Acc. 0.9535 0.9612

Sn. 0.9011 0.9077

Sp. 0.9674 0.9739

auPRC 0.9829 0.9899

SpliceFinder28 CNN
Input layer
A conv layer
Dense layer
Output layer

Ensembl (hg38
dataset) 30,000b 40–400 nt Acc. 0.969–0.832 (40 nt)

0.965–0.903 (400 nt)
0.969–0.832 (40 nt)
0.965–0.903 (400 nt)

DeepSS44 CNN

Input layer
2 Conv layers+
Max pooling layer
2 dense layer
Output layer

CE
750 (true)(D)
19,250(false)(D)
1000 (true)(A)
19,000 (false)(A)

141 nt

Acc. 0.97a 0.96a

Sn. 0.95a 0.93a

Sp. 0.97a 0.96a

Pr. 0.87a 0.83a

MCC 0.89a 0.85a

AUC ROC 99.47a 99.56a

AUC PR 97.88a 98.18a

DeepSS44 CNN

Input layer
2 Conv layers+
Max pooling layer
2 dense layer
Output layer

NN269
1324(true)(D)
4922(false)(D)
1324(true)(A)
5553(false)(A)

15 nt(D)
90 nt(A)

Acc. 0.93a 0.97a

Sn. 0.91a 0.93a

Sp. 0.96a 0.97a

Pr. 0.86a 0.9a

MCC 0.85a 0.9a

AUC ROC 98.43a 99.34a

AUC PR 93.97a 97.32a

Splice2Deep29 CNN
Input layer
Conv. layer
Max pooling layer
Output layer

Ensembl (hg38
dataset)

250,400 (true)
250,400 (false) 602 nt

Acc. 97.38 96.91

Sn. 95.93 95.61

Sp. 98.83 97.8

F1 Score 96.38 96.91

AUC​ 99.1 98.69

Sarkar et. al.31
Vanilla RNN,
LSTM,
GRU​

3 stacks
(90 Vanilla RNN,
GRU or LSTM cells)

GenBank (splice-
junction gene
sequences)

3175b 60 nt

Acc. 1.00 99.95

Sn. 1.00 1.00

Sp. 1.00 99.93

F1 Score 1.00 99.93

Splice AI23 ResNet

Input layer
Conv. layer
Residual blocks
(Batch-normalization
layers
Rectified linear units
Convolutional layers)
Output layer

GENCODE 13,796 donor–accep-
tor pairs 40–5000 nt

Combined donor and acceptor

Acc. 0.95

AUC PR 0.98

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

by selecting the GT-AG pairs in not splicing locations. The false sites are located in range of ± 60 distance from
true splice site location. The dataset may be downloaded using the script available in the GitHub repository using
the link in Data availability section.

The HS3D dataset is publicly available and well-defined in false and true splice site sequences. The HS3D
dataset is selected since it was successfully used in the CNN and BLSTM-based neural network approaches for
splice site recognition, as listed in (Table 3) with the performance measures of each study. Moreover, two addi-
tional studies used the BLSTM and the CNN hybrid approach using the HS3D data to predict splice sites34,36. The
HS3D is selected as a suitable benchmark dataset for comparing selected networks based on these observations.

During the preprocessing, the DNA sequences coded with IUPAC nomenclature (A, C, G, and T) are con-
verted to a vector of length 4 (One-Hot Encoding), which is a compatible format for neural network studies39.
All sequences in the HS3D dataset are categorized into four classes: true donor or acceptor splice sites and false
donor or acceptor splice sites. Succeeding the literature, which split the data into a true donor, true acceptor,
and non-site28,40 false groups are combined. So, we combined the false donor and acceptor groups, and after
preprocessing, our final dataset had three classes: true donor, true acceptor, and non-site.

There were 2796 sequences in the true donor class and 2880 sequences in the true acceptor class; therefore,
the true donor and true acceptor classes were approximately balanced. However, a high number of sequences
belonging to the none-site class were in the dataset, with a count of 604,233. The large number of false sequences
was the leading cause of the unbalanced classes. We balanced the dataset by downsampling the majority class
(non-site) in a quasirandom manner. Thus, all classes were balanced and approximately had the same number
of sequences after downsampling.

C. elegans dataset.  The second dataset we used in our experiments is the C. elegans dataset, which is publicly
available41. The dataset is composed of 17,300 false donor/acceptor and true 6700 donor/acceptor splice sites.

C. elegans dataset included 141 bp long sequences located around splice sites. The canonical splice site is
located on the 63rd and 64th base pairs in the donor dataset, and in the acceptor dataset, the canonical splice
site is located on the 60th and 61st base pairs. False splice site sequences are obtained from intronic regions and
centered around non-splice site AG dinucleotides and GT dinucleotides.

During the pre-processing, the DNA sequences coded with IUPAC nomenclature (A, C, G, and T) are con-
verted to a vector of length 4 (One-Hot Encoding), a compatible format for neural network studies. Again, the
false donor and acceptor groups are combined, so after pre-processing, our final dataset had three classes: true
donor, true acceptor, and non-site. Also, since our network is trained for 140 bp long sequences, sequences are
trimmed one base from the right site. After this step, the C. elegans dataset had 140 bp long sequences. Since
the non-site class has a high number of sequences compared to true donor and acceptor sites, similar to HS3D
dataset, we balanced the dataset by downsampling the majority class (non-site) in a quasirandom manner. Thus,
all classes were balanced and approximately had the same number of sequences after downsampling.

Analysis.  Several groups of experiments are created for different neural networks. Each experimental group
includes multiple networks with a specific neural network layer, such as CNN, BLSTM, or others. Networks
in each group are structurally similar but different in their design. During training, tenfold cross-validation is
performed to split the data before training each network. In general, cross-validation eliminates the possibility
of overfitting due to misrepresentative data selection. Also, repetitive experimentation with cross-validation
eliminates the effects of randomness introduced by initiating the variables within the network and mini-batches.

Table 3.   Summary of studies with deep learning based methods for splice site detection with the HS3D
dataset. (D) Donor, (A) Acceptor, Acc. (Accuracy), Sn. (Sensitivity), Sp. Specificity. a The approximate values
were taken from the graphs since exact values were not given in the paper. Only imbalanced dataset results
were mentioned for DeepSS.

Reference Base Architecture Data Sequence numbers/lengths Measure Performance

DeepSplice43 CNN
Input layer
2 Conv layers
1 dense layer
Output layer

HS3D
2796 (true)(D)
271937 (false)(D)
2880 (true)(A)
329,374 (false)(A)

140 nt

Donor Acceptor

Acc. 0.946 0.923

Sn. 0.957 0.934

Sp. 0.938 0.914

DeepSS44 CNN

Input layer
2 Conv layers + max pool-
ing layer
2 dense layer
Output layer

HS3D
2796 (true)(D)
90,953 (false)(D)
2880 (true)(A)
90,353 (false)(A)

140 nt

Acc. 0.97a 0.98a

Sn. 0.96a 0.97a

Sp. 0.97a 0.98a

Pr. 0.88a 0.92a

MCC 0.90a 0.93a

AUC ROC 99.02 98.79

AUC PR 95.93 94.28

DeepDSSR34 Hybrid (CNN + BLSTM)
2 inception like layers
A convolutional layer
A bidirectional layer
Dense layer

HS3D 2796 (true)(D)
90,924 (false)(D) 140 nt

Sn. 0.988 –

Sp. 0.891 –

MCC 0.914 –

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

Each network has been trained ten times for 300 epochs with additional training for the BLSTM networks. The
BLSTM networks with 1000 epochs have “extended” as the prefix. The networks are created using TensorFlow
2.3.0, and the training is done using Nvidia RTX 2080 Ti GPU. Results of all experiments are fully reproducible
and available at our GitHub repository, explained in Code availability section.

The evaluation metrics.  Classification performance for all models is evaluated using accuracy and F1
score measurements as evaluation metrics. The Area Under the Curve-Precision-Recall (AUC-PR) is also calcu-
lated since it uses all the aspects of the confusion matrix in its final score computation42. As we aim to compare
the performance gain at each level and in-between types of networks, we compared the performance of each net-
work family at progressive levels during the evaluation instead of the outcomes. We expect each network family
to improve its evaluation metric as more layers are constructed for feature transformation. Since corresponding
levels in each network are designed to be comparable, the group of networks with the most significant increase
in performance resulting from any added layer is favored.

Results
In this study, we implemented a novel framework for the automated evaluation of deep learning based splice
site detectors for a given RNA splice site dataset. We extensively tested our framework with two different splice
datasets namely HS3D and C. elegans. As a first task, we tested our framework to determine if there is any differ-
ence in performance of CNN and BLSTM architectures as building blocks of the network’s feature transforma-
tion structure.

In the first step, we tested our framework to determine if there is any difference in the performance of CNN
and BLSTM architectures as building blocks of the network’s feature transformation structure with the HS3D
dataset. Next, the best-performing configurations identified are applied during training with BLSTM and CNN
models for the C. elegans dataset shown in Fig. 7. Later, we used the framework to evaluate other architectures
for selected configurations such as LSTM, GRU, BGRU.

The framework for evaluation of splice site detectors.  We proposed a framework that evaluated
deep learning networks intended to take a sequence of DNA nucleotides and return the probability of the
sequence belonging to a class (classification problem). The proposed framework represented in Fig. 3 consists of
networks that have four main parts:

1.	 The input data: The input data is a sequence of one-hot-encoded DNA nucleotide bases, in which the length
of each sequence is 140 nucleotides.

2.	 Feature extraction layers: Cumulatively, these layers will transform the data from one space to another where
the classification can be achievable. The network consists of multiple repeating layers, such as CNN layers
or BLSTM cells.

3.	 Following the feature extraction layers, the output layer is a classifier, consisting of a Dense layer construct
with a softmax as an activation function.

4.	 The output consists of three values, reporting the probability of belonging to a particular class.

Performance analysis of models using HS3D data.  Several experiments are designed and conducted
with networks based on the proposed framework. Although the framework does not impose any limit, in the
experiments, we limited the number of layers to up to five different levels in feature transformation blocks. We
discovered that networks containing BLSTM cells require more epochs during the loss plots training to reach a
plateau state, so these networks are trained for extended duration until 1000 epochs. Figure 5 shows our experi-
ments for comparing BGRU and BLSTM architectures. As it may be seen there is minimal difference between
their performance, but as mentioned before BLSTMs are the more prominent version in the literature. Figures 6
and 7 shows performance per epoch for a subset of the experiments with the HS3D dataset and C. elegans
dataset, respectively. All the networks involved in experiments have reached a stable performance level after the
training and learned general knowledge about the dataset and match performance in training and test. There was
no divergence between the training and validation plots.

The best-performing model for CNN architecture (based on accuracy as the deciding measure) was obtained
at a three-layer configuration for the HS3D dataset (Fig. 8a). Between one-layer and three-layers CNN networks
trained, 6% accuracy improvement was achieved, while extended BLSTM networks improved their accuracy by
5% (Fig. 8a). Also, the CNN architecture achieved a maximum accuracy of 92% compared to the base model
and achieved a maximum score of 85% . In order to validate this expectation, we also experimented with uni-
directional networks. Results of unidirectional and bidirectional versions of GRU and LSTM architectures are
shown in Figs. 4, 5 and 6.

Performance analysis of models using C. elegans data.  C. elegans dataset is used for the confirma-
tion, and the results verify that CNN is the best-performing network architecture Fig. 7.

Using the splice site prediction framework, we provided time required for training of models with respect
different number of layers. Our results showed that CNN requires least time for training.

Also, we compared CNN and BLSTM models with the highest learning capacity for both HS3D and C. elegans
datasets using the F1 score and AUC-PR metrics. The CNN architecture improved the F1 score by 8% compared
to the base model, and achieved a maximum score of 89% . The extended BLSTM improved the F1 score by 5%
and achieved a maximum of 85% (Fig. 8b). Similarly, for the AUC-PR metric, CNN architecture improved its

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

Figure 4.   Comparison of GRU and LSTM architectures’ performance for HS3D dataset. These networks are
performing suboptimally compared to their bidirectional counterparts, and they are also unable to learn any
distinguishing features in some of the experiments. Columns from left to right are (a) Accuracy per epoch, (b)
F1 Score per epoch, and (c) AUR-PR per epoch.

Figure 5.   Comparison of BGRU and BLSTM architectures’ performance for HS3D dataset. There is no
significant difference between the two architectures performances. Columns from left to right: (a) Accuracy per
epoch, (b) F1 Score per epoch, and (c) AUR-PR per epoch.

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

score by 4% and achieved a maximum of 96% . The extended BLSTM improved its score by 3% and achieved a
maximum of 94% (Fig. 8c).

Table 4 shows the results when framework is set to test all models for 5 layers for highest accuracy. It may
be seen that CNN model performed best in accuracy and and F1 for HS3D dataset. Because, genomic data has
learnable features in forward and reverse direction, bidirectional models (BLSTM and BGRU) performed better
compared to unidirectional models (LSTM and GRU).

Discussion
Selection of the best model for a machine learning task has become essential in Artificial Intelligence (AI) applica-
tions. The performance of different machine learning models may differ for a training dataset, which cannot be
foreseen before the experiments. Here, we explained a novel framework for the automated evaluation of various
deep learning-based splice site detectors. Our framework eliminates the laborious process of evaluating multiple
models for selecting the best architecture and configuration for a given problem.

In this study, we have worked with an RNA splice site dataset; as splice site variants are associated with many
diseases, identifying the splice site variants is critical. Mainly, the coding variants are considered disease-causing
variants. However, non-coding variants with different consequences might affect the phenotype. To this extent,
predicting which sequences are potential splice sites would help predict candidate variants with pathogenic out-
comes, and prioritizing sequencing variants based on their effect on splicing aids in diagnosing genetic diseases.

Figure 6.   Performance per epoch for five-layer networks in HS3D dataset. Rows from top to bottom are for
CNN, BLSTM, and extended BLSTM. Columns from left to right are (a) accuracy per epoch, (b) F1 score per
epoch, and (c) A.U.C. Precision-Recall (PR), respectively. There is no indication of overfitting. All the training is
completed successfully, and there is no gap between validation and training performance lines.

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

Other researchers applied deep learning methods to splice site prediction, and different deep neural networks
have been extensively studied in the literature without providing a generic approach. Both the CNN-based and
the BLSTM-based deep neural networks can learn genomic data with significant accuracy. DeepSplice used a
CNN-based network and evaluated human RNA-seq data obtained from GENCODE and HS3D datasets, which
obtained an accuracy of around 90%43. SpliceRover used a CNN-based network, evaluated human NN269, and
obtained an accuracy of around 90%26.DeepSS used a CNN-based network and evaluated C. elegans data, human
NN269 data, and human HS3D data and obtained accuracy between 93–98%44. SpliceFinder used a CNN-based
network, evaluated the human dataset downloaded from Ensembl, and obtained an accuracy of around 96%
28. Splice2Deep used a CNN-based network and evaluated the human dataset downloaded from Ensembl and
obtained accuracies of around 97%29. Unlike the previous studies, SpliceAI used different network architecture
called Resnets and evaluated the human dataset downloaded from ENCODE, obtaining 95% accuracy23.Besides
these convolutional neural networks, there are BLSTM-based or hybrid studies. For instance, in one study, the
BLSTM network was evaluated on the C.parvum dataset and obtained 96% accuracy45. DDeepDSSR used CNN

Figure 7.   Performance per epoch example for five-layer networks in C. elegans dataset. Rows from top to
bottom are, respectively, for CNN and BLSTM. Columns from left to right are (a) accuracy per epoch, (b) F1
score per epoch, and (c) A.U.C. Precision-Recall (PR), respectively. There is no indication of overfitting. All
training was successful, and there is no gap between validation and training performance lines.

Figure 8.   Comparison of the change in performance metrics types with each additional layer. We can conclude
from all the metrics that adding convolutional layers improves the performance better than Bidirectional LSTM
cells. From left to right, (a) average accuracy per epoch, (b) average F1 score per epoch, and (c) average A.U.C.
Precision-Recall (PR) per epoch. KS: Kernel Size, TE: Termination Epoch.

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

plus BLSTM-based hybrid network and evaluated the human HS3D dataset, obtaining an accuracy of around
98%34.

As stated above, various deep learning-based methods have been proposed in the literature. However, users
encounter difficulties to choose which deep learning-based method to apply for their data. Therefore, there is
a need to compare and evaluate the deep learning-based splice site prediction methods. In order to determine
which method might be an appropriate model for splice prediction tasks for a specific dataset, we proposed
a framework for experiments to compare the selected promising splice site prediction models such as CNN,
BLSTM, and BGRU. The user may see performance variations amongst the splice site prediction models due
to the different models and feature learning layers. The evaluated networks use the same optimization method,
learning rate, and dense classification layer at the output.

We used accuracy, the F1 score, and A.U.C. Precision-Recall (AUC-PR) as evaluation metrics. We observed
that CNN-based networks train orders of magnitude faster than BLSTM-based networks (Fig. 9). To some extent,
this might be due to the use of fast convolution computation enabled by cuDNN C used by the TensorFlow library
for parallel computations on General Purpose GPUs (GPGPUs), but also, the CNN-based networks have less
trainable parameters (and connections) when compared to BLSTM based networks.

Additionally, we suggest that the local correlation in the sequence data is more critical for recognizing their
patterns than viewing these sequences as sentences constructed by smaller blocks. This outcome can be explained
by the bidirectional characteristics of the DNA and RNA sequences. A language structure presents a clear direc-
tion in which the sentences are constructed and meaningful. However, the genomic sequences can be processed
from each direction like one-dimensional images with cohesion in small correlated vicinity and depict a com-
plete scene. Therefore, bidirectional LSTM and GRU are preferred because they allow the maintenance of both
backward and forward data since they have also been used for splice site prediction45.

The accuracy for GRU and LSTM was observed as 55% and 62% as shown in Fig. 4. Results in Fig. 5 showed

that bidirectional models outperformed unidirectional models. As genomic sequences are a better fit for bidirec-
tional models using unidirectional networks causes a loss of value. This explains the performance loss observed
in our experiments with the unidirectional GRU and LSTM architectures.

Figure 9.   Comparison of training time for different network types with respect to additional layers (The Y axis
is on a logarithmic scale). Convolutional networks are exponentially faster to train and use in comparison to
BLSTM networks. KS: Kernel Size, TE: Termination Epoch.

Table 4.   Comparison of highest performance metrics of for various models. Significant values are in bold.

Model (5 layers) Dataset Accuracy F1 AUCPR

CNN HS3D 0.90 0.85 0.95

LSTM (extented) HS3D 0.66 0.56 0.74

GRU (extented) HS3D 0.61 0.56 0.66

BLSTM HS3D 0.77 0.71 0.87

BLSTM (extented) HS3D 0.87 0.82 0.94

BGRU (extended) HS3D 0.72 0.61 0.80

CNN C. elegans 0.96 0.94 0.99

BLSTM C. elegans 0.85 0.78 0.92

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

There are many deep learning-based splice site predictors in the literature with higher performances as
mainly focused on the improving the prediction performances of the networks so that they designed different
architectures of deep neural networks. However, this study emphasizes the need for automated evaluation of
deep learning models. Unlike other studies, we mainly focused on developing a novel framework for comparing
deep learning models for splice site prediction problems rather than building a network with improved accuracy.

Our experiments have shown that the CNN-based model has a better gain than the BLSTM-based model
(Fig. 8). CNN-based networks even outperform the BLSTM-based networks with extended training. Besides
the feature extraction layers, networks are built as equivalent to each other. So, we conclude that CNN-based
networks are more successful in extracting informative features from the sequence, which results in higher clas-
sification performance such as accuracy, F1 score, and AUC Precision-Recall.

The CNN-based networks appear to learn the data faster and reach higher accuracy when the network’s
complexity increases (Fig. 9). BLSTM-based networks fall behind the CNN-based network in these regards. We
observed that convolutional layers in neural networks result in better representations and perform better in the
learning process.

We let the BLSTM-based networks train for more epochs after observing that 300 epochs are not enough for
these networks to reach their potential. These results are labeled as “extented” in the figures. We concluded that,
given enough complexity and time, BLSTM-based network learning performance improved. However, as both
models fit the data, CNN-based approaches learn faster and reach a stable level sooner.

Even though collecting and processing the data has been challenging in prior iterations, in the future, these
experiments could be conducted with a wide range of sequences to eliminate any effect introduced by the fixed
size of the data point. Additionally, the tenfold cross-validation used in this study was challenging and time-
consuming since training hundreds of neural networks for an extended time requires considerable resources.
Also, both datasets used in this study are composed of canonical splice sites, since we wanted to select similar
datasets in terms of sequence length and pattern. Therefore, The only limitation of this study is that our network
is not trained to classify non-canonical splice sites.

Conclusion
This study introduces our deep splice site prediction machine learning framework for multiple machine learning
models. We included available deep learning models as building blocks for RNA splice site prediction. To the
best of our knowledge, no other work has been developed for evaluating splice detection models to obtain the
best possible model in an automated manner. Our framework can help researchers identify the best perform-
ing models without laborious training effort to the researcher for an accurate splice site analysis and similar
classification tasks. Also, the proposed framework can be used to compare deep learning models with other
machine learning tasks.

Our study showed that CNN learns faster than BLSTM and BGRU, and CNN performs better at extracting
sequence patterns than BLSTM and BGRU. Since many deep learning-based splice site prediction tools are sug-
gested in the literature, our observations can help to make a selection among CNN or BLSTM, or BGRU-based
models for an accurate splice site analysis and similar classification tasks. Also, the proposed blueprint can be
used to compare CNN, BLSTM, and BGRU in different problems with different datasets.

Our experiments in this study required long duration preventing experimenting with some parameters. As
a future work, we consider adding the feature for experimenting with different hyper-parameter tuning options
such as kernel/window size, learning rates, optimizer selections, dropout ratios, and pooling methods.

Data availability
The dataset analysed during the current study is available in our GitHub repository: Data Repos​itory.

Code availability
The code for repeating the experiments are available in our GitHub repository and may be downloaded from
following URL address: Code Repos​itory.

Received: 2 May 2022; Accepted: 8 May 2023

References
	 1.	 McManus, C. J. & Graveley, B. R. RNA structure and the mechanisms of alternative splicing. Curr. Opin. Genet. Dev. 21(4), 373–379

(2011).
	 2.	 Nakamori, M. et al. Splicing biomarkers of disease severity in myotonic dystrophy. Ann. Neurol. 74(6), 862–872 (2013).
	 3.	 Buskin, A. et al. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes prpf31 retinitis pigmentosa.

Nat. Commun. 9(1), 1–19 (2018).
	 4.	 Singh, R. N. & Singh, N. N. Mechanism of splicing regulation of spinal muscular atrophy genes. RNA Metab. Neurodegener. Dis.

31–61 (2018).
	 5.	 Adamson, S. I., Zhan, L. & Graveley, B. R. Vex-seq: High-throughput identification of the impact of genetic variation on pre-mRNA

splicing efficiency. Genome Biol. 19(1), 1–12 (2018).
	 6.	 Rosenberg, A. B., Patwardhan, R. P., Shendure, J. & Seelig, G. Learning the sequence determinants of alternative splicing from

millions of random sequences. Cell 163(3), 698–711 (2015).
	 7.	 Pertea, M., Lin, X. & Salzberg, S. L. Genesplicer: A new computational method for splice site prediction. Nucl. Acids Res. 29(5),

1185–1190 (2001).
	 8.	 Degroeve, S., Saeys, Y., De Baets, B., Rouzé, P. & Van De Peer, Y. Splicemachine: Predicting splice sites from high-dimensional

local context representations. Bioinformatics 21(8), 1332–1338 (2005).
	 9.	 Meher, P. K., Sahu, T. K., Rao, A. R. & Wahi, S. Identification of donor splice sites using support vector machine: A computational

approach based on positional, compositional and dependency features. Algorithms Mol. Biol. 11(1), 1–12 (2016).

https://github.com/metubin712/DeepSpliceDetectors
https://github.com/metubin712/DeepSpliceDetectors

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

	10.	 Meher, P. K., Sahu, T. K. & Rao, A. R. Prediction of donor splice sites using random forest with a new sequence encoding approach.
BioData Min. 9(1), 1–25 (2016).

	11.	 Meher, P. K., Sahu, T. K., Rao, A. & Wahi, S. A computational approach for prediction of donor splice sites with improved accuracy.
J. Theor. Biol. 404, 285–294 (2016).

	12.	 Chen, T.-M., Lu, C.-C. & Li, W.-H. Prediction of splice sites with dependency graphs and their expanded Bayesian networks.
Bioinformatics 21(4), 471–482 (2005).

	13.	 Yeo, G. & Burge, C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput.
Biol. 11(2–3), 377–394 (2004).

	14.	 Gu, W., Gao, F., Li, R. & Zhang, J. Learning universal network representation via link prediction by graph convolutional neural
network. J. Soc. Comput. 2(1), 43–51 (2021).

	15.	 Shrestha, A. & Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 7, 53040–53065 (2019).
	16.	 Ray, A., Rajeswar, S. & Chaudhury, S. Text recognition using deep BLSTM networks. In 2015 Eighth International Conference on

Advances in Pattern Recognition (ICAPR), 1–6 (IEEE, 2015).
	17.	 Huang, H., Zeng, Z., Yao, D., Pei, X. & Zhang, Y. Spatial-temporal convlstm for vehicle driving intention prediction. Tsinghua Sci.

Technol. 27(3), 599–609 (2021).
	18.	 Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997).
	19.	 Graves, A. et al. A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell.

31(5), 855–868 (2008).
	20.	 Liu, F., Zhang, Z. & Zhou, R. Automatic modulation recognition based on CNN and GRU. Tsinghua Sci. Technol. 27(2), 422–431

(2021).
	21.	 Hartpence, B. & Kwasinski, A. CNN and MLP neural network ensembles for packet classification and adversary defense. Intell.

Converged Netw. 2(1), 66–82 (2021).
	22.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. CoRR arXiv:​1512.​03385 (2015).
	23.	 Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176(3), 535–548 (2019).
	24.	 Harrow, J. et al. Gencode: Producing a reference annotation for encode. Genome Biol. 7(1), 1–9 (2006).
	25.	 Zhang, Y., Liu, X., MacLeod, J. N. & Liu, J. Deepsplice: Deep classification of novel splice junctions revealed by RNA-seq. In 2016

IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 330–333 (IEEE, 2016).
	26.	 Zuallaert, J. et al. Splicerover: Interpretable convolutional neural networks for improved splice site prediction. Bioinformatics

34(24), 4180–4188 (2018).
	27.	 Hubbard, T. et al. The ensembl genome database project. Nucl. Acids Res. 30(1), 38–41 (2002).
	28.	 Wang, R., Wang, Z., Wang, J. & Li, S. Splicefinder: Ab initio prediction of splice sites using convolutional neural network. BMC

Bioinform. 20(23), 652 (2019).
	29.	 Albaradei, S. et al. Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic

DNA. Gene 763, 100035 (2020).
	30.	 Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. Genbank. Nucl. Acids Res. 33(suppl 1), 34–38 (2005).
	31.	 Sarkar, R., Chatterjee, C. C., Das, S. & Mondal, D. Splice junction prediction in DNA sequence using multilayered RNN model.

In International Conference on E-Business and Telecommunications, 39–47 (Springer, 2019).
	32.	 Dutta, A., Dalmia, A., Athul, R., Singh, K. K. & Anand, A. Splicevisul: Visualization of bidirectional long short-term memory

networks for splice junction prediction. BioRxiv, 451906 (2019).
	33.	 Koumakis, L. Deep learning models in genomics; are we there yet? Comput. Struct. Biotechnol. J. (2020).
	34.	 Alam, T., Islam, M. T., Househ, M. S., Bouzerdoum, A. & Kawsar, F. A. Deepdssr: Deep learning structure for human donor splice

sites recognition. In ICIMTH, 236–239 (2019).
	35.	 Pollastro, P. & Rampone, S. Hs3d, a dataset of Homo sapiens splice regions, and its extraction procedure from a major public

database. Int. J. Mod. Phys. C 13(08), 1105–1117 (2002).
	36.	 Naito, T. Human splice-site prediction with deep neural networks. J. Comput. Biol. 25(8), 954–961 (2018).
	37.	 Gunasekaran, H., Ramalakshmi, K., Rex Macedo Arokiaraj, A., Deepa Kanmani, S., Venkatesan, C. & Suresh Gnana Dhas, C.

Analysis of dna sequence classification using CNN and hybrid models. Comput. Math. Methods Med. 2021 (2021).
	38.	 Zargar, S. A. Introduction to sequence learning models: Rnn, lstm, gru. no. April (2021).
	39.	 Comm, I.-I. Abbreviations and symbols for nucleic acids, polynucleotides, and their constituents. Biochemistry 9(20), 4022–4027

(1970).
	40.	 Lee, B., Lee, T., Na, B. & Yoon, S. Dna-level splice junction prediction using deep recurrent neural networks. arXiv preprint arXiv:​

1512.​05135 (2015).
	41.	 Kamath, U., Compton, J., Islamaj-Doğan, R., De Jong, K. A. & Shehu, A. An evolutionary algorithm approach for feature generation

from sequence data and its application to DNA splice site prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(5), 1387–1398
(2012).

	42.	 Chicco, D. Ten quick tips for machine learning in computational biology. BioData Min. 10(1), 1–17 (2017).
	43.	 Zhang, Y., Liu, X., MacLeod, J. & Liu, J. Discerning novel splice junctions derived from RNA-Seq alignment: A deep learning

approach. BMC Genomics 19(1), 1–13 (2018).
	44.	 Du, X. et al. Deepss: Exploring splice site motif through convolutional neural network directly from DNA sequence. IEEE Access

6, 32958–32978 (2018).
	45.	 Canatalay, P. J. & Ucan, O. N. A bidirectional LSTM-RNN and GRU method to exon prediction using splice-site mapping. Appl.

Sci. 12(9), 4390 (2022).

Author contributions
E.G. and A.Z. collected and processed the data. A.Z. constructed the models and the experiments. Y.A.S. and
A.Y. coordinated the research. E.G., A.Z. and A.Y. commented on the results and wrote the paper. Y.A.S. and
A.Y. edited the paper. All authors read and approved the final manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.05135
http://arxiv.org/abs/1512.05135
www.nature.com/reprints

16

Vol:.(1234567890)

Scientific Reports | (2023) 13:10221 | https://doi.org/10.1038/s41598-023-34795-4

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/

	An automated framework for evaluation of deep learning models for splice site predictions
	Methodology
	Mathematical expressions for convolutional neural network (CNN) model.
	Backpropagation and optimization.
	Mathematical expressions for Long Short-Term Memory (LSTM) model.
	Mathematical expressions for Gated Recurrent Unit (GRU) model.
	Mathematical expressions for BLSTM and BGRU models.
	Model selection criteria.
	Data.
	HS3D dataset.
	C. elegans dataset.

	Analysis.
	The evaluation metrics.

	Results
	The framework for evaluation of splice site detectors.
	Performance analysis of models using HS3D data.
	Performance analysis of models using C. elegans data.

	Discussion
	Conclusion
	References

