Skip to main content
. 2023 Jun 23;13:10221. doi: 10.1038/s41598-023-34795-4

Table 2.

Overview of the deep learning-based methods for splice site detection available in the literature: (D) Donor, (A) Acceptor, Acc. (Accuracy), Sn. (Sensitivity), Sp. Specificity.

Reference Base Architecture Data Sequence numbers/lengths Measure Performance
DeepSplice43 CNN

Input layer

2 Conv layers

1 Dense layer

Output layer

GENCODE

291,030 (true)

271,937 (false)

120 nt Donor Acceptor
Acc. 0.907 0.893
Sn. 0.917 0.873
Sp. 0.897 0.913
SpliceRover26 CNN

Input layer

2 conv layers+

Max pooling layer

1 Dense layer

Output layer

NN269

1324 (true) (D)

4922 (false)(D)

1324 (true) (A)

5553 (false)(A)

15 nt(D)

90 nt(A)

Acc. 0.9535 0.9612
Sn. 0.9011 0.9077
Sp. 0.9674 0.9739
auPRC 0.9829 0.9899
SpliceFinder28 CNN

Input layer

A conv layer

Dense layer

Output layer

Ensembl (hg38 dataset) 30,000b 40–400 nt Acc.

0.969–0.832 (40 nt)

0.965–0.903 (400 nt)

0.969–0.832 (40 nt)

0.965–0.903 (400 nt)

DeepSS44 CNN

Input layer

2 Conv layers+

Max pooling layer

2 dense layer

Output layer

CE

750 (true)(D)

19,250(false)(D)

1000 (true)(A)

19,000 (false)(A)

141 nt Acc. 0.97a 0.96a
Sn. 0.95a 0.93a
Sp. 0.97a 0.96a
Pr. 0.87a 0.83a
MCC 0.89a 0.85a
AUC ROC 99.47a 99.56a
AUC PR 97.88a 98.18a
DeepSS44 CNN

Input layer

2 Conv layers+

Max pooling layer

2 dense layer

Output layer

NN269

1324(true)(D)

4922(false)(D)

1324(true)(A)

5553(false)(A)

15 nt(D)

90 nt(A)

Acc. 0.93a 0.97a
Sn. 0.91a 0.93a
Sp. 0.96a 0.97a
Pr. 0.86a 0.9a
MCC 0.85a 0.9a
AUC ROC 98.43a 99.34a
AUC PR 93.97a 97.32a
Splice2Deep29 CNN

Input layer

Conv. layer

Max pooling layer

Output layer

Ensembl (hg38 dataset)

250,400 (true)

250,400 (false)

602 nt Acc. 97.38 96.91
Sn. 95.93 95.61
Sp. 98.83 97.8
F1 Score 96.38 96.91
AUC 99.1 98.69
Sarkar et. al.31

Vanilla RNN,

LSTM,

GRU

3 stacks

(90 Vanilla RNN,

GRU or LSTM cells)

GenBank (splice-junction gene sequences) 3175b 60 nt Acc. 1.00 99.95
Sn. 1.00 1.00
Sp. 1.00 99.93
F1 Score 1.00 99.93
Splice AI23 ResNet

Input layer

Conv. layer

Residual blocks

(Batch-normalization layers

Rectified linear units

Convolutional layers)

Output layer

GENCODE 13,796 donor–acceptor pairs 40–5000 nt Combined donor and acceptor
Acc. 0.95
AUC PR 0.98

aThe approximate values were taken from the graphs since exact values were not given in the paper. Only imbalanced dataset results were mentioned for DeepSS.

bThe number of true and false splice site sequences was not mentioned.