Table 2.
Overview of the deep learning-based methods for splice site detection available in the literature: (D) Donor, (A) Acceptor, Acc. (Accuracy), Sn. (Sensitivity), Sp. Specificity.
| Reference | Base | Architecture | Data | Sequence numbers/lengths | Measure | Performance | ||
|---|---|---|---|---|---|---|---|---|
| DeepSplice43 | CNN |
Input layer 2 Conv layers 1 Dense layer Output layer |
GENCODE |
291,030 (true) 271,937 (false) |
120 nt | Donor | Acceptor | |
| Acc. | 0.907 | 0.893 | ||||||
| Sn. | 0.917 | 0.873 | ||||||
| Sp. | 0.897 | 0.913 | ||||||
| SpliceRover26 | CNN |
Input layer 2 conv layers+ Max pooling layer 1 Dense layer Output layer |
NN269 |
1324 (true) (D) 4922 (false)(D) 1324 (true) (A) 5553 (false)(A) |
15 nt(D) 90 nt(A) |
Acc. | 0.9535 | 0.9612 |
| Sn. | 0.9011 | 0.9077 | ||||||
| Sp. | 0.9674 | 0.9739 | ||||||
| auPRC | 0.9829 | 0.9899 | ||||||
| SpliceFinder28 | CNN |
Input layer A conv layer Dense layer Output layer |
Ensembl (hg38 dataset) | 30,000b | 40–400 nt | Acc. |
0.969–0.832 (40 nt) 0.965–0.903 (400 nt) |
0.969–0.832 (40 nt) 0.965–0.903 (400 nt) |
| DeepSS44 | CNN |
Input layer 2 Conv layers+ Max pooling layer 2 dense layer Output layer |
CE |
750 (true)(D) 19,250(false)(D) 1000 (true)(A) 19,000 (false)(A) |
141 nt | Acc. | 0.97a | 0.96a |
| Sn. | 0.95a | 0.93a | ||||||
| Sp. | 0.97a | 0.96a | ||||||
| Pr. | 0.87a | 0.83a | ||||||
| MCC | 0.89a | 0.85a | ||||||
| AUC ROC | 99.47a | 99.56a | ||||||
| AUC PR | 97.88a | 98.18a | ||||||
| DeepSS44 | CNN |
Input layer 2 Conv layers+ Max pooling layer 2 dense layer Output layer |
NN269 |
1324(true)(D) 4922(false)(D) 1324(true)(A) 5553(false)(A) |
15 nt(D) 90 nt(A) |
Acc. | 0.93a | 0.97a |
| Sn. | 0.91a | 0.93a | ||||||
| Sp. | 0.96a | 0.97a | ||||||
| Pr. | 0.86a | 0.9a | ||||||
| MCC | 0.85a | 0.9a | ||||||
| AUC ROC | 98.43a | 99.34a | ||||||
| AUC PR | 93.97a | 97.32a | ||||||
| Splice2Deep29 | CNN |
Input layer Conv. layer Max pooling layer Output layer |
Ensembl (hg38 dataset) |
250,400 (true) 250,400 (false) |
602 nt | Acc. | 97.38 | 96.91 |
| Sn. | 95.93 | 95.61 | ||||||
| Sp. | 98.83 | 97.8 | ||||||
| F1 Score | 96.38 | 96.91 | ||||||
| AUC | 99.1 | 98.69 | ||||||
| Sarkar et. al.31 |
Vanilla RNN, LSTM, GRU |
3 stacks (90 Vanilla RNN, GRU or LSTM cells) |
GenBank (splice-junction gene sequences) | 3175b | 60 nt | Acc. | 1.00 | 99.95 |
| Sn. | 1.00 | 1.00 | ||||||
| Sp. | 1.00 | 99.93 | ||||||
| F1 Score | 1.00 | 99.93 | ||||||
| Splice AI23 | ResNet |
Input layer Conv. layer Residual blocks (Batch-normalization layers Rectified linear units Convolutional layers) Output layer |
GENCODE | 13,796 donor–acceptor pairs | 40–5000 nt | Combined donor and acceptor | ||
| Acc. | 0.95 | |||||||
| AUC PR | 0.98 | |||||||
aThe approximate values were taken from the graphs since exact values were not given in the paper. Only imbalanced dataset results were mentioned for DeepSS.
bThe number of true and false splice site sequences was not mentioned.