Skip to main content
. 2023 Jun 23;13:10221. doi: 10.1038/s41598-023-34795-4

Table 3.

Summary of studies with deep learning based methods for splice site detection with the HS3D dataset. (D) Donor, (A) Acceptor, Acc. (Accuracy), Sn. (Sensitivity), Sp. Specificity.

Reference Base Architecture Data Sequence numbers/lengths Measure Performance
DeepSplice43 CNN

Input layer

2 Conv layers

1 dense layer

Output layer

HS3D

2796 (true)(D)

271937 (false)(D)

2880 (true)(A)

329,374 (false)(A)

140 nt Donor Acceptor
Acc. 0.946 0.923
Sn. 0.957 0.934
Sp. 0.938 0.914
DeepSS44 CNN

Input layer

2 Conv layers + max pooling layer

2 dense layer

Output layer

HS3D

2796 (true)(D)

90,953 (false)(D)

2880 (true)(A)

90,353 (false)(A)

140 nt Acc. 0.97a 0.98a
Sn. 0.96a 0.97a
Sp. 0.97a 0.98a
Pr. 0.88a 0.92a
MCC 0.90a 0.93a
AUC ROC 99.02 98.79
AUC PR 95.93 94.28
DeepDSSR34 Hybrid (CNN + BLSTM)

2 inception like layers

A convolutional layer

A bidirectional layer

Dense layer

HS3D

2796 (true)(D)

90,924 (false)(D)

140 nt Sn. 0.988
Sp. 0.891
MCC 0.914

aThe approximate values were taken from the graphs since exact values were not given in the paper. Only imbalanced dataset results were mentioned for DeepSS.