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A novel coronavirus now known as SARS-CoV-2 emerged in
late 2019, possibly following a zoonotic crossover from a
coronavirus present in bats. This virus was identified as the
pathogen responsible for the severe respiratory disease, coro-
navirus disease-19 (COVID-19), which as of May 2023, has
killed an estimated 6.9 million people globally according to the
World Health Organization. The interferon (IFN) response, a
cornerstone of antiviral innate immunity, plays a key role in
determining the outcome of infection by SARS-CoV-2. This
review considers evidence that SARS-CoV-2 infection leads to
IFN production; that virus replication is sensitive to IFN anti-
viral action; molecular mechanisms by which the SARS-CoV-2
virus antagonizes IFN action; and how genetic variability of
SARS-CoV-2 and the human host affects the IFN response at
the level of IFN production or action or both. Taken together,
the current understanding suggests that deficiency of an
effective IFN response is an important determinant underlying
some cases of critical COVID-19 disease and that IFNλ and
IFNα/β have potential as therapeutics for the treatment of
SARS-CoV-2 infection.

The emergence of a novel coronavirus from the Wuhan area
of the Peoples’s Republic of China in late 2019, a virus initially
known as nCoV (1) but since designated severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), was determined to be
the causative agent of a coronavirus pneumonia-like disease
2019 (2–5). This new coronavirus of probable bat origin infected
humans and rapidly triggered a global pandemic (6–8).

SARS-CoV-2 has the capacity to cause severe respiratory
illness. The virus spread quickly, and its fitness continued to
evolve (9–11). As of May 2023, there were �6.9 million deaths
and 767 million confirmed cases worldwide reported to the
World Health Organization (WHO), with more than one
million deaths and 103 million confirmed cases in the United
States alone from the pandemic (12). The disease caused by
SARS-CoV-2 came to be known as COVID-19. The virus
responsible for the COVID-19 pandemic was established early
during 2020 as a betacoronavirus, and in a demonstration of
the power of science and technology, the �30-kb nucleotide
sequence of the viral genome was quickly elucidated and that
knowledge set the stage for diagnostic and vaccine
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development (13, 14). The nCoV sequence revealed high ge-
netic similarity with the SARS-CoV betacoronavirus respon-
sible for the earlier SARS epidemic from 2002 to 2003. The
new virus was designated SARS-CoV-2 because, by taxonomic
criteria, it is not a different viral species than SARS-CoV. The
SARS-CoV and SARS-CoV-2 sequences show �87% similarity.
A bat coronavirus, RaTG13, has �96% sequence identity with
SARS-CoV-2 and is its nearest known relative (7, 13, 14).

During the course of the pandemic, it was realized that some
individuals infected by SARS-CoV-2 remained asymptomatic
for disease or presented with mild illness, whereas others
developed severe respiratory disease and pneumonia and did
not survive. Why the range of outcomes? No doubt there are
multiple reasons. Among them emerged an understanding of
the importance of the interferon response, a cornerstone of
innate immunity, in limiting disease severity. Focusing on
studies that probe the role of the interferon system in deter-
mining the outcome of SARS-CoV-2 coronavirus infection, this
review assesses biological responses andmolecularmechanisms
underpinning the interferon response and considers evidence
that some of the severe COVID-19 cases are associated in part
with a dysregulated interferon (IFN) response. We consider
questions of the sensitivity of SARS-CoV-2 replication to the
antiviral actions of different types of IFNs in culture and in vivo;
the IFN-inducing capacity of SARS-CoV-2; molecular mecha-
nisms by which the SARS-CoV-2 virus is implicated to antag-
onize IFN responses; and how genetic variability of the SARS-
CoV-2 virus and the human host play roles in determining the
overall robustness of IFN antiviral actions.
The SARS-CoV-2 virus

The novel coronavirus SARS-CoV-2 emerged during late
2019 (1, 2). This virus was identified quickly as the pathogen
responsible for a severe respiratory disease (3, 8) designated
coronavirus disease-19 or COVID-19 that spread rapidly to
become a pandemic. Interferon is implicated to play a key role
in determining the outcome of infection by the SARS-CoV-2
coronavirus.
SARS-CoV-2 is a betacoronavirus

As such, SARS-CoV-2 is classified as a member of the Order
Nidovirales, Family Coronaviridae, and Genus Betacoronavirus
(14–17). The classification is based on the sequence. The
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sequences of the SARS-CoV-2 genome obtained from five
patients early during the COVID outbreak were nearly iden-
tical and shared 79.6% sequence identity with the SARS-CoV
sequence from the 2002 to 2003 epidemic and, furthermore,
was closely related to several bat coronaviruses, suggesting a
potential zoonotic transmission to human from bat, possibly
involving intermediate hosts (7, 18). Viruses classified as
betacoronaviruses include the murine coronavirus, mouse
hepatitis virus (MHV), which has been a valuable experimental
model; the endemic human coronaviruses HCoV-OC43 and
HCoV-HKU1, which generally cause mild respiratory in-
fections and the common cold but sometimes can be more
severe in the very young and the elderly; and, three additional
highly pathogenic viruses that all caused epidemics or the
current pandemic. These are the severe acute respiratory
syndrome coronavirus (SARS-CoV) that emerged in 2002 in
China; the Middle East respiratory syndrome-related corona-
virus (MERS-CoV) that emerged in 2012 in Saudi Arabia; and
now, the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) that emerged in 2019 in China (1, 2, 18–20).
The classification of these viruses as betacoronaviruses is based
on phylogenetic clustering and pairwise distances from the
comparison of sequences of key regions of the replicase-
transcriptase polyprotein that taxonomically define coronavi-
rus identity (2, 15).

Genome

The SARS-CoV-2 genome is single-stranded, positive-sense
RNA (+ssRNA) of 29,870 nucleotides, excluding the poly-
adenylated tail (13); Genbank reference sequence NC_045512.
The full-length genome is associated with viral nucleocapsid N
protein and encapsidated within an enveloped virion of �80 to
90 nm diameter. Genome RNA possesses a 7-methyl-G 50-cap
structure and a 30-polyadenylate tail and encodes 4 virion
structural proteins within the 3’�third of the genome: Spike (S);
Envelope (E); Membrane (M); and Nucleocapsid (N). Sixteen
nonstructural proteins (nsp 1–16) are encoded within the 5’
�two-thirds of the genome. These are essential for virus repli-
cation, for example, by providing the machinery required for
viral RNA replication and modification. Several accessory gene
ORF products non-essential for replication are encoded within
the 30-genome region. SARS-CoV-2 and SARS-CoV, in contrast
to some other coronaviruses, do not possess a viral 20-50 phos-
phodiesterase gene, such as is found in MHV, that impairs the
2,5A innate IFN response, which will be discussed later.

Multiplication cycle

The multiplication cycle of the SARS-CoV-2 virus is sum-
marized in Figure 1. The molecular virology and biology of the
coronavirus life cycle have recently been reviewed (15–17).
Initiation of SARS-CoV-2 infection involves virion attachment
by the viral spike protein to the major host cell receptor,
angiotensin-converting enzyme II (ACE2), a protein present
on the surface of many types of cells in the respiratory tract.
Virion penetration into the host cell occurs by receptor–
mediated endocytosis or by direct fusion between the virion
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envelope and the host cytoplasmic membrane, mediated by the
host cell TMPRSS2 serine protease-activated viral spike S2
fusion domain. Then virion uncoating occurs within the
infected cell to release the nucleocapsid containing the �30-
kb +ssRNA genome (14, 16) to the cytoplasm. Replication
occurs within the cytoplasm. The viral parental
genome +ssRNA first functions as mRNA and is translated
directly by the host protein-synthesizing machinery to
generate two polyprotein products, polyprotein pp1a and
polyprotein pp1ab. The larger pp1ab protein is synthesized
following a programmed translational minus 1 ribosomal
frameshift. The pp1a and pp1ab proteins undergo autopro-
teolytic cleavages to generate mature nsp 1 to 16 protein
products that fulfill key functions during virus replication (13,
15, 18, 21, 22). Among the nsp are two viral proteases, the
papain-like protease (PLpro, a domain contained within nsp3)
and the chymotrypsin-like protease (CLpro, nsp5) that
generate by proteolytic processing the nsp necessary for viral
RNA replication and transcription, including the RNA poly-
merase (nsp12), cofactors acting with the polymerase complex
(nsp7, 8), a helicase (nsp13), 50-G capping and N7- and 20O-
methylation activities (nsp9, 10, 14, 16), two ribonucleases, a
30-50 exonuclease (nsp14) and a U-selective endoribonuclease
(nsp15), and proteins involved in membrane remodeling for
RNA synthesis (nsp3, 4, 6). The parental genome +ssRNA, in
addition to functioning as mRNA, also functions as the tem-
plate for replication and transcription to produce full-length
antigenome −ssRNA, the template for full-length progeny
RNA genomes, as well as a set of subgenomic −ssRNAs. The
subgenomic -ssRNAs then serve as the templates for tran-
scription to yield the subgenomic +ssRNAs that are the
mRNAs for the virion structural proteins S, E, M, and N, and
the accessory ORF products. The +ssRNA progeny genome
molecules assemble with N protein to form progeny helical
nucleocapsids. Virion assembly and morphogenesis occur
through budding at an intracellular membrane, the ER-Golgi
intermediate compartment (ERGIC), yielding progeny virions
within secretory vesicles that are subsequently released by an
exocytosis-like process (Fig. 1).
The interferon system

Interferons were discovered based on their antiviral activity
(23, 24). During studies of viral interference, Isaacs and Lin-
denmann observed that influenza virus-infected chick cells
produced a secreted, soluble factor that possessed antiviral
activity against both the homologous inducing influenza virus
but also against heterologous viruses (23). Similar findings
were described shortly thereafter by Nagano and Kojima (24).
We now understand the interferon (IFN) system in consider-
able biochemical detail (25–33). Figure 2 summarizes inter-
feron signal transduction pathways that trigger IFN production
(left) and IFN action (right) in virus-infected cells.

IFNs are a multigene family of inducible cytokines (25–27,
33). They are classified into three types: type I IFN, also known
historically as viral IFN, of which there are several members,
including multiple subtypes of α and a single β and ω; type II



Figure 1. Schematic diagram summary of the SARS-CoV-2 coronavirus multiplication cycle. SARS-CoV-2 virus possesses a positive-sense, single-
stranded RNA genome of �30-kb. Virus multiplication occurs in the cytoplasm. Following virion attachment by binding of the viral S spike protein to the
cellular ACE2 receptor protein, entry occurs by receptor-mediated fusion of the viral envelope with the host plasma membrane, releasing the ribonu-
cleocapsid complex containing genome +ssRNA into the cytoplasm. The 50-capped genome RNA functions as mRNA and is translated directly by the host
cell protein-synthesizing machinery to generate two polyprotein precursor products, pp1a from ORF1a, and pp1ab from ORF1a and ORF1b following a −1
ribosomal frameshift to read frame1b. The polyprotein precursors undergo autoproteolytic processing by viral PL and CL proteases to generate
nonstructural proteins (nsp 1–16) that include the viral RNA polymerase and factors required for viral RNA biogenesis. The parental genome +ssRNA next
functions as a template for replication and transcription to produce full-length antigenomic –ssRNA (that is the template for synthesis of full length +ssRNA
progeny genomes) and a set of subgenomic –ssRNAs (that are the templates for subgenomic +ssRNAs that are the mRNAs for synthesis of virion structural
proteins N, M, E and S as well as several ORF accessory proteins that affect the host response to infection). Viral RNA synthesis occurs in association with
cellular membrane structures, as does progeny virion assembly and morphogenesis followed by release by an exocytosis-like process.
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IFN, also known as immune IFN, of which there is a single
member (γ); and, the most recently identified type III IFN (λ),
of which there are multiple subtypes. Type I IFNs together
with the type III IFNs are the major antiviral IFNs. IFNs are the
cornerstone of the innate immune response. Transcriptional
activation of IFN gene expression is triggered by multiple
different nucleic acid sensors in virus-infected cells, sensors
including the cytosolic RIG-I-like receptors (RLRs) and
endosomal Toll-like receptors (TLRs) (28, 29). RLRs act
through the signaling adaptor protein MAVS—also known as
IPS-1—and TLRs through adaptors TRIF and MyD88, that
lead to activation of latent cytoplasmic transcription factors,
interferon regulatory factors IRF3 and IRF7 and NFκB via IKK,
TBK, and TRAF proteins (Fig. 2, left).

While SARS-CoV-2 infection triggers the MDA5 dsRNA
sensor to induce IFN expression (34–37), the precise nature of
the viral dsRNA that activates MDA5 and also additional
dsRNA sensors including the dsRNA-dependent protein ki-
nase (PKR) and dsRNA-dependent 20-50 oligoadenylate syn-
thetases (OAS) (30, 38) is not yet known. It is tempting to
speculate that the activator viral dsRNA effector derives from
SARS-CoV-2 viral replication intermediate structures, but this
is not yet established and regions within viral ssRNAs with
secondary structure cannot be excluded as fulfilling an innate
activator function. Indeed, in the case of OAS, it has been
shown that OAS1 binds to SARS-CoV-2 viral RNAs in a
remarkably specific manner with two conserved stem-loops in
the SARS-CoV-2 50-UTR constituting the principal viral target
(39). Conceivably this RNA region likewise possesses sufficient
ds-character to activate PKR as well. SARS-CoV-2 structure
and replication have been characterized by Cryo-EM (40).
RNA filaments of a diameter consistent with dsRNA are
described inside double-membrane vesicles associated with
viral replication (40). Whether this RNA would be accessible to
dsRNA sensors such as MDA5, PKR, and OAS1 is not well
understood. TLR7 and TLR8 also are implicated as key sensors
of SARS-CoV-2 ssRNAs (41, 42). A systematic screen for
SARS-CoV-2 genome-derived ssRNA revealed viral RNA
fragments that activate TLR7 and TLR8 and induce cytokine
release from macrophages and microglia (41). And, TLR7
variants have been identified in patients with critical COVID-
19 pneumonia (42, 43).
J. Biol. Chem. (2023) 299(8) 104960 3



Figure 2. Schematic diagram summarizing the interferon system response activated by virus infection leading to interferon production (left) and
interferon action (right). The IFN-producing cell shown on the left illustrates a cell induced to synthesize IFN in response to virus infection. The cytoplasmic
RLR MDA5 and endosomal TLRs sense viral (nonself) and possibly cellular (self) nucleic acids and signal via the mitochondrial adaptor MAVS and the TRIF
and MyD88 adaptors, respectively, to activate the interferon regulatory (IRF) 3 and 7 and NF-κB transcription factors to transcriptionally activate IFN
expression. The IFN-treated cell shown on the right depicts a cell induced to express IFN-regulated proteins by JAK-STAT signal transduction leading to
transcriptional activation of interferon-stimulated gene (ISG) expression. ISG expression in response to type I α/β/ω or type III λ IFN treatment occurs via ISRE
element regulation, and type II γ IFN treatment via GAS element regulation. Among the ISGs implicated to play a role in the antiviral action of IFNs against
SARS-CoV-2 virus are OAS1 2050-oligoadenylate synthetase, PKR protein kinase, LY6E lymphocyte antigen 6 and CH25H cholesterol 25-hydroxylase.
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IFNs exert their antiviral actions by binding to type-specific
cognate cell surface receptors that then trigger transcriptional
activation and expressionof IFN-stimulated genes (ISGs) by JAK-
STAT signaling (Fig. 2, right). IFNsmay act in either an autocrine
or paracrine manner. Most kinds of cells express type I IFN re-
ceptors, whereas type III IFN receptors are primarily expressed
on epithelial cells and type II IFN receptors on many cell types
including cells of the immune system. IFN binding activates
receptor-associated Janus family tyrosine kinases (JAK1, JAK2,
and TYK2) that leads to the activation of latent cytoplasmic
STAT (signal transducer and activator of transcription) factors.
IFN-type specificity of signaling is achieved through the use of
high-affinity receptors present on different kinds of cells, the use
of the receptor-associated JAK kinases in overlapping pairs by the
different types of IFN, and the use of different combinations of
STAT factors to activate ISG transcription (27, 31, 33, 44, 45). For
type II IFNγ, JAK1 and JAK2 activation lead to STAT1 homo-
dimerization and nuclear translocation of the gamma IFN-
activated GAF factor that binds the cis-acting GAS DNA
element to drive ISG expression by IFNγ. For types I and III IFNs,
following the binding of these IFNs to their cognate receptors,
JAK1 and TYK2 lead to activation of STAT1 and STAT2 that
heterodimerize and, together with IRF9, form IFN-stimulated
gene factor ISGF3. Upon nuclear translocation, ISGF3 binds at
cis-acting ISRE DNA elements to drive the ISG expression
4 J. Biol. Chem. (2023) 299(8) 104960
induced by α, β, ω, and λ IFNs (Fig. 2, right). Multi-species
comparison of interferon responses to type I IFN reveals a
conserved core of 62 ISGs (46). Some ISGs display antiviral ac-
tivity that is surprisingly selective, but not all ISGs are antiviral or
are selective (25, 32, 33); adenosine deaminase acting on RNA1,
for example, is an ISG that is often proviral (38).
Induction of interferon by SARS-CoV-2 virus

The ability of SARS-CoV-2 infection to induce IFN appears to
vary, dependent upon the conditions of infection and disease (34,
47–53). The IFN response, however, is generally delayed during
infection with the β-coronaviruses MHV and SARS-CoV-2
compared to other viruses. SARS-CoV-2 infects and replicates
in a variety of cell types, including primary human airway
epithelial (pHAE) cell cultures, with progeny virion release more
efficient on the apical compared to the basolateral surface of
infected cells. While infected cells display a transcription signa-
ture of upregulated proinflammatory cytokine expression,
including IL-6, IL-8, TNF-α, andCXCL8, induction of types I and
III IFNs can be variable and poor (48, 49, 54). An impaired type I
IFN response is seen in severe COVID-19 patients (50). Addi-
tionally, young infants exhibit robust functional antibody re-
sponses but restrained IFNγ production following SARS-CoV-2
infection compared to adults (51).
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Screening of nucleic acid sensors implicated in the sensing
of infection by various RNA viruses revealed that MDA5, a
RIG-like receptor, is the major sensor that detected SARS-
CoV-2 infection to activate an IFN production response,
albeit delayed (34–37, 55). Messenger RNA and protein levels
of IFN types I and III were significantly elevated in infected
Calu3 human lung epithelial cells compared to uninfected
cells. SARS-CoV-2 also induced an IFN response in iPSC-
derived airway epithelial cells. Single-cell transcriptomic ana-
lyses of SARS-CoV-2-infected human airway bronchial
epithelial cells identified ciliated cells as a major target at the
onset of infection, with a tropism that then expanded to other
epithelial cell types, including basal cells (54, 56). Expression of
IFN β and λ transcripts was observed in cells co-expressing
SARS-CoV-2 viral transcripts; interferon-stimulated gene
(ISG) expression was observed both in infected and in
bystander cells, consistent with both autocrine and paracrine
signaling following SARS-CoV-2 infection (56). SARS-CoV-2
evades IFN activation in respiratory epithelial cells, resulting
in a delayed response in bystander cells (57). A screen of 75
microbial ligands that activate diverse signaling pathways
identified cyclic dinucleotides, agonists of STING (endogenous
stimulator of interferon genes) as antiviral. The STING agonist
diABZI inhibited SARS-CoV-2 infection by transiently stim-
ulating IFN signaling; diABZI restricted viral replication in
primary human bronchial epithelial cells and in mice (57).

Triggering of type I IFN production by the MDA5 sensor
following infection by SARS-CoV-2 is dependent upon ISG15
conjugation. ISGylation of MDA5 promotes its oligomeriza-
tion and thereby triggers activation of innate immunity against
a range of viruses, including coronaviruses; the ISG15-
dependent activation of MDA5 is antagonized by direct de-
ISGylation triggered by PLpro of SARS-CoV-2 (55). Interest-
ingly, in the context of potential intermediate hosts involved in
the zoonotic transmission of SARS-CoV-2, pangolins report-
edly lack the MDA5 RNA sensor that initiates the innate im-
mune response to coronavirus infection (37).

Kinetic analyses revealed that the increases in IFN β and λ
expression were delayed in SARS-CoV-2 infected cells (30, 47,
48, 56–59), and while SARS-CoV-2 triggers an MDA5-
dependent IFN response, the IFN produced was unable to
control viral replication in lung epithelial cells (36). The effect
of SARS-CoV-2 infection of placenta-derived human tropho-
blast stem cells (TSC) showed that the virus was able to pro-
ductively replicate in TSC-derived syncytiotrophoblast and
extra-villous trophoblast cells but not in undifferentiated
TSC. TSC-derived cells elicited an IFN-mediated response
upon infection (60). In a single-cell RNA sequencing study of a
primary cell model of human nasal epithelium cells infected
with SARS-CoV-2, the host type I and III IFN responses were
delayed relative to the onset of viral gene expression, as
compared with other respiratory viruses (59).
Interferons can inhibit SARS-CoV-2 replication

SARS-CoV-2 virus replication is inhibited by type I IFN α
and β, type II IFN γ and type III IFN λ in cell culture (49,
57–59, 61, 62). However, the relative sensitivity depends both
on the type of IFN and the cell line utilized to assess IFN
antiviral activity. For quantitative comparison between studies
of the sensitivity of SARS-CoV-2 virus multiplication to IFN
antiviral action, it is necessary to know the type and subspecies
of IFN utilized; the time and concentration of IFN treatment;
the host cell line used for measurement of infectious virus
yield reduction; and the conditions of the virus growth assay
including multiplicity of infection and whether the assay was
single cycle. In one of the initial comparative assessments of
the antiviral activity of type I and type III IFNs against SARS-
CoV-2 compared to SARS-CoV in epithelial cell lines (human
Calu3, simian Vero E6), the results showed that both IFNs
inhibited SARS-CoV-2. By contrast, SARS–CoV was inhibited
only by type I IFN in these cell lines (58). SARS-CoV-2
generally exhibited a broader IFN sensitivity than SARS-CoV
(58, 62). Treatment of cells with either type I β or type III λ
IFN inhibited SARS-CoV-2 replication in a manner that
correlated with induction of antiviral ISGs (49, 59). Suscepti-
bility to IFN treatment also differed between SARS-CoV-2 and
SARS-CoV in subsequent studies, with SARS-CoV-2 more
sensitive than SARS-CoV to type I IFN, either α or β, in Vero
and Calu3 cells (58, 62–64). Blocking of JAK-STAT signaling
with ruxolitnib enhanced SARS-CoV-2 replication in IFN-
induction-competent Calu3 cells, whereas in Vero cells,
which are IFN-induction-deficient, there was no discernible
effect of drug treatment on virus replication (58). Sensitivity of
the SARS-CoV-2 and SARS-CoV to inhibitors of coronavirus
replication (remdesivir, alisporivir) was similar, although
SARS-CoV-2 infection was substantially more sensitive to pre-
treatment with IFN (63).

A direct comparison of the potency of 17 different recom-
binant human type I IFNs (12 α, one β, one ω) and type III
IFNs (three λ) against diverse SARS-CoV-2 variants in A549-
ACE2 cells revealed that different IFNs inhibited SARS-CoV-
2 to various degrees in cell culture (65). Overall, IFN α8, β,
and ω were among the most potent, and λ IFNs were some-
what surprisingly the least potent against SARS-CoV-2.
Furthermore, emerging SARS-CoV-2 variants were more
resistant to the antiviral actions of IFNs than ancestral early
pandemic isolates. Evidence for increasing IFN resistance of
SARS-CoV-2 also was seen in primary human bronchial
epithelial cells. Examination of ancestral SARS-CoV-2 and five
variants of concern, including the B.1.1.7 (alpha), B.1.351
(beta), P.1 (gamma), B.1.617.2 (delta), and B.1.1.529 (omicron)
lineages, suggested that relative to ancestral isolates, SARS-
CoV-2 variants of concern exhibited increased IFN resis-
tance (65). This possibly indicates that evasion of innate IFN
immunity may be one of the driving forces for SARS-CoV-2
evolution. The mechanistic basis of the antiviral activity dif-
ferences of different type I IFN subtypes is not well under-
stood, although transcriptomic analysis of human airway
epithelial cells has revealed different immune transcript sig-
natures (66).

When SV40-transformed fibroblasts were derived from
COVID disease patients with deficiencies in TLR3, IRF7,
IFNAR1, TYK2, or STAT2, these cells were unable to control
J. Biol. Chem. (2023) 299(8) 104960 5
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SARS-CoV-2 replication normally in cell culture compared to
healthy donor cells used as positive controls (67, 68). Cells
from TYK2- and STAT2-deficient patients also failed to
induce ISG expression in response to either type I IFNα
treatment or SARS-CoV-2 infection. These results obtained
with patient-derived cells further suggest the importance of a
type I IFN response in controlling virus infection and pre-
vention of severe COVID pneumonia.

IFN-stimulated genes that inhibit SARS-CoV-2
replication

The antiviral actions of IFNs are mediated by interferon-
stimulated genes (ISGs) of which there are several, �60 core
ISGs, that have been identified following type I IFN treatment
(32, 46). Some ISGs have the capacity to individually inhibit
the replication of some viruses, as demonstrated by over-
expression and gene knockout studies. These ISGs include the
dsRNA-activated PKR kinase and 20-50-oligoadenylate
synthetase-RNase L responses that have been extensively
characterized and represent key antiviral ISGs that inhibit a
number of viruses (25, 30, 69). However, in vivo in an IFN-
treated, virus-infected host, ISGs would have the potential to
act in combination with each other. Indeed, screens have
identified multiple ISGs that possess anti-SARS-CoV-2
activity.

ISG screens

Screens of ISGs carried out using different strategies have
identified ISGs that restrict SARS-CoV-2 replication (39,
70–73). A gain-of-function screen of ISGs, initially by ectopic
overexpression in 293T cells, revealed a subset of �65 ISGs
that mediated the restriction of SARS-CoV-2 (71). These
included endosomal factors inhibiting viral entry, RNA-
binding proteins suppressing viral RNA synthesis, and endo-
plasmic reticulum (ER)/Golgi-resident ISGs inhibiting progeny
virion assembly/egress at late stages of multiplication. In
addition to several broadly acting antiviral ISGs, eight ISGs
that specifically inhibited SARS-CoV-2 and SARS-CoV repli-
cation were identified. Among the ISGs identified by over-
expression screening were LY6E (lymphocyte antigen 6
complex) (70, 71, 73), which inhibits virus entry, and BST2
(bone marrow stromal antigen2)/tetherin, which impairs
virion release (71). Furthermore, BST activity was antagonized
by the SARS-CoV-2 ORF7a protein (71).

The ability of potential ISGs to affect SARS-CoV-2 repli-
cation was assessed in a different study using a CRISPR/Cas9
screen designed to identify restriction factors of SARS-CoV-2
replication in human A549 epithelial lung cells (72). Core IFN
pathway genes, including those encoding IFN action signaling
components, the IFNAR1 receptor and STATs 1 and 2, were
found as antiviral factors, providing a validation of the
screening strategy. In addition, LY6E identified in a prior gain-
of-function screen (70) and DAXX (death domain-associated
protein 6), IFI6 (IFNα inducible protein 6), APOL6 (apolipo-
protein 6), and HERC5 (HECT and RLD domain containing E3
ubiquitin protein ligase 5) were found (72).
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ISGs that inhibit an early step of SARS-CoV-2 replication

LY6E and CH25H (cholesterol 25-hydroxylase) are two ISGs
that impair coronavirus initiation of infection by impairing
fusion and entry (70, 71, 73). DAXX also acts at an early step to
inhibit virus replication (72).

LY6E is a restriction factor that acts to restrict viral entry of
SARS-CoV-2 as well as SARS-CoV and MERS-CoV (70). LY6E
inhibits virion entry into the host cell by impairing the enve-
lope spike-mediated membrane fusion during the initiation of
infection. In a mouse model, knockout mice lacking LY6E in
immune cells are highly susceptible to MHV, whereas
constitutive expression of LY6E in the mouse is protective
against MHV infection (70).

CH25H also is an ISG that acts to restrict viral entry (73,
74). By using an ISG screen against replication-competent
vesicular stomatitis eGFP reporter viruses with either full-
length SARS-CoV spike protein or the SARS-CoV-2 spike in
place of the native VSV glycoprotein (G), CH25H and its
enzymatic product 25-hydroxycholesterol (25HC) were iden-
tified as inhibitors of SARS-CoV-2 replication (73). CH25H
inhibits SARS-CoV-2 and other coronaviruses by depleting
membrane cholesterol. Cholesterol is converted to 25-
hydrocholesterol (25HC) by the hydroxylase. 25HC blocks
spike-mediated membrane fusion and, hence, virus entry
through mobilizing accessible cholesterol from the plasma
membrane. 25HC inhibits SARS-CoV-2 infection in lung
epithelial cells and viral entry in human lung organoids.
Mechanistically, 25HC inhibits viral membrane fusion by
activating the ER-localized acyl-CoA:cholesterol acyltransfer-
ase (74).

DAXX is an ISG restriction factor that acts at an early, post-
entry step of multiplication to inhibit the replication of both
SARS-CoV-2 and SARS-CoV (72). DAXX is a scaffold protein
present in PML nuclear bodies; SARS-CoV-2 infection triggers
the relocalization of DAXX to the cytoplasm. SARS-CoV-2
virus has evolved a countermeasure to DAXX antiviral ac-
tion; the viral PLpro promotes DAXX degradation. Basal
expression of DAXX was sufficient to limit replication of
SARS-CoV-2, though overexpression further limited infection.
Knocking out DAXX only partially rescued SARS-CoV-2
replication in IFN-treated cells, consistent with the notion
that other IFN effectors in addition to DAXX are likely also
effective antiviral factors against SARS-CoV-2.
dsRNA-dependent responses

Infection by SARS-CoV-2 activated dsRNA-dependent ISG
responses in respiratory epithelial-derived cells, including two
dsRNA-dependent antiviral pathways, the 20,50-oligoadenylate
synthetase–RNase L response and the PKR protein kinase
response, while generally inducing minimal levels of IFN (75).
This is in contrast to MERS-CoV, which effectively inhibited
IFN signaling and the OAS-RNase L and PKR dsRNA-
dependent pathways (76). Activation of IFN or OAS-RNase
L was not observed in induced pluripotent stem cell-derived
alveolar type 2 cells (iAT2)–a major cell type infected in the
lung– and cardiomyocytes (iCM), whereas PKR activation was
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seen in iAT2 and iCM. In SARS-CoV-2–infected Calu3 and
A549ACE2 lung-derived cell lines, IFN induction remained
weak. However, activation of the OAS-RNase L and PKR re-
sponses was observed with SARS-CoV-2 (75). In contrast, with
MERS-CoV, nsp15 endoU and the accessory proteins 4a (a
dsRNA-binding protein) and 4b (a phosphodiesterase) act
together to effectively suppress the dsRNA-mediated innate
immune responses and enhance MERS-CoV replication (76).

ISG expression screening furthermore revealed that the
dsRNA-dependent 20-50-oligoadenylate synthetase 1 (OAS1)
inhibits SARS-CoV-2 (39). A common splice-acceptor single-
nucleotide polymorphism (Rs10774671) governs whether pa-
tients express prenylated OAS1 isoforms that are membrane-
associated and sense SARS-CoV-2 RNAs, or if they express a
cytosolic nonprenylated OAS1 that does not efficiently sense
SARS-CoV-2. In hospitalized patients, expression of preny-
lated OAS1 was associated with protection from severe
COVID-19 disease, consistent with the notion that OAS1
represents a major component of a protective antiviral
response (39).

Finally, the p150 isoform of ADAR1 adenosine deaminase
acting on dsRNA is IFN inducible (38, 77) and has been
implicated to play a role in SARS-CoV-2 infections (78–80).
While reduced A-to-I editing of host cellular Alu sequences
characteristic of an ADAR editing signature has been
described in severe COVID-19 disease (78), the significance of
such sequence changes in the SARS-CoV-2 transcriptome is
not yet clear (79, 80). One consequence of A-to-I editing is
destabilization of dsRNA structures that then suppresses both
IFN production and action (38). Different characteristic fea-
tures of viral dsRNA structures are sensed by the MDA5
compared to the RIG-I RLR sensor (81). ADAR1 clearly edits
both viral and cellular RNAs to suppress the activation of the
MDA5 sensor (38) as knockout of Mda5 complements the
embryonic lethality phenotype that is characteristic of the
mouse Adar1 and Adar1 p150 knockouts (82, 83).
IFITMs

IFN-induced transmembrane proteins (IFITMs) have been
described to have both antiviral and proviral activities with
respect to SARS-CoV-2. Counterintuitively, among the IFN-
inducible ISGs, the IFITM family, especially IFITM2, is
reportedly required for efficient replication of SARS-CoV-2 in
cell culture (84, 85). For other viruses, IFITMs typically are
antiviral, perhaps as anticipated for genes regulated by IFN,
and two studies observed an inhibitory activity for them with
the SARS-CoV-2 and MERS-CoV viruses (86, 87). Interest-
ingly, expression of virion S protein alone triggers syncytia
formation from fusion with neighboring ACE2-positive cells,
and IFITM proteins inhibit the S-mediated fusion (88). The
proviral enhancing effect of the IFITM2 transmembrane pro-
tein appears possibly to involve interactions between viral S
protein and the N-terminal region of IFITM2 that promotes
subsequent virus-cell fusion in early endosomes. Knockdown
of IFITM2 in Calu3 cells reduced virus replication, whereas
antibodies to IFITM2 protected against SARS-CoV-2
mediated cytopathic effect (85). Analysis of five variant SARS-
CoV-2 viruses, alpha, beta, gamma, delta, and omicron,
revealed that all five variants of concern maintained the de-
pendency on IFITM2 protein for efficient virus replication
(84). The reason for the conflicting findings between studies
that showed proviral (84, 85) compared to antiviral (86, 87)
effects of IFITM2 for replication of betacoronaviruses is un-
clear, but it may relate in part to differences in the details of
assays utilized. IFITM3 knockout (KO) mice infected with
SARS-CoV-2 show extreme weight loss and lethality compared
to mild infection in WT mice. The KO mice have higher lung
viral titers, suggesting that IFITM3—like IFITM2 in some
studies—has an antiviral role in vivo with SARS-CoV-2 (89).
Transcriptomic analysis of infected lungs shows upregulation
of gene signatures associated with IFNs and inflammation.
Antagonism of the interferon response by SARS-CoV-2
virus

The robustness of an IFN response can be modulated by
either viral or cellular gene products that act, for example, to
impair the IFN-triggered JAK-STAT signaling pathway or
inhibit the activity of ISG products (25, 26, 38, 90–94). In
cultured cells and in mouse models for SARS-CoV (95) and
SARS-CoV-2 (96) infections, type I IFN signaling was required
for ISG induction but such signaling was not necessarily suf-
ficient to control virus replication. Historically, beginning with
the identification of the poxvirus E3L protein (97) and the
adenovirus VAI RNA (98), a number of different viral protein
and RNA gene products were subsequently identified from
multiple additional viruses that impair the IFN response,
inhibiting either IFN production or IFN action (25, 93).
Among these antagonists are several SARS-CoV-2 gene
products observed as inhibitors of the IFN response (20, 21, 94,
99–102).

Ectopic overexpression of viral gene products is one
approach to assess their ability to antagonize the host IFN
response. As with other viruses, this has been done with SARS-
CoV-2 (101, 102). In one broadly-based screen (101), 26 genes
of SARS-CoV-2 were cloned and overexpressed ectopically in
HEK293T cells and assessed for their ability individually to
antagonize IFNβ expression using an IFNβ promoter-driven
reporter assay. Three nsp proteins (nsp1, 6, and 13) and one
accessory protein (ORF6) displayed significant inhibitory ac-
tivity toward IFNβ promoter activity (101). Likewise, nsp13
and ORF6 were independently identified as antagonists of the
type I IFN response (103). Nsp6 and nsp13 then were shown to
inhibit TBK1 and IRF3 activation, and ORF6 to inhibit nuclear
translocation of transcription factor IRF3 (101) in the RLR-
dependent IFN production signaling pathway (Fig. 2). To
assess the effects of the SARS-CoV-2 proteins on JAK-STAT
signaling, an ISRE promoter-driven reporter was utilized to
measure inhibitory activity of the overexpressed viral proteins.
With this assay a large number of SARS-CoV-2 proteins, nine,
suppressed type I IFNα signaling: nsp 1, 6, 7, and 13; ORF 3a,
6, 7a, and 7b; and virion M protein. Subsequent examination
showed that nsp6, nsp13, and ORF7b inhibited the
J. Biol. Chem. (2023) 299(8) 104960 7
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phosphorylation of both STAT1 and STAT2; and, that ORF6
inhibits type I IFN signaling by impairing STAT1 nuclear
translocation (101). Findings regarding the ability of some of
the nsp and ORF proteins to impair type I IFN responses
differed between studies (48, 101, 103). Results implicating the
structural M protein as an antagonist of the RLR (TRAF3-
TANK-TBK1) MAVS signaling pathway, for example, differ
between viruses and studies when assessed by ectopic over-
expression (101, 104, 105).

M from SARS-CoV behaved as an antagonist (104). M from
SARS-CoV-2 also behaved as an antagonist of type I and III
IFN signaling in one study (105) but not as an inhibitor of type
I IFNβ signaling in another (101). The reason for the differ-
ences observed between studies is unclear (48, 101, 103–105).
Possibly, when viral proteins are expressed individually using
ectopic overexpression strategies, the protein expression level
and the subsequent subcellular localizations and interactions
with other proteins differ from that occurring in virus-infected
cells (15, 16, 21). It will be important to verify findings ob-
tained by ectopic overexpression of viral proteins individually
with those obtained by infection with SARS-CoV-2 or engi-
neered mutants thereof. The nucleocapsid protein N from
SARS-CoV-2 also is described as an antagonist of RLR
signaling and IFN expression by suppressing stress granule
formation and thereby promoting replication (106). It is un-
known whether the antagonistic activity shown by N is the
consequence of overexpression of a protein that possesses
RNA binding activity, as stress granule formation may be
triggered by dsRNA and potentially suppressed by any RNA
binding protein that sequesters dsRNA, as well as by the ISG
p150 ADAR1, which destabilizes dsRNA structure (107, 108).

Virus replication and IFN antagonism by SARS-CoV and
SARS-CoV-2 were also compared in cell culture by assessing
the virus replication and viral sensitivity towards type I IFN
treatment and cytokine induction using RT-PCR and
promoter-reporter LUC plasmid expression assays, with a
focus on ORF6 (64). Replication was higher for SARS-CoV in
Vero E6 cells and for SARS-CoV-2 in Calu3 cells. SARS-CoV-2
was more sensitive to IFN treatment and less efficient in
suppressing cytokine induction via IRF3 nuclear translocation.
A reverse genetics approach was taken to compare the ORF6
antagonistic function between SARS-CoV-2 and SARS-CoV
viruses. SARS-CoV-2 ORF6 expressed in the context of a
fully replicating SARS-CoV virus backbone suppressed in-
duction of MX1, but this suppression was less efficient than
that by ORF6 from SARS-CoV (64). Mx is an ISG that typically
shows very low basal expression and, hence, whose induction
is exquisitely sensitive to IFN.

When SARS-CoV-2 proteins were compared to those of
SARS-CoV and MERS-CoV for inhibitory activity in reporter
assays, the nsp1, nsp6, and nsp13 proteins from all three
coronaviruses comparably inhibited IFNβ promoter activity.
By contrast, nsp1 and nsp6 of SARS-CoV and MERS-CoV
were weaker inhibitors of IFNα signaling than those of
SARS-CoV-2 (101). Assessment of viral gene products indi-
vidually by the ectopic overexpression strategy would readily
permit examination of mutated forms of the proteins
8 J. Biol. Chem. (2023) 299(8) 104960
compared to wild type for antagonistic activity. Study of the
impairment of host IFN responses in virus-infected cells,
including with engineered mutant forms of highly pathogenic
coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2)
requires appropriate biosafety containment and operating
procedures. Studies of mutant viruses have been done though,
for example, with MHV mutated to not express the nsp2 20,50-
PDE enzyme that antagonizes the 20,50-oligo A-dependent
RNase L response (109), or as illustrated by the reverse ge-
netics approach using the SARS-CoV virus backbone for
functional analysis of SARS-CoV-2 ORF6 protein in repli-
cating virus described earlier herein (64).

ORF6

The viral accessory protein ORF6 is consistently observed in
studies to exert an anti-IFN activity. ORF6 from both SARS-
CoV (110) and SARS-CoV-2 (48, 101) is sufficient to inhibit
STAT nuclear translocation and, hence, type I IFN signaling.
Mechanistically the ORF6 protein of SARS-CoV-2 localizes to
the nuclear pore complex to block STAT1 and STAT2 nuclear
import, thereby impairing IFN signaling and the STAT-
dependent transcriptional activation of ISG expression (111).
SARS-CoV-2 ORF6 directly interacts with Nup98 to inhibit
docking of the cargo-receptor (karyopherin/importin) com-
plex and disrupt nuclear import of the activated ISGF3 com-
plex containing the STAT1 and STAT2 transcription factors.

PLpro

The SARS-CoV-2-encoded papain-like protease PLpro (a
modular domain within nsp3) antagonizes the action of IFN-
induced gene ISG15 to impair the innate response and viral
spread (112). Although the SARS-CoV-2 PLpro and the SARS-
CoV PLpro share �83% sequence identity, the enzymes exhibit
different host substrate preferences. SARS-CoV-2 PLpro
preferentially cleaves the ubiquitin-like ISG15 protein, while
SARS-CoV PLpro, by contrast, predominantly targets ubiq-
uitin chains (112). Differences are also seen for the nsp5
chymotrypsin-like protease CLpro; nsp5 from SARS-CoV-2
had higher activity than the SARS-CoV ortholog for cleavage
at multiple sites of NEMO, a key kinase in the RLR response
pathway (113).

PDE

MHV, like SARS-CoV-2, is a betacoronavirus. MHV en-
codes a viral phosphodiesterase (PDE) that antagonizes the
OAS-RNase L antiviral response by degrading of the 20-5-
oligoadenylate produced by the dsRNA-activated OAS syn-
thetases (109). Unlike MHV, SARS-CoV-2 virus does not
encode a similar PDE enzyme.

IFN treatment protects against SARS-CoV-2 virus in the
mouse model

IFN λ protects against SARS-CoV-2 in different mouse
models (114, 115). SARS-CoV-2 cannot infect wild-type mice
because of inefficient interaction between the viral spike S
protein and the mouse orthologue of the human receptor,
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ACE2 (7). Thus, mouse models for SARS-CoV-2 have been
generated that display varying degrees of viral replication and
clinical disease. These include human ACE2 transgenic mice
(115, 116) and a recombinant mouse-adapted (MA) SARS-
CoV-2 virus, in which the interaction between the viral
SARS-CoV-2 spike protein was engineered to bind the mouse
ACE2 receptor (114). Hence, in the mouse-adapted SARS-
CoV-2 MA model, the mouse ACE2 protein is used for entry
into cells in order to initiate infection (114). SARS-CoV-2 MA
replicates in the upper and lower airways of both young adult
and aged BALB/c mice. SARS-CoV-2 MA infection caused
more severe disease in aged mice and exhibited more clinically
relevant phenotypes than those seen in transgenic mice that
express human ACE2 (114). Both prophylactic and therapeutic
administration of pegylated IFN λ1 (pegIFN λ1) significantly
reduced weight loss, diminished SARS-CoV-2 MA replication
in the lung, and protected mice from pulmonary dysfunction.
Additionally, pegIFNλ1 treatment reduced the SARS-CoV-2
MA titer in the lungs of mice.

Nasally delivered murine IFN λ2 also protected hACE2
transgenic mice (expressing the human ACE2 receptor)
against infection by SARS-CoV-2, as measured by reduced
upper and lower respiratory tract infection and inflammation
(115). IFN λ protected mice against infection with SARS-CoV-
2 beta and omicron variants, whereas IFN λ receptor mutant
(IL28Rα−/−) C57BL/6 mice sustained higher viral loads in the
respiratory tract in the absence of a functional IFN λ receptor.
IFN λ selectively induces antiviral ISG genes without causing
excess inflammation. In the lung, IFN λ is produced mainly by
lung epithelial cells via MAVS (RLR) and Myd88 (TLR)
signaling pathways (115). Dysregulated type I IFN and in-
flammatory monocyte macrophage responses were previously
shown to cause lethal pneumonia in SARS-CoV-infected mice
(95). Using this SARS-CoV mouse model, robust viral repli-
cation occurs, accompanied by a delayed type I IFN response
and inflammatory responses and lung immunopathology. Early
type I IFN treatment improved immunopathology (95). Ge-
netic knockout of the IFNAR receptor protected mice from
lethal infection without affecting viral load.
IFN system genetic determinants of human COVID-19
disease

In some cases of SARS-CoV-2 infection, critical hypoxemic
pneumonia develops, but SARS-CoV-2 infection does not
result in critical disease in all individuals. Why? Human ge-
netic determinants of critical COVID-19 pneumonia have
been identified in the IFN system (68, 117, 118). Inherited and
or autoimmune deficiencies of the type I IFN response may
account for �15%-20% of the cases of critical COVID-19
pneumonia in unvaccinated individuals (43). Recessive or
dominant inborn errors of IFN immunity can underlie the
COVID disease in unvaccinated adults. Inborn errors of IFN
immunity also are seen in children (119, 120). Pre-activated
antiviral innate immunity has been described in children as a
factor in upper airways that controls early SARS-CoV-2
infection, with a higher basal expression of the viral RNA
sensors MDA5 and RIG-I in cells from children than from
adults (119).

TLR3, TLR7, TBK1, IRF7, IFNAR1, and STAT2

Inborn errors of IFN system components (Fig. 2) identified
from patients include those with TLR3 and TLR7 deficiencies
that affect the production of type I IFNs by respiratory
epithelial and plasmacytoid dendritic cells, and TBK1 and IRF7
deficiencies that also affect IFN production (68, 121). Addi-
tional deficiencies identified occur in IFN system genes for
IFNAR, Tyk2, and STAT2 that affect JAK-STAT signaling and
hence IFN action (67, 68, 117, 122). Plasmacytoid dendritic
cells are the predominant IFN source following sensing of
SARS-CoV-2 infection, and they restrict SARS-CoV-2 spread
by a type I and type III IFN response, with responsiveness
inversely correlating with the severity of disease (123). Types I
and III IFNs appear to be potentially good markers to monitor
COVID-19 pathophysiology (124).

OAS

The human chr12q24.13 locus encodes three IFN-inducible
20-50-oligoadenylate synthetase enzymes (OAS1-3). OAS pro-
teins, when activated by dsRNA, produce 20,50-oligoadenylate
products that mediate dimerization and activation of the latent
cellular RNase L, thereby triggering RNA degradation in
infected cells (25, 30). A polymorphism in the human OAS1
gene is associated with the clearance of SARS-CoV-2 virus
(125). Genetic regulation of OAS1 nonsense-mediated decay
underlies the association with COVID-19 hospitalization
(125). Only the OAS1 ISG isoform appears functionally critical
for anti-SARS-CoV-2 activity, and the early control of SARS-
CoV-2 replication through OAS1 appears to be an important
determinant of COVID-19 disease severity (39, 125, 126). A
common haplotype comprised of derived human risk alleles of
two OAS1 expression variants is associated with the risk of
hospitalized COVID-19 in patients of European and African
ancestries, compared to non-hospitalized patients (125).

IFN system immunological determinants of human
COVID-19 disease

Auto-antibodies directed against type I IFNs emerged as an
important determinant of critical COVID-19 disease (117,
127). The prevalence in the general population of auto-
antibodies neutralizing type I IFN α subspecies, but not IFN
β, increases with age and is higher in men than women. It is
estimated that as high as �15 % of the patients with critical
COVID-19 pneumonia disease show significant auto-antibody
titers against type I IFNs, whereas individuals with asymp-
tomatic SARS-CoV-2 infection do not possess such titers (43,
128–131). The action of type I IFNs also is impaired in in-
dividuals with auto-antibodies, as revealed by reduced ISG
expression (132, 133). The risk of COVID-19 death is much
greater and age-dependent for individuals with type I IFN
autoantibodies (134), further suggesting the importance of a
properly regulated IFN response for protection from critical
COVID-19 disease. Based on auto-antibody profiles, type I
J. Biol. Chem. (2023) 299(8) 104960 9
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IFNω appears to play an important role in nasal type I IFN
immunity (132). The nasal IFN I/III signature correlated with
nasopharyngeal viral load. However, a subset of critically ill
COVID-19 patients showed low IFN I/III despite high nasal
viral loads that correlated with the presence of auto-antibodies
against type I IFN (132).

Therapeutic use of IFN in patients with SARS-CoV-2
infection

The potential for using IFN types I or III as a treatment
strategy for SARS-CoV-2 infection and COVID-19 disease has
been reviewed against the background experience of the
benefit of IFN therapy in the treatment of SARS-CoV and
MERS-CoV, two related coronavirus infections (135).

Type III IFN λ

Some studies of IFN λ (135–137), including a large phase 3
randomized placebo-controlled trial, showed that patients with
COVID-19 treated with the recombinant, pegIFN λ had
improved SARS-CoV-2 viral clearance (136). Among patients
with a high SARS-CoV-2 viral load at baseline, those who
received pegIFN λ had lower viral loads by day 7 than those
individuals who received a saline placebo, with the incidence of
adverse events similar in the two groups (136). An earlier
phase 2 study of the effect of pegIFN λ also indicated that
pegIFN λ treatment accelerated viral decline in outpatients
with COVID-19, increasing the proportion of patients with
viral clearance by day 7, particularly in those with a high
baseline viral load (138). By contrast, a different study indi-
cated little promise of IFN λ treatment; a single dose of sub-
cutaneous pegIFN λ neither shortened the duration of SARS-
CoV-2 viral shedding nor improved symptoms in outpatients
with uncomplicated COVID-19 (139).

Type I IFNs α and β

Trials in patients with COVID-19 have reported that both
subcutaneous and inhaled type I IFN administration may
reduce the duration of viral shedding and disease symptoms.
An uncontrolled exploratory study of the effect of IFNα2b
treatment of a cohort of confirmed COVID-19 cases in
Wuhan, China, showed that the α IFN with or without arbidol
significantly reduced the duration of detectable SARS-CoV-2
virus in the upper respiratory tract and, in parallel, reduced
duration of elevated blood levels for the inflammatory marker
IL-6 (140).

The safety and efficacy of inhaled nebulized IFNβ1a
(SNG001) for treatment of SARS-CoV-2 infection in a ran-
domized, double-blind, placebo-controlled, phase 2 trial
showed that patients who received SNG001 had greater odds
of improvement and recovered more rapidly from SARS-CoV-
2 infection than patients who received placebo (141). The
triple combination of IFNβ1b, lopinavir–ritonavir, and riba-
virin in the treatment of patients admitted to hospital with
COVID-19 in a randomized, phase 2 trial indicated that the
triple antiviral therapy was both safe and superior to lopinavir–
ritonavir alone in alleviating symptoms and shortening the
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duration of viral shedding and hospital stay in patients with
mild to moderate COVID-19 (142). However, the efficacy of
type I IFN for the treatment of COVID-19, like type III IFN, is
not consistently seen in all studies. For example, in a double-
blinded, placebo-controlled trial the combination of IFNβ
plus remdesivir showed no clinical benefit when compared to
remdesivir alone, suggesting no clinical benefits of the IFNβ
therapy in patients with COVID-19 (143). The World Health
Organization Solidarity trial also did not show a benefit for
IFNβ (144). The presence of auto-antibodies against type I
IFNs seen in a subset of patients with critical COVID-19 dis-
ease, as discussed earlier, may limit the value of type I IFN as a
therapeutic, particularly in patients displaying especially high
anti-IFN antibody titers. Evidence suggests that defects in the
type I IFN response are of prime importance in determining
the severity of COVID disease (99, 145). While IFN impor-
tantly can control SARS-CoV-2 viral replication at early times
of infection, it may also exacerbate inflammatory disease at
later times (19, 145–147). Furthermore, COVID-19 patient
morbidity has been reported to correlate with high expression
of type I and III IFNs in the lung. These IFNs can disrupt the
lung epithelial barrier upon viral infection (148, 149).
Long COVID and the IFN response

Long COVID or chronic COVID syndrome refers to the
long-term effects of COVID-19 disease that occur with
symptoms affecting multiple organ systems that persist
following acute COVID-19 disease (150–154). Among the
factors that appear to play a role in Long COVID is dysregu-
lation of the IFN response (150, 155). Altered levels of
proinflammatory cytokines IL-1β, IL-6, and TNFα, in addition
to type II IFNγ and also types I and III IFNs, are seen in in-
dividuals recovered from COVID-19 compared to those with
severe disease (47, 52, 150, 156, 157). SARS-CoV-2 persistence
also has been proposed, and viral persistence may be affected
by IFN (131, 158).

Analysis of SARS-CoV-2 infection and persistence in the
human body at autopsy also suggests that the SARS-CoV-2
virus can result in systemic infection and persist (152). The
virus was found widely distributed in patients who died of
COVID-19; SARS-CoV-2 virus replication was present in
multiple respiratory and non-respiratory tissues, including the
brain. Persistent viral RNA was detected at multiple sites
throughout the body, though little evidence was found for
direct viral cytopathic effect or inflammation (152).

Genetic disorderswithin the type I IFN system in plasmacytoid
dendritic cells (pDC) and respiratory epithelial cells that lead to
dysregulation of the IFN production response also are associated
with severe COVID disease (68, 121, 146, 159). IFN treatment
interestingly alsomay contribute to cell death and lethality during
betacoronavirus infection (160). An intriguing possibility is that
this cytotoxicity may involve the IFN-inducible p150 adenosine
deaminase ADAR1 and the ZBP1 protein. Both proteins are IFN
inducible and contain the Zα domain that recognizes Z-RNA, an
alternative left-handed double-helix RNA structure (81). ZBP1 is
the only cellular protein in mammals other than p150 ADAR1
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that is known to possess Zα. ADAR1 averts fatal type I IFN in-
duction by ZBP1 (161). ZBP1-dependent inflammatory cell
death, PANoptosis, happens in mouse and human macrophages
and in the lungs of mice infected with SARS-CoV-2 and MHV.
Expression of ZBP1 was increased in COVID-19 patients who
succumbed to the disease compared to those that recovered (77).
ZBP1 might contribute to type I interferonopathies caused by
ADAR1 mutations, and inhibition of ZBP1 may improve the ef-
ficacy of IFN therapy (38, 77).
Conclusion

The emergence of pathogenic coronaviruses has happened
three times during the past � 20 years: 2002 with SARS-CoV;
2012 with MERS-CoV; and, most recently with the 2019
SARS-CoV-2 virus and the COVID-19 pandemic. The three
plus years of COVID-19 caused by SARS-CoV-2 brought a
multitude of challenges and opportunities, for science and for
society. Rapid diagnostic assays, effective vaccines, and anti-
viral therapies against SARS-CoV-2 were rapidly developed
and together are continuing to contribute to our emergence
from the COVID-19 pandemic. The potential, however, for the
future emergence of an even more fit SARS-CoV-2 variant or
an altogether new coronavirus remains a possibility, given the
likely zoonotic nature of SARS-CoV-2 and the bat reservoir of
many additional coronaviruses. Hence, it is important to un-
derstand in molecular terms the host responses to SARS-CoV-
2 infection, including the IFN response.

Interferon is our first response to infection. Dysregulation of
type I IFN responses, however, is seen in SARS-CoV-2 infec-
tion and COVID-19, where IFN production often is blunted
and expression of pro-inflammatory cytokines enhanced. The
importance of a balanced type I IFN response is illustrated by
the severe disease status that may develop in patients with
genetic or immunological defects in the type I IFN response
pathways for IFN production and IFN action. While consid-
erable progress has been made toward understanding both the
molecular details of the SARS-CoV-2 multiplication cycle and
the pathways by which IFNs are induced, much remains to be
learned with regard to the biochemical mechanisms by which
ISGs, likely multiple ISGs acting in combination, function to
inhibit SARS-CoV-2 replication. The SARS-CoV-2 virus is
IFN-sensitive. Both type I IFN α subspecies and β, and type III
IFN λ subspecies, hold potential as therapeutics. However, the
conditions for their optimal and effective use against patho-
genic coronavirus infection are just being learned. A number
of SARS-CoV-2 gene products, including both nsps and
accessory ORF proteins possess inhibitory activities that sup-
press the IFN response. Whether it will be possible to use
knowledge, for example, from the protein interaction map for
SARS-CoV-2 viral and cellular proteins, to develop effective
drugs that enhance IFN antiviral activity is currently unknown.
IFN protects against SARS-CoV-2 infection. Genetic and
immunologic determinants of the IFN response have been
identified that affect COVID disease severity and outcome,
further illustrating the importance of understanding and
optimizing the IFN response, both as an endogenously induced
first-line defense and potentially as an exogenously adminis-
tered therapeutic.
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