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Abstract

Background: Tumor heterogeneity is contributed by tumor cells and the microenvironment. Dynamics of tumor heterogeneity dur-
ing colorectal cancer (CRC) progression have not been elucidated.

Methods: Eight single-cell RNA sequencing (scRNA-seq) data sets of CRC were included. Milo was utilized to reveal the differential
abundance of cell clusters during progression. The differentiation trajectory was imputed by using the Palantir algorithm and meta-
bolic states were assessed by using scMetabolism. Three spatial transcription sequencing (ST-seq) data sets of CRC were used to vali-
date cell-type abundances and colocalization. Cancer-associated regulatory hubs were defined as communication networks affecting
tumor biological behaviors. Finally, quantitative reverse transcription polymerase chain reaction and immunohistochemistry stain-
ing were performed for validation.

Results: TM4SF1þ, SOX4þ, and MKI67þ tumor cells; CXCL12þ cancer-associated fibroblasts; CD4þ resident memory T cells; Treg; IgAþ

plasma cells; and several myeloid subsets were enriched in stage IV CRC, most of which were associated with overall survival of
patients. Trajectory analysis indicated that tumor cells from patients with advanced-stage CRC were less differentiated, when meta-
bolic heterogeneity showed a highest metabolic signature in terminal states of stromal cells, T cells, and myeloid cells. Moreover,
ST-seq validated cell-type abundance in a spatial context and also revealed the correlation of immune infiltration between tertiary
lymphoid structures and tumors followed by validation in our cohort. Importantly, analysis of cancer-associated regulatory hubs
revealed a cascade of activated pathways including leukocyte apoptotic process, MAPK pathway, myeloid leukocyte differentiation,
and angiogenesis during CRC progression.

Conclusions: Tumor heterogeneity was dynamic during progression, with the enrichment of immunosuppressive Treg, myeloid
cells, and fibrotic cells. The differential state of tumor cells was associated with cancer staging. Assessment of cancer-associated reg-
ulatory hubs suggested impaired antitumor immunity and increased metastatic ability during CRC progression.
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Introduction
Colorectal cancer (CRC) is one of the most common malignancies
and leading causes of cancer-related death worldwide [1, 2].
Although the mortality of CRC is reduced thanks to cancer screening
and early detection in developed countries, it upsurges in developing
countries [3, 4]. CRC can be often ranged into stages from I to IV,
when early stages (I and II) indicate local infiltration and advanced
stages (III and IV) refer to cancer dissemination to lymph nodes or

distant organs. Surgical resection is the primary therapeutic strategy
for early-stage CRC, while a combination of therapeutic regimens
that includes but is not limited to chemotherapy, targeted therapy,
and immunotherapy are used to improve prognosis for patients with
advanced CRC. The 5-year survival rate for stage I–II CRC was 89.9%,
while it dropped to 14.2% for stage IV CRC [1]. Since therapeutic strat-
egies are limited in improving outcomes, it is important to find novel
therapeutic targets for patients with advanced CRC.
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High heterogeneity was observed in CRC, contributed by tu-
mor cells and their tumor microenvironment (TME). Numerous
studies have focused on the molecular mechanisms of increased
heterogeneity in CRC, such as genetic alteration, transcriptome,
non-coding RNA regulation, cancer-associated protein, and me-
tabolism [5–9]. Three different pathways of genomic instability,
including chromosomal instability, microsatellite instability, and
CpG island methylation, have been recognized in the complex de-
velopment of CRC. As for transcription, single-cell RNA sequenc-
ing (scRNA-seq) unveiled increased heterogeneity during the
development of CRC from adenoma [10]. Moreover, consensus
molecular subtypes (CMS) based on RNA-seq identified four sub-
types for CRC, including CMS1 (immune), CMS2 (canonical),
CMS3 (metabolic), and CMS4 (mesenchymal) [11]. These subtypes
took TME into account, suggesting the existence of intrinsic fea-
tures of tumor heterogeneity. TME had a dynamic composition of
stromal cells, immune cells, and extracellular factors that sur-
rounded cancer cells. Immune checkpoints such as PD-1 and
CTLA-4 expressed in immune cell have been discovered to be
novel therapeutic targets, suggesting the important role of TME
in antitumor immunity [12, 13]. However, only a small fraction of
patients with microsatellite instability-high CRC are suitable for
immunotherapy. A better understanding of regulatory hubs in
the progression of CRC might help reveal new therapeutic targets.
On the other hand, metabolic reprogramming occurs not only in
tumor cells but also in stromal and immune cells [9, 14].
Heterogeneity of tumor metabolism determines molecular fea-
tures as well as prognosis. Furthermore, the metabolic crosstalk
between the tumor cells and factors of the TME facilitate tumor
progression, metastasis, and immune escape. Taken together,
some characteristics of tumors and TME were demonstrated by
genomics, transcriptomics, and proteomics, whereas intrinsic
features of CRC heterogeneity were still not elaborated.

Although analysis of different transcriptomic features be-
tween tumor and normal mucosa is essential and is able to un-
veil potential therapeutic targets and early screening markers,
the difference in genomic, transcriptomic, and proteomic fea-
tures between early-stage and advanced-stage tumors is also im-
portant but has been rarely reported [15–17]. Several studies
assessed the altered features of CRC during progression based on
genomic or transcriptomic sequencing [5, 18–20]. Limited by a
mixture of RNA-seq, the source of heterogeneity was difficult to
be identified. Recently scRNA-seq has been used to explicate
some intrinsic characteristics of several cancer types and elabo-
rated the source of tumor heterogeneity, showing the ability to
deconvolute cellular complexity and cell–cell interaction in
tumors [21–23]. For example, by performing scRNA-seq on
cohorts of Samsung medical center and Katholieke Universiteit
Leuven, the heterogeneity of TME was unveiled for CRC and two
intrinsic malignant epithelial cell types were recognized by comb-
ing more scRNA-seq data afterwards [24, 25]. On the other hand,
spatial transcription sequencing (ST-seq) can indicate the spatial
context of various cell types, making it a powerful method to
study tumor heterogeneity [26]. The landscape and dynamics of
CRC that evolves from early stage to advanced stage have not
been elucidated at the single-cell level when considering the spa-
tial context.

Here, we comprehensively studied the dynamic features of
tumors and stromal and immune cells in stage I–IV CRC to reveal
clinical risk–associated cell types and regulations by collecting
public bulk RNA-seq, scRNA-seq, and ST-seq data sets, and vali-
dating results by using an independent cohort. The abundance of
epithelial, stromal, and immune cells was found to be altered

during tumor progression, suggesting that TME underwent

remodeling. TM4SF1þ malignant epithelial cells were enriched in

stage IV CRC. We also observed the trajectory of tumor cells and

found that tumor cells with more differentiated potential were

enriched in advanced CRC. Furthermore, the abundance, func-

tions, and lineages of stromal and immune cells in TME were also

demonstrated, making it clearer regarding their landscape and

dynamics during CRC progression. Finally, intercellular commu-

nication networks were inquired to unveil cancer-associated reg-

ulatory hubs in different stages, showing the cascade of activated

pathways related to regulation of antitumor immunity, tumor

progression, as well as the ability of metastasis. LIF–LIFR was

identified to be an important cancer-associated regulatory hub in

advanced CRC and patients with higher expression of LIF in CRC

tissue were associated with a lower overall survival (OS) rate.

Materials and methods
Patient and tissue sample collection
Tissue from tumors as well as invasive margins of 80 patients

with CRC who were operated on at the Sixth Affiliated Hospital of

Sun Yat-sen University was collected. Clinical information of

these patients is provided in Supplementary Table 1. This study

was approved by the Ethical Committee of the Sixth Affiliated

Hospital of Sun Yat-sen University (Approval No. G2020001).

Written informed consent was provided by all patients.

Collection of scRNA-seq and ST-seq data sets
Data sets on scRNA-seq from the Gene Expression Omnibus

(GEO) database were included if they met the following criteria:

(i) using 10x Genomics scRNA-seq, (ii) evaluating CRC tissues

from January 2019 to June 2022, and (iii) having available CRC

stage information. A total of eight data sets were included

(Supplementary Table 2).
As for ST-seq data sets, to minimize the discrepancies and

batch effect across sequencing platforms, only ST-seq data sets

generated from the 10x Genomics Visium platform were enrolled

for analysis. Besides, data sets without hematoxylin and eosin (H

& E) staining images were excluded. Finally, three data sets in-

cluding one stage II CRC sample, two stage IV CRC samples, and

four CRC border samples without stage information were en-

rolled for further analysis (Supplementary Table 3).

Analysis of scRNA-seq data
Seurat workflow (version 4.1.0) was used to analyse scRNA-seq

data. Cells with >250 genes, >1,000 unique molecular identifiers

(UMIs), and <20% mitochondrial gene expression in UMI counts

were selected for further analysis. Python package scrublet (ver-

sion 0.2.3) was used to remove doublets for each sample. Then,

counts data were normalized with pseudo-count 10,000 and fol-

lowed by log-transformation using an offset of 1, and gene ex-

pression was also scaled. Next, FindVariableFeatures was used to

get 2,000 of the most variant genes, followed by principal compo-

nent analysis. Harmony algorithm was used to correct batch ef-

fect. Then, ElbowPlot function was used to determine the

number of corrected principal components being used for clus-

tering and Uniform Manifold Approximation and Projection

(UMAP). Subsequently, cell clusters were identified by using

FindNeighbors and FindCluster function, and resolutions from

0.1 to 1.2 were explored for best clustering.
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Differential abundance analysis of cell types by
scRNA-seq data
Milo (version 1.2.0) was used to test for differential abundance
among samples from stages I to IV. We constructed a k-nearest
neighbor graph and assigned cells to neighborhoods. Then, we
calculated distance and counted the number of cells belonging to
each sample in each neighborhood. Each neighborhood was
assigned a cell-type label based on majority voting of cells in this
neighborhood. A “mixed” label would be assigned if the number
of the most abundant label was <70% of cells and this neighbor-
hood would be removed. To test the differential abundance
across stages, we divided samples into stage I–IV groups and the
cell count of neighborhoods was modeled using a negative bino-
mial generalized linear model. Multiple testing was controlled by
using the weighted Bonferroni–Hochberg procedure correction. If
the number of a specific cluster in groups was not enough for sta-
tistics, this cluster would be removed from differential abun-
dance analysis.

Differentiation trajectory analysis
Palantir algorithm was used to align cells along differentiation
trajectories. Briefly, diffusion maps were constructed and the low
dimensional embedding of data was estimated based on the
eigen-gap. Next, MAGIC was used to impute data for visualization
and determining gene expression trends. Then, an annotated cell
was identified as early cell and Palantir was run to determine dif-
ferentiation trajectories.

A single-cell trajectory was also analysed by using monocle3
(version 1.0.0). After clustering and dimensionality reduction,
cells were partitioned into trajectories followed by learning the
principal graph. The naive state of lineages was recognized as the
root node.

The CytoTRACE algorithm was used to validate the differenti-
ation of malignant epithelial cells. First, counts of malignant epi-
thelial cells were normalized with a pseudo-count of 10,000
followed by log2 transformation using an offset of 1. Batch effects
were corrected by matching mutual nearest neighbors. Then the
Pearson correlation between each gene’s normalized expression
and gene counts was calculated and the geometric mean expres-
sion of the top 200 genes most positively correlated with gene
counts was defined as the gene counts signature, which was used
to run the CytoTRACE procedure. The output value of each cell
was ranked and scaled between 0 and 1, suggesting their relative
differentiation status. Zero represents more differentiated while
1 represents less differentiated.

Characterizing metabolism from scRNA-seq data
Metabolic states were analysed by using the scMetabolism pack-
age (version 0.2.1), which applied the VISION algorithm to calcu-
late the activity score of each cell in 80 metabolic pathways with
default parameters. To overcome the sparsity of the scRNA-seq
data, MAGIC imputed data were used for scMetabolism. We also
compared metabolic scores of each cluster using a Wilcoxon
rank-sum test with the Bonferroni–Hochberg procedure.

Calculating the trend of gene expression or
metabolic activity for branching trajectory
R package gam was used to apply a generalized additive model to
predict the trend of gene expression or metabolic activity during
differentiation. To begin with, cells with a branch probability cal-
culated by using Palantir of <0.7 were removed. Then, the model
was fit for pseudo-time and values of expression. Probability was
used as the weight in the fitting process. Finally, the predicted

values of 500 bins along the pseudo-time were returned and their
standard deviations were also calculated for plotting.

Analysis of the copy-number variation
InferCNV (version 1.10.1) was used to identify evidence for large-
scale chromosomal copy-number variations from a single tumor
cell. Normal epithelial cells from GSE132465 were applied as the
reference and parameters were set to default values.

Identification of intercellular communications in
CRC
Intercellular communication networks were analysed by using
CellChat (version 1.5.0) by evaluating the expression of paired
ligands and receptors within cell populations. A cell–cell commu-
nication network was inferred by assigning each interaction with
a probability value and a permutation test was performed.

Calculate module scores of pathway signaling for
scRNA-seq data
Three hallmark gene sets were downloaded from the Molecular
Signatures Database (http://www.gsea-msigdb.org/gsea/msigdb) for
analysis: (i) gene sets of epithelial–mesenchymal transition (EMT),
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION; (ii) gene
sets of T-cell receptor (TCR) signaling, KEGG_T_CELL_RECEP
TOR_SIGNALING_PATHWAY; (iii) gene sets of B-cell receptor (BCR)
signaling, KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY. Gene
sets used to calculate T-cell cytotoxic scores included CST7, GZMA,
GZMB, IFNG, NKG7, and PRF1, when five exhaustion marker genes
(CTLA4, HAVCR2, LAG3, PDCD1, and TIGIT) were used to calculate T-
cell exhaustion scores, which were reported previously [24]. The
AddModuleScore function of the Seurat package was used to calcu-
late the expression levels of selected gene sets with default parame-
ters while MAGIC imputed data were utilized.

The regulon activity of transcription factors using
SCENIC
The Python version of SCENIC algorithm pySCENIC (version
0.12.1) was used to assess the regulatory networks in individual
cells. A motif data set was utilized to construct regulons for each
transcription factor and the co-expressed genes for each tran-
scription factor were computed by using GENIE3. Then
Spearman’s correlation between transcription factors and poten-
tial targets was calculated. Finally, regulon activity was analysed
by using AUCell.

Gene ontology enrichment analysis
Gene ontology (GO) enrichment analysis was performed using
the R package clusterProfiler (version 4.2.2). The results of marker
gene identification for cell types using the Seurat package
FindAllMarkers function, epithelium-associated genes in gene
clusters, and enriched ligands or receptors expressed in a specific
CRC stage were input.

Analysis of ST-seq data
Spots in Visium slices with >500 genes and <30% mitochondrial
gene expression in UMI counts were selected for the following
analysis. Normalizing spots and finding variable features were
processed by using the SCTransform function with default
parameters. Next, principal component analysis and clustering
were performed while the optimal number of principal compo-
nents selected for finding neighborhoods was determined by us-
ing the ElbowPlot function, and resolutions ranging from 0.1 to
1.2 were explored for best clustering.
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Colocalization analysis of ST-seq data
Cell2location (version 0.1) was applied to estimate the cell abun-

dance of each spot. Briefly, to train the reference model, we re-

moved lowly expressed genes and cell types that consisted of <30

cells in each stage, followed by sampling a maximum of 1,000

cells for each cell type. Then spatial cell-type deconvolution was

performed using default parameters. To identify the microenvir-

onments of co-localizing cell types, we applied nonnegative ma-

trix factorization to the matrix of estimated abundance, which

was factorized into matrices W and H. H matrix was used to as-

sign spots with the latent factor that had the largest rank value

scaled by its mean, while W matrix represented the weight of

each cell type contributing to the latent factor. Here latent factors

were defined as a set of colocalized cell types that were made up

of the tissue microenvironment as reported previously [27]. The

number of latent factors was determined by using the complexity

of tissue morphology. Factors ranging from 9 to 13 were tested

and final clustering of spots defined by 11 factors was shown to

be similar to the tissue morphology.

Analysis of the bulk RNA sequencing data from
The Cancer Genome Atlas or GEO
The counts matrix generated by using the STAR analysis pipeline

and clinical data only with tumor samples from The Cancer

Genome Atlas (TCGA)-colon adenocarcinoma (COAD) cohort

(n¼ 456) and TCGA-rectum adenocarcinoma (READ) cohort

(n¼ 166) were acquired using the TCGAbiolinks package (version

2.24.3). Counts data were normalized to counts per million

followed by log2 transformation using an offset of 1. A list of

RNA-seq data from GEO that was reported previously [28] were

collected. Then, data sets with available survival data were

selected for analysis.
Survminer (version 0.4.9) and survival (version 3.4.0) packages

were used for survival analysis. Potential cutting points were re-

peatedly tested to find the maximum rank statistic, followed by

applying to perform the dichotomy of cell fraction or gene expres-

sion, which divided patients into two groups. The two-sided long-

rank test was performed for comparison of Kaplan–Meier survival

curves.

Impute cell fractions for bulk RNA-seq data
Single-cell expression matrix was uploaded to CIBERSORTx on-

line analysis platform to infer cell-type-specific gene expression

profiles according to the instructions. Then mixture data sets

from TCGA–COAD, TCGA–READ, GSE17536, GSE17537, and

GSE39582 were deconvoluted. The relative proportions of cell

types were obtained for each sample. To validate the results of

CIBERSORTx, we also estimated cell-type-specific enrichment

scores for samples from TCGA–COAD by using the

ConsensusTME package (version 0.0.1.9000), which had gener-

ated cancer-specific signatures for multiple cell types in TME.

The gene set for COAD was selected to run the gene set variation

analysis (GSVA) algorithm.

Assessment of Klintrup–Mäkinen score
The images of H & E staining of the tumor or invasive margin

were utilized to estimate immune infiltration as previously

reported [29]. Briefly, a score of 0 indicated absence of an immune

reaction and 1 indicated a weak, 2 indicated a moderate, and 3 in-

dicated a severe increase in immune cells.

RNA extraction and qRT–PCR
RNA was extracted from CRC tissues by using TRIzol Reagent
(15596026; Invitrogen, Carlsbad, CA, USA) followed by quantifica-
tion using a NanoDropTM ND-2000 spectrophotometer. Next, the
ReverTra Ace qPCR RT Kit (FSQ-101; TOYOBO, Osaka, Japan) was
used to perform reverse transcription following the manufac-
turer’s instructions. We conducted quantitative reverse tran-
scription polymerase chain reaction (qRT–PCR) in the Applied
Biosystems 7500 Sequence Detection system.

Immunohistochemistry
Paraffin-embedded sections were routinely dewaxed and hy-
drated, followed by antigen retrieval using Tris/EDTA pH 9.0
buffer. Then slices were incubated with 3% hydrogen peroxide to
inactivate endogenous peroxidase for 10 min. After being washed
using PBS three times, slices were blocked in normal goat serum
for 1 h and incubated with rabbit anti-LIF (26757–1-AP;
Proteintech, Rosemont, IL, USA) at 4�C overnight. After being
washed using TBST three times, slices were further incubated
with horseradish peroxidase conjugated anti-rabbit IgG (DS-0003;
Zhongshan Gold Bridge Biological Technology, Guangdong,
China) at room temperature for 1 h followed by washing.
Diaminobenzidine (ZLI-9017; Zhongshan Gold Bridge Biological
Technology) was used for enzymatic detection. Finally, slices
were counterstained, dehydrated, cleared, and mounted.

Statistical analysis
R (http://www.r-project.org) was used for statistical analysis and
graphing. ANOVA was used to determine whether there were any
statistically significant differences between the mean values of
more than two groups when Tukey’s test was performed for mul-
tiple comparisons. The P-value for Pearson’s correlation coeffi-
cients was calculated using a t-distribution with n-2 degrees of
freedom that was performed using R package ggpmisc. It was
considered as statistically significance when P was <0.05.

Results
Global cellular landscape in CRC
The global cellular landscape in stage I–IV CRC was assessed us-
ing an analytic work flow, which consisted of the collection of se-
quencing data sets of CRC, deconvolution of tumor heterogeneity
by bioinformatic analyses, followed by validation (Figure 1A).
Eight data sets (GSE161277, GSE132465, GSE144735, GSE146771,
GSE164522, GSE178318, GSE188711, GSE200997) with 78 tumor
samples, including 11 stage I, 24 stage II, 27 stage III, and 16 stage
IV CRC, were collected for subsequent analyses (Supplementary
Table 2). Clinical information is provided in Figure 1B. After
quality-control filtering and removal of any batch effect, 214,058
cells remained, including 38,811 epithelial cells, 167,667 immune
cells, and 7,580 stromal cells, which were further subclustered
(Figure 1C). Stage information and original data sets shown in a
UMAP plot demonstrated successful removal of any batch effect
(Figure 1D and E). The expression of representative markers of
epithelial cells, endothelial cells, mesenchymal stromal cells
(MSC), T cells and natural killer (NK) cells, myeloid cells, B cells,
plasma cells, and mast cells are illustrated in Figure 1F. The pro-
portions of each major cell type were different among patients
with stage I–IV CRC (Figure 1G).

The dynamics of malignant epithelial cells in CRC
We further clustered 38,811 epithelial cells into six subtypes
(C01–C06) (Figure 2A). To avoid contamination of normal
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Figure 1. A single-cell transcriptomic atlas of tumor tissues from patients with stage I–IV CRC. (A) Graphic overview of this study design. A total of 16
data sets of scRNA-seq, ST-seq, and RNA-seq were collected to perform a comprehensive analysis to unveil dynamic heterogeneity during CRC
progression. qRT–PCR and IHC staining were used to validate biomarkers associated with tumor progression. (B) Clinical characteristics of patients with
CRC enrolled for scRNA-seq in this study. (C) Clusters, (D) stage information, and (E) original data sets of cells are shown in UMAP plots. (F) Dot plots
illustrate the average expression of representative markers in indicated cell clusters. The dot size represents the percentage of cells expressing these
markers and the dot color indicates the expression intensity. (G) Bar plot demonstrating the proportion of eight cell types in CRC tissues with indicated
stage. CRC, colorectal cancer; scRNA-seq, single-cell RNA sequencing; ST-seq, spatial transcription sequencing; qRT–PCR, quantitative reverse
transcription polymerase chain reaction; H & E, hematoxylin and eosin; IHC, immunohistochemistry; UMAP, Uniform Manifold Approximation and
Projection.
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Figure 2. Characterization of malignant epithelial cells in CRC tissues with different stages. (A) UMAP plot and bar plot showing the composition of
malignant epithelial cells colored by clusters. (B) Dot plots illustrating the average expression of representative markers in malignant epithelial cell
types. The dot size represents the percentage of cells expressing these markers and the dot color indicates the expression intensity. (C) Beeswarm plots
demonstrating the fold change of the cell abundance of each malignant epithelial cell type across different stages. Red and blue colors indicate
significant differential abundance (Spatial FDR 10%). (D) Kaplan–Meier curves illustrating the OS for patients from TCGA–COAD and READ stratified by
high and low infiltration of indicated malignant epithelial clusters. The P-value was calculated using the log-rank test. (E) Relative expression of
TM4SF1 in CRC tissues validated by qRT–PCR with eight cases in each stage. Data are shown by median with interquartile range. P-value was calculated
by using one-way ANOVA and Tukey’s post hoc test; ns, P> 0.05; *P< 0.05. (F) Pseudo-time of each malignant epithelial cell imputed by Palantir is
shown in the UMAP plot and the trends of the expression of representative markers are plotted. The data are shown as mean 6 standard deviation. (G)
Heat map showing the pseudo-time-smoothed expression of 2,000 highly variable genes of malignant epithelial cells. The color bars on the left side
represent gene clusters, as in (H). (H) Violin plots showing expression of each gene cluster in malignant epithelial cells from CRC tissues with different
stages. The color bars on the right side represent gene clusters. (I) Spatial abundance of six malignant cell types estimated using cell2location shown on
a slice of stage IV CRC tissue with the corresponding image of H & E staining. CRC, colorectal cancer; UMAP, Uniform Manifold Approximation and
Projection; FDR, false discovery rate; TCGA, The Cancer Genome Atlas; qRT–PCR, quantitative reverse transcription polymerase chain reaction; H & E,
hematoxylin and eosin.
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epithelial cells when sampling tumor tissues, all epithelial cells
were proven to be malignant by analysing the different chromo-
somal patterns of the copy-number variation compared with nor-
mal epithelial cells (Supplementary Figure 2A). Differential
expression analysis found highly expressed markers that were
mainly stem-cell-associated and epithelial-lineage-associated
genes, specifically TM4SF1 for C01; SOX4 for C02; MKI67 and PCNA
for C03; ASCL2 and LGR5 for C04; CLCA1, SPINK4, and FCGBP for
C05; and OLFM4 for C06 (Figure 2B). Next, we analysed the differ-
ential abundance of six malignant epithelial cell types across dif-
ferent stages to unveil tumor-progression-associated cell types.
Interestingly, we found that ASCL2þ malignant epithelial cells,
FCGBPþ malignant epithelial cells, and OLFM4þ malignant epi-
thelial cells were decreased in stage III samples compared with
their stage II counterparts. Moreover, TM4SF1þ malignant epithe-
lial cells, SOX4þ malignant epithelial cells, and MKI67þ malig-
nant epithelial cells were significantly increased in stage IV
samples in comparison with stage III samples (Figure 2C). These
results indicated that the expression level of stem cells and
epithelial-lineage-associated genes was dynamic during evolve-
ment from stages I to IV, and stemness-associated genes may
contribute to the progression and metastasis of CRC.

The evaluation of the impact of malignant epithelial cell com-
position on survival for patients with CRC could contribute to a
better understanding of their biological behaviors. Therefore, we
applied CIBERSORTx using scRNA-seq data to deconvolute the
fraction of all cell types for RNA-seq data from TCGA or GEO, in-
cluding TCGA–COAD, TCGA–READ, GSE17536, GSE17537, and
GSE39582. We also calculated scores by GSVA using signatures of
well-defined clusters to validate CIBERSORTx results. As a result,
most of the fractions of cell types deconvoluted by using
CIBERSORTx were positively correlated with GSVA scores, except
for monocytes, NK cells, and CD4þ Treg, which were removed
from survival analysis (Supplementary Figure 1). As for these ma-
lignant epithelial cells, we found that patients with a higher frac-
tion of TM4SF1þ or ASCL2þ malignant epithelial cells had a lower
OS rate, while patients with a higher percentage of MKI67þ or
OLFM4þ malignant epithelial cells had a better prognosis
(Figure 2D). These results were consistent with our results of
abundance analysis, such as TM4SF1þ malignant epithelial cells,
which were increased in patients with stage IV CRC and corre-
lated with unfavorable prognoses. In addition, OLFM4þ malig-
nant epithelial cells were decreased in patients with stage III CRC
and exhibited high OS rates.

We further analysed the pathway enrichment of these six ma-
lignant epithelial cell types (Supplementary Figure 2B). GO analy-
sis indicated enriched pathways including blood vessel
remodeling function for TM4SF1þ malignant epithelial cells, reg-
ulation of apoptosis and fibroblast proliferation for SOX4þ malig-
nant epithelial cells, DNA replication for proliferative malignant
epithelial cells, regulation of the Wnt signaling pathway for
ASCL2þ malignant epithelial cells, and ion metabolism for
FCGBPþ malignant epithelial cells. The enriched pathways indi-
cated that EMT occurred in malignant epithelial cells. We calcu-
lated the EMT score for each epithelial cell type, suggesting the
ability of metastasis. As a result, TM4SF1þ malignant epithelial
cells had the highest EMT score in these six clusters
(Supplementary Figure 2C). We further used qRT–PCR to validate
expression of TM4SF1 in each stage of CRC tissue by using an in-
dependent cohort, which proved that TM4SF1 was upregulated in
advanced CRC (Figure 2E).

Next, we analysed the trajectory of malignant epithelial cells
(Figure 2F). To validate the accuracy of the trajectory, CytoTRACE

was applied, which also demonstrated the differentiation poten-
tial of cell types. Palantir indicated that FCGBPþ malignant epi-
thelial cells were the most differentiated while CytoTRACE
results also revealed those cells with the lowest scores
(Supplementary Figure 2D and E). The trends of gene expression
revealed that cells were ranged according to the pseudo-time
from increased expression of TM4SF1 with a high EMT score to
stemness and followed by mature epithelial signatures
(Figure 2G). We further defined seven gene clusters that were as-
sociated with trajectory and plotted the global expression level of
these gene clusters in malignant epithelial cells for each stage
(Figure 2G and H). Interestingly, except for gene cluster 4, malig-
nant epithelial cells showed a high expression pattern of gene
cluster 0 in stage IV CRC, and this pattern was gradually inverted
for gene clusters 1, 2, 3, 5, and 6. Therefore, expression of gene
clusters seemed to be gradually activated when CRC evolved
from stages I to IV. GO analysis results indicated enriched path-
ways for these gene clusters (Supplementary Figure 2F). For
example, metabolic pathways such as energy metabolism and O-
glycan metabolism were activated in cells with a high expression
of gene clusters 6 and 5, which might represent relatively normal
epithelial function, while gene cluster 2 indicated proliferation of
tumor cells and gene cluster 1 signified a pathway responding to
decreased oxygen levels. Finally, gene cluster 0 indicated a path-
way about the negative regulation of cell adhesion, which played
an important role in metastasis. These enriched pathways of
gene clusters elaborated key regulations in malignant epithelial
cells during CRC progression and metastasis.

To have a deeper understanding of the biological behaviors of
these six malignant epithelial clusters in CRC, we evaluated their
abundance in a spatial context. We found that C01–C03 were
more abundant in the slice from stage IV CRC, while C04–C06
were enriched in a stage II CRC sample, in line with the results of
scRNA-seq (Figure 2I and Supplementary Figure 2G).

In general, a combination of scRNA-seq and ST-seq data
showed the dynamic features of malignant epithelial cells in CRC
and TM4SF1 were highly expressed in malignant epithelial cells
from advanced CRC, which could be used as a therapeutic target
and prognostic indicator.

The infiltration of CXCL121 cancer-associated
fibroblasts was increased in advanced CRC
We classified 7,580 stromal cells into seven clusters, including
endothelial cells expressing PECAM1 and CDH5, as well as six
other MSC types including FAPþ cancer-associated fibroblast,
MCAMþ perivascular-like cells (PVL), CXCL14þ cancer-associated
fibroblast (CAF), CXCL12þ inflammatory CAF (iCAF), ICAM1þ telo-
cyte, and ACTG2þ myofibroblast (Figure 3A and B). To assess the
dynamics of stromal cells along with CRC progression, differen-
tial abundance was analysed, indicating that CXCL14þ CAF was
significantly decreased in stage III CRC tissues compared with
stage II CRC tissues, and CXCL12þ iCAF was dramatically in-
creased in stage IV CRC tissues compared with stage III CRC tis-
sues (Figure 3C). We also detected the spatial distribution of all
stromal cells in TME or the border of the tumor (Supplementary
Figure 3A). FAPþ CAF and MCAMþ PVL were the most abundant
CAF in CRC tissue, in agreement with results of scRNA-seq
(Figure 3A). As for their effect on the survival of patients with
CRC, we found that patients with a higher fraction of stromal cell
types exhibited a lower OS rate (Supplementary Figure 3B–F).

Since CAF played a significant role in the metabolic reprog-
ramming of tumor cells through interactions between CAF and
tumor cells, we inquired into the metabolic signatures of stromal
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Figure 3. Characterization of stromal cells in different stages of CRC. (A) Composition of stromal cells shown in a UMAP plot and bar plot. (B) Violin
plots showing the expression of representative markers of stromal cells. The color bars in the top represent stromal cell types, as in (A). (C) Beeswarm
plots demonstrating the fold change of the cell abundance of each stromal cell type across different stages. Red and blue colors indicate significant
differential abundance (Spatial FDR 10%). (D) Heat map illustrating the metabolism activity of stromal cell types. (E) Pseudo-time of each stromal cell
shown in a UMAP plot with specific cells highlighted. Terminal state probability distributions of highlighted cells are visualized using bar plots. (F) The
gene expression trends along stromal lineages are plotted. The data are shown as mean 6 standard deviation. (G) Functional enrichment analysis of
upregulated genes in each stromal cluster performed by using GO analysis. The color bars indicate stromal cell clusters, as in (A). (H) Heat maps
illustrating the relative expression of top transcription factors predicted by using pySCENIC (left-side heat map) and in RNA level (right-side heat map).
The color bars indicate stromal cell clusters, as in (A). (I) Violin plots showing the JUN-regulon expression of CXCL12þ iCAF in each stage of CRC
predicted by using pySCENIC (left-side plot) and in RNA level (right-side plot). (J) Kaplan–Meier curves illustrating the OS for patients stratified by high
and low expression of JUN-regulated genes using TCGA and GEO survival data. The P-value was calculated using the log-rank test. CRC, colorectal
cancer; CAF, cancer-associated fibroblast; iCAF, inflammatory CAF; PVL, perivascular-like; UMAP, Uniform Manifold Approximation and Projection;
FDR, false discovery rate; GO, gene ontology. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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cells in the TME of CRC tissues (Figure 3D). As a result, FAPþ CAF
was demonstrated with the highest activation of oxidative phos-
phorylation, MCAMþ PVL was indicated with the highest score of
glycolysis and gluconeogenesis, and ICAM1þ telocyte showed the
highest activity of the citrate cycle. Furthermore, drug metabo-
lism was activated in CXCL12þ iCAF, which might be the poten-
tial mechanism of chemotherapy resistance in patients with
CRC.

Next, we traced the lineage of MSC in CRC to infer their origin
and division. Palantir demonstrated that MSC was differentiated
from MCAMþ PVL to three other branches: CXCL14þ CAF,
CXCL12þ iCAF, and ACTA2þ myofibroblast (Figure 3E), validated
by the expression of lineage markers in the differential trajectory
(Figure 3F). We also constructed the differentiation trajectory of
MSC by using monocle3, which showed a similar differential tra-
jectory (Supplementary Figure 3G and H). Functions of stromal
cells were revealed by using GO analysis (Figure 3G). It was shown
that FAPþ CAF expressed signatures of extracellular matrix orga-
nization and CXCL14þ CAF had several activated biosynthetic
processes expressed including collagen biosynthesis, while
CXCL12þ CAF was associated with the regulation of fibroblast
proliferation. We also applied SCENIC to infer the transcription
factor regulation of stromal cells. Associated regulons were iden-
tified for each stromal cluster, when these regulons could also
distinctly cluster stromal cells, indicating that the activity of
transcription factors could truly represent biological functions of
MSC in regulon space (Figure 3H and Supplementary Figure 3I). It
was found that transcription factor JUN was highly expressed in
CXCL12þ iCAF, which has been reported to promote fibrosis. It
was proven by upregulated activation of the regulon or mRNA ex-
pression of JUN of CXCL12þ iCAF in the tumor tissues of patients
with advanced-stage CRC (Figure 3I). We further calculated the
expression of genes regulated by transcription factor JUN in RNA-
seq data sets and found that patients with a higher JUN signature
showed worse prognosis (Figure 3J). Therefore, CXCL12þ iCAF was
increased in the stage IV CRC and demonstrated with higher ex-
pression of JUN, which could contribute to fibrosis.

The infiltration of CD41 Treg was increased in
stage IV CRC with a high metabolic signature
We obtained 51,600 CD4þ T cells and 7 subtypes were finally
identified, including CCR7þ naive T cells, FOXP3þ Treg, CXCR6þ

resident memory T cells (Trm), ANXA1þ central memory T cells
(Tcm), GZMKþ effector memory T cells (Tem), CXCL13þ Th1 cells,
and IL17Aþ Th17 cells (Figure 4A). The representative markers for
the indicated CD4þ T-cell cluster are shown at Figure 4B. To re-
veal alteration of CD4þ T cells during CRC progression, the differ-
ential abundance across stage I–IV CRC was analysed. The
infiltration of CD4þ naive T cells was decreased in stage IV CRC
tissues, while the proportion of Treg and Trm cells was increased
in stage IV CRC tissues compared with those in stage III CRC tis-
sues (Figure 4C). As for cell abundance in slices, ST-seq showed
that the abundance of all CD4þ T-cell subsets was low and infil-
trated in the surrounding area of tumors (Supplementary Figure
4A). However, as for prognosis, only a higher fraction of CD4þ na-
ive T cells, CD4þ Trm cells, and Th17 cells as well as a lower frac-
tion of CD4þ Tcm cells was associated with a lower OS rate
(Figure 4D).

To better understand the function and differentiation state of
CD4þ T cells in CRC, we analysed the transcriptomic trajectory of
CD4þ T cells. Three major branches comprising CD4þ Treg, Th1,
and Th17 were recognized (Figure 4E). Lineage-associated genes
for these branches are shown at Figure 4F. We further validated

the results of Palantir by using monocle3, which also identified
the same three branches (Supplementary Figure 4B and C). Next,
we observed the heterogeneous expression of immune check-
points in the branching trajectory of CD4þ T cells. PDCD1 and
TOX2 were increasingly expressed in CXCL13þ Th1 cells, while
CTLA4 was highly expressed in CD4þ Treg cells (Figure 4F). These
results indicated that different terminal states of CD4þ T cells
could have different expression levels of immune checkpoints
and therefore immune checkpoints blockade could selectively af-
fect different branches of CD4þ T cells.

T-cell activation and exhaustion play an important role in
antitumor immunity. Since we have unveiled that exhaustion-
associated markers such as CTLA4, PDCD1, and TOX2 were upre-
gulated in the terminal states of CD4þ T cells, we further inquired
into the activated states of CD4þ T cells, which could be directly
reflected by the metabolism and activation of the TCR signaling
pathway. Metabolic analysis indicated that numerous metabolic
pathways were upregulated in CD4þ Treg, Trm, Th1 cells, and
Th17 cells (Figure 4G and H). CD4þ T-cell clusters that presented
with a high metabolic score were found to have a high TCR sig-
naling pathway score (Figure 4I). Therefore, during differentia-
tion, TCR signaling, exhaustion-associated markers, and
metabolic pathways of CD4þ T cells were upregulated.

The majority of CD81 T cells in CRC TME were
differentiated into proliferative and exhausted
terminal states
To elucidate the activation and exhaustion signatures of CD8þ T
cells during CRC progression, we identified 11 clusters from a to-
tal of 38,180 CD8þ T cells, comprising GZMHþ recently activated
effector memory or effector T cells (TEMRA/TEFF), HSPA1Aþ T
cells, CD161þ Tem, GZMKþ Tem, FGFBP2þ Tem, CD160þ intraepi-
thelial lymphocytes (IEL), CCR7þ naive T cells, PDCD1þ exhausted
T cells (Tex), MKI67þ proliferative T cells, XCL1þ Trm, and
SELENOKþ T cells (Figure 5A and B). Next, differential abundance
analysis indicated that only CD8þ SELENOKþ T cells were in-
creased in stage IV CRC compared with stage I CRC, suggesting
insignificant alteration of the proportion of CD8þ T cells in TME
during CRC progression (Figure 5C). The abundance of CD8þ T
cells was shown to be low in spatial transcription
(Supplementary Figure 5A). We further identified the biological
function of CD8þ T cells. GO analysis demonstrated that the
functions of CD8þ SELENOKþ T cells corresponded to energy me-
tabolism, such as ATP synthesis and mitochondrial transmem-
brane transport (Supplementary Figure 5B). The functions of
other CD8þ T-cell subtypes were mainly related to activation and
cytotoxicity. These results hinted that energy metabolism was
activated in CD8þ SELENOKþ T cells.

We next constructed the differentiation trajectory of CD8þ T
cells. There were two branches recognized by the Palantir algo-
rithm: CD8þ CD160þ IEL and CD8þ proliferative T cells
(Figure 5D). Furthermore, terminal proliferative CD8þ T cells
highly expressed inhibitory receptors, such as CTLA4, LAG3,
PDCD1, TIGIT, HAVCR2, and cytotoxic marker IFNG (Figure 5E).
These immune checkpoints were also heterogeneously expressed
in these two branches of CD8þ T cells: TIGIT was highly expressed
in CD160þ IEL, while the expression of other inhibitory receptors
such as LAG3, PDCD1, and HAVCR2 was dominant in CD8þ prolif-
erative T cells.

Since tumor-infiltrating CD8þ T cells became more exhausted
during differentiation in CRC, we inquired into their metabolic
states, cytotoxic function, and exhaustive signature. CD8þ prolif-
erative T cells, CD161þ Tem cells, CD160þ IEL, and PDCD1þ Tex
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Figure 4. Characterization of CD4þ T cells in CRC tissues with different stages. (A) UMAP plot showing the seven main CD4þ T-cell subtypes. Bar plot
indicates the proportion of CD4þ T cells in different stages of CRC tissues. (B) Relative expression of representative markers of CD4þ T-cell subtypes. (C)
Beeswarm plots of fold change of cell abundance for each CD4þ T cluster across different stages. Red and blue colors indicate significant differential
abundance (Spatial FDR 10%). (D) Kaplan–Meier curves of patients from TCGA–COAD or READ stratified by high and low infiltration of CD4þ T-cell
types. A two-sided log-rank test was used to assess statistical significance. (E) Pseudo-time of CD4þ T cells shown in a UMAP plot with specific cells
highlighted. Terminal state probability distributions of highlighted cells are visualized using bar plots. (F) The gene expression trends of representative
markers along CD4þ T-cell lineages are plotted. The data are shown as mean 6 standard deviation. (G) The metabolism activity of CD4þ T-cell clusters
are shown in a heat map. The colors of the top bars indicate CD4þ T clusters, as in (A). Violin plots demonstrating the (H) metabolism activity and (I)
TCR signaling of each CD4þ T-cell type. One-way ANOVA was performed to assess statistical significance. CRC, colorectal cancer; Trm, memory T cell;
Tcm, central memory T cell; Tem, effector memory T cell; UMAP, Uniform Manifold Approximation and Projection; FDR, false discovery rate; TCGA,
The Cancer Genome Atlas; COAD, colon adenocarcinoma; READ, rectum adenocarcinoma; TCR, T-cell receptor.
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Figure 5. CD8þ T cells differentiate into terminal state with high exhaustive and metabolic signatures in CRC tissues. (A) UMAP plot and bar plot
showing the composition of CD8þ T cells. (B) Heat map plot depicting the relative expression levels of representative markers for CD8þ T-cell types. The
top color bars indicate CD8þ T-cell clusters, as in (A). (C) Beeswarm plots of fold change in cell abundance for each CD8þ T cell across different stages.
Red and blue colors indicate significant differential abundance (Spatial FDR 10%). (D) UMAP plot illustrating pseudo-time of CD8þ T cells with specific
cells highlighted. The probability of differentiation to two terminal states for highlighted CD8þ T cells is shown in bar plots. (E) The trends of the
expression of selected markers for all CD8þ T lineages are plotted. The data are shown as mean 6 standard deviation. (F) Violin plot depicting the
global metabolic activity of each CD8þ T-cell type. (G) Scatter plots demonstrating the correlation between metabolism activity and TCR signaling (left),
correlation between metabolism activity and T-cell exhaustion score (middle), and correlation between T-cell cytotoxic score and T-cell exhaustion
score (right) for all CD8þ T cells. The error band indicates the 95% confidence interval. (H) The trends of metabolism activity are shown for each
differentiation direction of CD8þ T cells. The data are shown as mean 6 standard deviation. CRC, colorectal cancer; Trm, memory T cell; Tem, effector
memory T cell; TEMRA/TEFF, recently activated effector memory or effector T cell; IEL, intraepithelial lymphocyte; Tex, exhausted T cell; UMAP,
Uniform Manifold Approximation and Projection; FDR, false discovery rate; TCR, T-cell receptor; TCA, tricarboxylic acid.

Dynamic heterogeneity of colorectal cancer | 11



cells were demonstrated to have more activated metabolic states
compared with other T cells, while oxidative phosphorylation
was upregulated in SELENOKþ CD8þ T cells, which was consis-
tent with GO analysis (Figure 5F and Supplementary Figure 5C).
We also inquired into the relationship between the activation of
the TCR pathway and the metabolic profile. A positive relation-
ship between TCR signaling and metabolic state was observed in
CD8þ T cells (Figure 5G). Furthermore, T-cell exhaustion scores
were also positively correlated with metabolic scores and T-cell
cytotoxic scores. These results showed that the intensity of the
dysfunctional signature of CD8þ T cells was associated with anti-
tumor reactivity. Terminal exhausted CD8þ T cells in CRC were
highly proliferating and dynamically differentiating. To have a
deeper understanding of T-cell metabolism during differentia-
tion, we analysed the metabolic states in the branching trajectory
of CD8þ T cells (Supplementary Figure 5D and E). As for the
branch of CD8þ CD160þ IEL, numerous metabolic pathways were
upregulated during differentiation, except for oxidative phos-
phorylation (Figure 5H and Supplementary Figure 5D). However,
during the process of differentiation to proliferative CD8þ T cells,
metabolic states were increased and slightly downregulated at
the terminal state in numerous pathways (Figure 5H and
Supplementary Figure 5E). In particular, proliferative CD8þ T cells
were more activated than CD160þ IEL in glycolysis, gluconeogen-
esis, Tricarboxylic acid (TCA) cycle, oxidative phosphorylation,
and fatty acid metabolism (Figure 5H). Taken together, CD8þ T
cells in CRC were differentiated to exhausted states together with
proliferative and high metabolic signatures.

The infiltration of IgA1 plasma cells and AICDA1

germinal center B cells were increased in stage IV
CRC
Here we obtained transcriptomes of 36,899 B cells from 78
patients with CRC followed by subclustering into six clusters, in-
cluding two germinal center (GC) B-cell types, two follicular B-cell
types, and two plasma cell types (Figure 6A and B). Differential
abundance analysis showed that the proportion of AICDAþ GC B
cells and IgAþ plasma cells was increased in stage IV CRC
(Figure 6C). We analysed the B-cell abundance in the slices of
tumors with/without tertiary lymphoid structures (TLS), includ-
ing atopic lymphoid nodes or solitary lymphatic follicles
(Figure 6D and E, and Supplementary Figure 6A). Considerable
numbers of B cells and plasma cells were infiltrated in TME while
they were more likely to be enriched in lymphoid organs, but
only GC B cells were enriched in atopic lymph nodes. TLS located
at TME were composed of aggregated T cells, mature DC, and B-
cell follicles with GC and surrounded by plasma cells, which was
evidenced by spatial transcription (Figure 6D–F). DC subsets in-
cluding cDC2, LAMP3þ DC, T-cell subsets comprising naive CD4þ

or CD8þ T cells, CXCL13þ Th1, CD8þ SELENOKþ T cells, proliferat-
ing T cells, and SELENOHþ macrophage were enriched in TLS. In
particular, most of these cell types could be infiltrated into tumor
regions, indicating the potential relation of immune cells be-
tween TLS and tumor (Figure 6E and F). To validate the relation-
ship between TLS and the immune infiltration of TME, we
utilized an independent cohort comprising 29 patients with anti-
PD-1 therapy and surgery, and 51 patients with surgery to assess
the Klintrup–Mäkinen score by using the H & E staining of CRC
tissues or invasive margins (Figure 6G), when dichotomy was also
applied to patients by the existence of TLS. As a result, we found
that the existence of TLS was not relative to the stage or treat-
ment with PD-1 inhibitors, but TLS could result in a higher im-
mune infiltration in both tumors and invasive margins, which

proved that TLS in TME could fuel immunity regardless of PD-1
inhibitors (Figure 6H and Supplementary Table 4). We also ob-
served that the Klintrup–Mäkinen scores were positively corre-
lated between tumors and invasive margins, suggesting that the
global landscape of the immune reaction was connective
(Figure 6I). Furthermore, Klintrup–Mäkinen scores were likely to
be decreased as the tumor progressed from stage I to stage IV,
suggesting dysfunction of immune regulation during CRC pro-
gression (Supplementary Table 5). Survival analysis of TCGA
RNA-seq data indicated that a high expression of signatures of
CD20þ B cells, IgAþ plasma cells, and IgGþ plasma cells was asso-
ciated with a higher OS rate, suggesting the antitumor function
of the B-cell lineage (Supplementary Figure 6B–D).

We further analysed the function of B-cell subtypes. It was
shown that AICDAþ GC B cells were associated with cell prolifera-
tion while other B-cell subtypes expressed genes related to anti-
gen processing and presentation (Supplementary Figure 6E).
Metabolic pathway analysis revealed that follicular B cells were
less active than GC and plasma cells, and metabolic states were
dramatically different between GC and plasma cells
(Supplementary Figure 6F and G). We also analysed the BCR sig-
naling pathway and its relationship with metabolic states of B
cells (Supplementary Figure 6H). Notably, the BCR signaling path-
way was highly activated in GC and follicular B cells while it was
decreased in plasma cells. LRMPþ GC B cells expressed higher
BCR signaling than AICDAþ GC B cells when these two types of
GC B cells showed different distributions, suggesting that AICDAþ

and LRMPþ GC B cells play different roles in TLS and mucosa
(Figure 6E and Supplementary Figure 6H). Moreover, metabolic
scores of B cells were negatively correlated with activity of the
BCR signaling pathway (Supplementary Figure 6I).

Since antibody class switching has been observed in several
tumors, we further analysed the distribution of BCR and IgA–IgG
switching in CRC. Since only variable regions could be sequenced
in the 10x Genomics platform, we detected the paired variable re-
gion of light chain and heavy chain. As a result, most of paired
variable regions of BCR could be detected in all stages of CRC,
while stage IV CRC was composed of most BCR (Figure 6J). As
shown by analysis based on variable regions of light chain, most
BCR were shared across the tumor stages, and MS4A1þ follicular
B cells and IgAþ plasma cells obtained the most diverse variable
regions (Supplementary Figure 6J). In agreement with the results
of different abundance, more BCR were detected in IgAþ plasma
cells from stage IV CRC. As for paired variable regions shared by
IgA and IgG, most BCR of IgG could be identified in IgA, suggesting
the existence of antibody class switching from IgA to IgG
(Figure 6K). IgGþ plasma cells were also more abundant than
IgAþ plasma cells in tumor regions revealed by ST-seq
(Supplementary Figure 6A). Altogether, our results unveiled that
pairs of variable regions were enriched in stage IV CRC and that
antibody class switching between IgA and IgG plasma cells was
prevalent in CRC tissues.

The infiltration of myeloid subsets was increased
in stage IV CRC and colocalized with CD81 T cells
and tumor cells
To reveal the alteration of components, antitumor immunity-
associated transcription factors, and their spatial context of mye-
loid cells during CRC progression, we obtained 29,585 myeloid
cells and finally 13 clusters were identified, including 3 monocyte
subtypes (CX3CR1þ monocyte, NLRP3þ monocyte, and IL1Bþ

monocyte), 5 macrophage subtypes (C1QCþ macrophage, FCN1þ

macrophage, SELENOHþ macrophage, MKI67þ macrophage, and
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Figure 6. B cells were enriched in TLS and IgA–IgG antibody class switching occurred in CRC tissues. (A) UMAP plot and bar plot showing the
composition of B cells. (B) Violin plot depicting expression of representative markers of B cells. (C) Beeswarm plots of fold change in cell abundance for
B-cell types across different stages. Annotation by red and blue colors indicate significant differential abundance (Spatial FDR 10%). (D) The image of H
& E staining from a slice of stage IV CRC tissue. Regions of TLS and tumor are annotated. (E) Spatial abundance of six B-cell types estimated by using
cell2location is shown on a slice of stage IV CRC tissue with color gradient and interpolation. The region of TLS is annotated by a rectangle and the
spatial abundance of B-cell types is shown on the right-side plots. (F) Spatial abundance revealing the enrichment of cell subtypes of T cells, DC, and
macrophages in TLS. (G) Representative images of H & E staining in invasive margins of CRC tissues with or without anti-PD1 therapy. The regions
annotated by red color indicate TLS. (H) Bar plots showing the distribution of Klintrup–Mäkinen scores of tumor regions according to the existence of
TLS in patients with or without anti-PD1 therapy. Wilcoxon test was performed. (I) Correlation of Klintrup–Mäkinen scores between tumor border and
tumor core of patients with or without PD-1 inhibitor. Kendall’tau and P-value were calculated. The error band indicates the 95% confidence interval. (J)
Venn diagram illustrating the relationship of BCR between B cells from CRC tissues assigned with four stages. (K) Venn diagram showing the
overlapped identified BCR between IgAþ plasma cells and IgGþ plasma cells. TLS, tertiary lymphoid structure; CRC, colorectal cancer; UMAP, Uniform
Manifold Approximation and Projection; FDR, false discovery rate; H & E, hematoxylin and eosin; cDC, classical dendritic cell; BCR, B-cell receptor.
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SPP1þ macrophage), 4 DC subtypes (CLEC9Aþ classical dendritic
cell type 1 (cDC1), CD1Cþ cDC2, LAMP3þ DC, and IRF7þ plasmacy-
toid dendritic cells (pDC)), and mast cell (KITþ mast cell)
(Figure 7A and B). Differential abundance analysis indicated that
CX3CR1þ monocytes and FCN1þ macrophages were decreased
from stage II to stage IV CRC, while C1QCþ macrophages and
mast cells were increased in stage IV CRC as compared with stage
III CRC (Figure 7C). SELENOHþ macrophage in stage IV CRC was
less than that in stage III CRC. These results indicated that innate
immunity was highly activated in stage IV CRC. Integrated analy-
sis of scRNA-seq and ST-seq demonstrated that most myeloid
cells were sparse in TME, while their location was also overlaid
with T cells (Supplementary Figures 4A, 5A, and 7A).

Diverse functions highlight the heterogeneous and plastic na-
ture of myeloid cells. We further analysed the function of each
myeloid subset by using GO enrichment (Supplementary Figure
7B). CX3CR1þ monocytes were enriched with the pathway of leu-
kocyte migration signaling, indicating chemotaxis of blood mono-
cytes to TME. Expression of NLRP3 and IL1B in monocytes
indicated the response to lipopolysaccharides, therefore boosting
subsequent activation of the NLRP3 inflammasome. Gene signa-
tures of C1QCþ macrophages were related to complement activa-
tion and FCN1þ macrophages exhibited defense to fungus. The
procedure of energy metabolism was activated in SELENOHþ

macrophages, similarly to CD8þ SELENOKþ T cells. As for DC,
pathways of antigen processing, the presentation of exogenous
antigen, and the regulation of NK cells and T cells were enriched.
We also applied SCENIC to inquire into the functional transcrip-
tion factors for myeloid cells (Figure 7D). As a result, FOXO4, a
transcription factor promoting an early inflammatory response,
was upregulated in CX3CR1þ monocytes. BACH1 and MXD1 were
highly expressed in NLRP3þ and IL1Bþ monocytes. On the other
hand, MAF, the key regulator of acute inflammatory responses,
was identified in C1QCþ macrophage. As for MKI67þmacrophage,
proliferation-associated transcription factor SMC3 and MYBL2
were highly expressed. PPARG, which was associated with angio-
genesis, was identified in SPP1þ macrophage. Furthermore,
HIF3A, a transcriptional regulator in adaptive response to low-
oxygen tension, was also expressed in SPP1þ macrophage. As for
transcription factors related to DC, most of them contributed to
the development and maturation of DC, such as ETV6 for cDC1,
IRF4 and KLF4 for cDC2, and IRF7 for pDC. On the other hand,
BATF, GATA1, and MIF, which were important for mast-cell devel-
opment, were also detected. In conclusion, myeloid cells were
heterogeneous and pathway enrichment as well as transcrip-
tional regulation analysis indicated their plasticity in TME.

Next, we analysed the metabolism of each subtype of myeloid
cells in CRC (Supplementary Figure 7C and D). As a result, while
monocle subtypes were less active in metabolic pathways, nearly
all macrophages harbored higher metabolic activity except for
FCN1þ macrophages. Moreover, C1QCþ macrophages as well as
MKI67þ macrophages were highly activated in numerous meta-
bolic pathways and these cells were increased in stage IV CRC, in-
dicating that their metabolic reprogramming might contribute to
metastasis.

We further inferred a differentiation trajectory of monocytes
and macrophages in CRC. Both Palantir and the monocle3 algo-
rithm identified three branches including FCN1þ macrophages,
SELENOHþ macrophages, and MKI67þ macrophages (Figure 7E
and F, and Supplementary Figure 7E and F). It was shown that
the monocyte marker CX3CR1 was downregulated during differ-
entiation while branch-associated markers S100A8, FCN1, MKI67,
SELENOH, and SELENOK were upregulated or maintained

(Figure 7G). Integration with TCGA RNA-seq indicated that a high
fraction of FCN1þ macrophages and MKI67þ macrophages in CRC
were associated with a higher OS rate (Figure 7H and I). On the
other hand, a high fraction of SPP1þ macrophages in CRC signi-

fied a lower OS rate (Figure 7J).
Myeloid cells could interact with tumor cells, stromal cells,

and other immune cells, which exerted immunoregulatory func-
tions. We generated a colocalization profile of different cell types
in CRC. Regions annotated by colocalization profiles were similar

to regions clustered by transcription and corresponded to H & E
staining images likewise (Supplementary Figure 8A and B). We
found that several myeloid cell types were colocalized with CD8þ

T cells and DC, surrounding tumor cells in a stage IV CRC
(Supplementary Figure 8A and C). Latent factor 3 was contributed

by subsets of macrophages, DC, as well as T cells, and the distri-
bution of latent factor 3 was near to latent factors 1, 5, and 6,
which were enriched with tumor cells. On another slice from a
stage III CRC, DC were colocalized with T cells as indicated by la-

tent factor 6, which surrounded latent factor 8 enriched with pro-
liferative malignant cells (Supplementary Figure 8B and D). These
results indicated that the interaction between macrophages, DC,
T cells, and tumor cells played an important role in antitumor
immunity.

Altered cancer-associated regulatory hubs were
observed in different TNM stages of CRC
Since we have unveiled the dynamic heterogeneity of epithelial
cells, stromal cells, and immune cells during CRC progression, we

considered that intercellular communications between tumor
cells and surrounding stromal as well as immune cells not only
engage in immunoregulation, but also exert effects on tumor
behaviors, such as proliferation, metastasis, and drug resistance.

We have found the colocalization of macrophages, DC, T cells,
and tumor cells in TME. However, the alteration of intercellular
interaction in each stage of CRC has not been elucidated. Here,
we defined communication networks comprising ligands and
receptors that could significantly affect the biological behaviors

of tumor cells as cancer-associated regulatory hubs. These regu-
latory hubs contributed to the characteristics of tumor cells and
TME that could be correlated with prognosis.

To infer regulatory hubs, we analysed the enriched ligands
and receptors in each stage by comparing their differential ex-

pression in sequenced stages of all cells. We found that consider-
able interactions were enriched in specific stages (Supplementary
Figure 9A–C). For example, pathways of VEGF, non-canonical
WNT, and pleiotrophin, which were important for the growth of
tumor cells, were enriched in stage I CRC. On the contrary, path-

ways of TNF, IL1, IL2, IL4, and IL10, which were associated with
immunoregulation, were upregulated in stage IV CRC
(Supplementary Figure 9D). These results indicated that cancer-
associated regulatory hubs existed and were altered during

tumorigenesis. We further analysed the enriched pathways of
upregulated and downregulated ligands or receptors during tu-
morigenesis. GO analysis indicated that several pathways were
commonly enriched in stage I–IV CRC, such as cell chemotaxis,

cytokine production, and cell adhesion (Figure 8A). However,
some pathways were enriched in specific stages of CRC, such as
the leukocyte apoptotic process in stage I CRC, positive regulation
of the MAPK cascade in stage II CRC, the myeloid leukocyte differ-
entiation pathway in stage III CRC, and the regulation of angio-

genesis and gland morphogenesis in stage IV CRC (Figure 8A).
Therefore, cancer-associated regulatory hubs were altered in
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Figure 7. Characterization of myeloid cells in CRC tissues with different stages. (A) UMAP plot and bar plot showing the composition of myeloid cells.
(B) Relative expression of representative markers of myeloid cells. (C) Beeswarm plots of fold change in cell abundance for myeloid cell types across
different stages. Red and blue colors indicate significant differential abundance (Spatial FDR 10%). (D) Heat map demonstrating the relative expression
of transcription factors predicted by using pySCENIC. (E) UMAP plot showing the pseudo-time of monocytes and macrophages with specific cells
highlighted. Terminal state probability distributions of highlighted cells is revealed by bar plots. (F) Clusters of monocytes and macrophages are shown
in a UMAP plot. (G) The expression trends of representative markers for all lineages of monocytes and macrophages. The data are shown as mean 6

standard deviation. (H)–(J) Overall survival analysis for patients from TCGA–COAD and TCGA–READ stratified by low and high infiltration of (H) C05, (I)
C07, and (J) C08 myeloid cells using Kaplan–Meier curves by two-sided log-rank test. CRC, colorectal cancer; cDC, classical dendritic cell; pDC,
plasmacytoid dendritic cell; UMAP, Uniform Manifold Approximation and Projection; FDR, false discovery rate; TCGA, The Cancer Genome Atlas;
COAD, colon adenocarcinoma; READ, rectum adenocarcinoma.
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Figure 8. Inferring regulatory hubs in CRC tissues with different stages. (A) GO terms of enriched ligand receptors for each stage of CRC. (B) LIFR
signaling pathway networks between malignant epithelial cells and stromal cells are shown in circos plots for stage I–IV CRC. Edge width represents
the communication probability. (C) Violin plot depicting the expression of LIF for malignant epithelial cell types in each stage of CRC. (D) Kaplan–Meier
curves illustrating the OS for patients from TCGA–COAD, GSE17536, and GSE39584 stratified by low and high expression of LIF. A two-sided log-rank
test was performed. (E) Representative images of IHC staining for LIF protein in tumor tissues from patients with early-stage and advanced-stage CRC.
(F) IHC analysis of LIF expression. n¼ 13 for early-stage CRC tissues; n¼ 18 for advanced CRC tissues; t-test was performed to assess the significance.
CRC, colorectal cancer; GO, gene ontology; CAF, cancer-associated fibroblast; iCAF, inflammatory CAF; PVL, perivascular-like; OS, overall survival;
TCGA, The Cancer Genome Atlas; COAD, colon adenocarcinoma; IHC, immunohistochemistry.
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specific stages of CRC and these ligands or receptors could be po-
tential therapeutic targets.

To discover therapeutic targets from cancer-associated hubs,
we focused on pathways with increased activity as CRC evolved.
As a result, we identified the LIF–LIFR interaction was upregulated
during CRC progression (Figure 8B). We analysed the intercellular
networks about LIF/LIFR and found that interactions occurred fre-
quently between TM4SF1þ tumor cells and proliferative tumor
cells, indicating that LIF were mainly secreted from TM4SF1þ or
proliferative tumor cells exerted an effect on other cell types
(Figure 8B). One the other hand, LIF–LIFR interaction also occurred
between tumor cells and stromal cell types such as CAF and en-
dothelial cells. Expression of LIF was higher in TM4SF1þ tumor
cells and proliferative tumor cells, particularly in advanced CRC
tissues (Figure 8C). These results demonstrated that LIF was upre-
gulated in tumor cells in advanced CRC. Moreover, a higher ex-
pression of LIF was associated with worse prognosis (Figure 8D).
We further validated the expression of LIF in tumor tissues,
which demonstrated that the expression of LIF in tumor cells was
higher in patients with advanced-stage CRC than in those with
early-stage CRC (Figure 8E and F). Taken together, our results in-
dicated that cancer-associated regulatory hubs could represent
intrinsic characteristics of each stage of CRC and LIF–LIFR inter-
action was discovered to be screwed in advanced CRC.

Discussion
TME of CRC has been fully characterized by using scRNA-seq. For
example, CMS phenotyping, genetic alteration, and infiltration of
immune and stromal cells were unveiled at single-cell resolution
[25, 30]. However, the alteration of tumor heterogeneity during
CRC progression has not been elucidated [24, 25]. This study dem-
onstrated dynamic features including the proportion, function,
and lineage differentiation of epithelial cells, stromal cells, as
well as immune cells in TME by integrating scRNA-seq and ST-
seq data. We showed that TM4SF1 as well as LIF were upregu-
lated as CRC evolved and contributed to a lower OS rate.

In this study, based on their expression on stem cell-, prolifer-
ation-, and epithelial lineage-associated genes, malignant epithe-
lial cells were clustered into six subtypes by using differential
expression analysis, when fewer and more differentiated tumor
cells were ordered by differential trajectory analysis. Stem-cell-
associated genes were found to be co-expressed with genes in the
Wnt and Bmp signaling pathway such as WNT7A, BMP2, and
BMP4. Expression of proliferative genes and folate metabolism
for purine synthesis such as MTHFD1, MTHFD2, TYMS, and
SHMT2 were shown to be concordant. Lineage markers expressed
in more differentiated malignant cells included CLCA1 for imma-
ture goblet cells; MUC1, FCGBP, and SPINK4 for mature goblet
cells; and CHGA for enteroendocrine cells. These marker genes
were supported by the literature [31, 32]. The differentiation im-
puted by transcription was not the same as the morphology in
the pathology, since poorly, moderately or well-differentiated
CRC according to pathology reports could also consist of various
proportions of these six malignant epithelial cell types, indicating
the presence of tumor heterogeneity. Notably, the tumor differ-
entiation grade was significantly associated with the stage at
which a low grade was proved to be associated with an advanced
stage [33]. Our results of differential abundance analysis also
showed that stage IV CRC comprised more poorly differentiated
malignant epithelial cells that were defined by transcriptome. On
the other hand, recently it was reported that metastasis could oc-
cur when the primary tumor was a small mass in patients with

CRC [34]. Consistently with this, our study unveiled that
less-differentiated malignant epithelial cells also occurred in
early-stage CRC, suggesting the potential for progression to an
advanced stage. Based on differentiation-related genes, seven
gene clusters were found to define the transcriptional profile of
tumor cells during tumor progression. These gene clusters
allowed us to elucidate the alteration of tumor cells during tumor
growth and progression. GO enrichment analysis identified that
absorptive and secretory cell lineage-associated pathways were
enriched in more differentiated tumor cells when pathways
responding to low-oxygen conditions as well as the regulation of
cell adhesion were enriched in less-differentiated counterparts.
Among all differentiation-related genes, TM4SF1 was highly
expressed in the cluster enriched in stage IV CRC. In particular,
TM4SF1 was previously reported as one of the markers of cancer
stem cells, suggesting that TM4SF1þ malignant epithelial cells
might have the potential to differentiate to other malignant
epithelial cell subtypes [35]. In addition, qRT–PCR validated the
increased expression of TM4SF1 in CRC tissues.

CAF plays an important role in tumor immune evasion and
progression. CAF could prevent the infiltration of immune cells,
especially cytotoxicity T cells, and contribute to poor prognosis
[36]. On the other hand, CAF also exerted their effects on tumor
cells by secreting growth factors, cytokines, and exosomes to al-
ter the phenotype of the tumor and promote progression [37–39].
However, how CAF originated from intestinal stromal cells and
their remodeling process during tumor progression were not elu-
cidated. As shown by the differentiation trajectory, MCAMþ PVL
could differentiate into CXCL14þ CAF, CXCL12þ iCAF, and
ACTA2þ myofibroblasts. These results were similar to those of a
recent study which suggested that ACTA2þ CAF emerged through
proliferation from intestinal peri-cryptal cells expressing MCAM
[40]. However, besides myofibroblasts, we further identified the
other two branches of differentiation for CAF and revealed that
the number of CXCL12þ CAF was increased during tumor pro-
gression and became more fibrotic based on the expression of
transcription factor JUN.

The state of immune cells was also remodeled during CRC
progression. For example, CD4þ Treg, CD4þ Trm, IgAþ plasma
cells, C1QCþ macrophages, and mast cells were enriched in ad-
vanced CRC. Analysis of the differentiation trajectory and metab-
olism indicated that terminal states of T, B, and myeloid cells
presented the highest metabolism activity. As for T cells, CD4þ or
CD8þ T cells showed a positive correlation between the TCR sig-
nal and metabolism activity. Furthermore, for CD8þ T cells, ex-
haustion scores were also positively correlated with metabolic
scores and cytotoxic scores. These results showed that the inten-
sity of the dysfunctional signature was positively associated with
antitumor immunity for CD8þ T cells, which was also reported in
melanoma [41]. Tumors with significant T-cell infiltration were
associated with better immune checkpoint inhibitor efficacy [42].
To have a deeper understanding of the heterogeneity of immune
checkpoints expressed in T cells, we inferred the trend of im-
mune checkpoint expressions for each branch. The different
expressions of known immune checkpoints such as PDCD1,
CTLA2, TIGIT, TOX, HAVCR2, and LAG3 in the lineages of T cells
indicated their specific functions in T-cell subtypes and immune
checkpoint inhibitors could exert variable effects on T-cell line-
ages.

The components and colocalization of cell types in CRC were
complicated and intercellular communications were other vital
factors that could affect TME, making it inflammatory or immu-
nosuppressive. It should be taken into consideration that
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intercellular communication networks could be altered in differ-

ent stages of CRC. Inspired by weighted gene co-expression net-

work analysis that demonstrated the correlation of genes in bulk

RNA-seq data [43], we defined communication networks that

could significantly affect biological behaviors of tumors as

cancer-associated regulatory hubs imputed by scRNA-seq data.

These regulatory hubs determined the regulation of antitumor

immunity as well as tumor growth, progression, and metastasis.

Unlike weighted correlation network analysis, which took all

gene hubs into consideration, including both intracellular signal

pathways and intercellular communications, our analytical pipe-

line only focused on cell–cell interactions mainly comprising

ligands and receptors. The advantages of our method were the

ability to accurately find the key regulatory hubs and the associ-

ated cell types. As a result, we successfully discovered some regu-

latory hubs in each stage of CRC. The cascade of these regulatory

hubs was associated with CRC progression. For example, the leu-

kocyte apoptotic process, including IL10, PDCD1, and IDO, could

facilitate the initiation of CRC by contributing to the immunosup-

pressive TME. The MAPK cascade, which is a key factor in evading

apoptosis, regulating chemotherapy resistance, and promoting

metastasis, was enriched in stage II CRC [44, 45]. And regulation

of angiogenesis played an important role in stage IV CRC. Next,

we focused on regulatory hubs that were upregulated in ad-

vanced CRC. LIF–LIFR interaction was found to be upregulated

when CRC evolved and predominantly occurred in TM4SF1þ or

MKI67þ malignant epithelial cells. LIF was overexpressed in

many solid tumors, which could bind with LIFR and activate on-

cogenic signaling pathways including JAK/STAT3, MAPK, AKT,

and mTOR [46]. A previous study reported that LIF negatively reg-

ulated tumor-suppressor p53 through STAT3/ID1/MDM2 signal-

ing in CRC [47]. We utilized immunohistochemistry (IHC) staining

to verify the different expression of LIF in CRC. LIF was mainly

expressed in tumor cells and increased in advanced tumors.

Moreover, high expression of LIF in patients with CRC was associ-

ated with bad prognosis. These results proved that the LIF–LIFR

was an important cancer-associated regulatory hub in advanced

CRC.
Our study has provided a new analytic strategy to identify the

dynamic heterogeneity of CRC during tumorigenesis. However,

there are several limitations to our study. First, the characteris-

tics of the immune environment in different parts of the large

bowel, such as the colon and rectum, may be different, so it is op-

timal to analyse the dynamic landscape of CRC with different

stages by taking the location of the tumor into consideration.

However, this is limited by the availability of the current data,

which can be solved with the accumulation of more data of

scRNA-seq on CRC. Second, data on the spatial transcription of

CRC are only available in a small number of patients, which pre-

vents us from performing a meticulous analysis of the spatial

features of CRC.
In conclusion, our study unveiled the dynamics of heterogene-

ity during CRC progression, including cell-type proportion,

function, and lineages, which contributed to the alteration of

cancer-associated regulatory hubs. Particularly, we found that

TM4SF1 and LIF might serve as tumor progression markers in

patients with CRC.
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