Table 2.
Predictive performance of the top 5 ML models in the test/holdout datasets. The abbreviations refer to: a baseline dummy classifier that predicts outcomes based on the most frequent class, logistic regression implementing an L2 penalty (hereafter abbreviated as LR), Light Gradient Boosting Machine (LightGBM), Gradient Boosting Classifier (GBC), and the CatBoost Classifier.
| ML model | # Input features | AUC | Balanced accuracy | Sensitivity | Specificity | Precision | NPV | F1 | |
|---|---|---|---|---|---|---|---|---|---|
| Question 1 | Dummy | 0 | 0.5 | 0.5 | 0 | 1 | 0 | 0.979 | 0 |
| LR | All | 0.817 | 0.743 | 0.715 | 0.771 | 0.063 | 0.992 | 0.116 | |
| 40 | 0.813 | 0.741 | 0.711 | 0.771 | 0.062 | 0.992 | 0.114 | ||
| 30 | 0.804 | 0.735 | 0.702 | 0.767 | 0.060 | 0.992 | 0.111 | ||
| 20 | 0.799 | 0.711 | 0.658 | 0.763 | 0.056 | 0.991 | 0.103 | ||
| 10 | 0.798 | 0.716 | 0.667 | 0.765 | 0.057 | 0.991 | 0.105 | ||
| 5 | 0.750 | 0.679 | 0.566 | 0.792 | 0.055 | 0.988 | 0.100 | ||
| LightGBM | All | 0.825 | 0.740 | 0.803 | 0.677 | 0.052 | 0.993 | 0.097 | |
| 40 | 0.817 | 0.730 | 0.785 | 0.675 | 0.049 | 0.993 | 0.092 | ||
| 30 | 0.807 | 0.717 | 0.768 | 0.667 | 0.047 | 0.993 | 0.089 | ||
| 20 | 0.802 | 0.717 | 0.781 | 0.653 | 0.048 | 0.994 | 0.090 | ||
| 10 | 0.789 | 0.705 | 0.746 | 0.665 | 0.045 | 0.992 | 0.085 | ||
| 5 | 0.744 | 0.678 | 0.750 | 0.605 | 0.039 | 0.985 | 0.075 | ||
| GBC | All | 0.824 | 0.719 | 0.627 | 0.810 | 0.064 | 0.992 | 0.116 | |
| 40 | 0.810 | 0.719 | 0.627 | 0.810 | 0.064 | 0.992 | 0.117 | ||
| 30 | 0.803 | 0.731 | 0.689 | 0.773 | 0.063 | 0.992 | 0.115 | ||
| 20 | 0.804 | 0.719 | 0.675 | 0.763 | 0.057 | 0.999 | 0.105 | ||
| 10 | 0.801 | 0.716 | 0.662 | 0.769 | 0.056 | 0.991 | 0.104 | ||
| 5 | 0.752 | 0.681 | 0.570 | 0.791 | 0.057 | 0.988 | 0.104 | ||
| LDA | All | 0.816 | 0.743 | 0.702 | 0.785 | 0.065 | 0.992 | 0.120 | |
| 40 | 0.811 | 0.742 | 0.697 | 0.786 | 0.065 | 0.992 | 0.118 | ||
| 30 | 0.803 | 0.732 | 0.684 | 0.780 | 0.062 | 0.991 | 0.114 | ||
| 20 | 0.797 | 0.716 | 0.654 | 0.779 | 0.059 | 0.991 | 0.109 | ||
| 10 | 0.796 | 0.704 | 0.627 | 0.781 | 0.057 | 0.990 | 0.105 | ||
| 5 | 0.748 | 0.677 | 0.526 | 0.828 | 0.061 | 0.988 | 0.110 | ||
| CatBoost | All | 0.814 | 0.724 | 0.654 | 0.795 | 0.066 | 0.983 | 0.120 | |
| 40 | 0.809 | 0.728 | 0.662 | 0.794 | 0.065 | 0.983 | 0.118 | ||
| 30 | 0.798 | 0.716 | 0.654 | 0.778 | 0.057 | 0.982 | 0.105 | ||
| 20 | 0.798 | 0.704 | 0.640 | 0.767 | 0.055 | 0.984 | 0.101 | ||
| 10 | 0.792 | 0.701 | 0.640 | 0.761 | 0.053 | 0.984 | 0.099 | ||
| 5 | 0.739 | 0.679 | 0.575 | 0.784 | 0.043 | 0.986 | 0.079 | ||
| Question 2 | Dummy | 0 | 0.5 | 0.5 | 0 | 1 | 0 | 0.987 | 0 |
| LR | All | 0.808 | 0.732 | 0.619 | 0.846 | 0.049 | 0.994 | 0.090 | |
| 40 | 0.812 | 0.730 | 0.614 | 0.845 | 0.048 | 0.994 | 0.089 | ||
| 30 | 0.808 | 0.716 | 0.574 | 0.859 | 0.049 | 0.994 | 0.091 | ||
| 20 | 0.802 | 0.717 | 0.574 | 0.861 | 0.050 | 0.994 | 0.092 | ||
| 10 | 0.796 | 0.722 | 0.614 | 0.831 | 0.044 | 0.994 | 0.083 | ||
| 5 | 0.781 | 0.709 | 0.580 | 0.839 | 0.044 | 0.994 | 0.082 | ||
| LightGBM | All | 0.810 | 0.717 | 0.676 | 0.757 | 0.034 | 0.995 | 0.064 | |
| 40 | 0.808 | 0.722 | 0.671 | 0.773 | 0.034 | 0.994 | 0.064 | ||
| 30 | 0.810 | 0.730 | 0.688 | 0.773 | 0.036 | 0.995 | 0.068 | ||
| 20 | 0.805 | 0.728 | 0.671 | 0.786 | 0.036 | 0.995 | 0.069 | ||
| 10 | 0.796 | 0.718 | 0.705 | 0.731 | 0.032 | 0.995 | 0.062 | ||
| 5 | 0.777 | 0.706 | 0.739 | 0.674 | 0.027 | 0.995 | 0.052 | ||
| GBC | All | 0.810 | 0.715 | 0.585 | 0.846 | 0.049 | 0.994 | 0.091 | |
| 40 | 0.793 | 0.706 | 0.563 | 0.850 | 0.051 | 0.994 | 0.094 | ||
| 30 | 0.808 | 0.722 | 0.591 | 0.854 | 0.047 | 0.994 | 0.087 | ||
| 20 | 0.792 | 0.725 | 0.585 | 0.865 | 0.050 | 0.993 | 0.091 | ||
| 10 | 0.784 | 0.724 | 0.608 | 0.840 | 0.043 | 0.994 | 0.079 | ||
| 5 | 0.775 | 0.710 | 0.585 | 0.834 | 0.040 | 0.993 | 0.074 | ||
| LDA | All | 0.809 | 0.713 | 0.585 | 0.842 | 0.050 | 0.994 | 0.093 | |
| 40 | 0.813 | 0.725 | 0.591 | 0.858 | 0.051 | 0.994 | 0.093 | ||
| 30 | 0.808 | 0.712 | 0.557 | 0.868 | 0.049 | 0.994 | 0.091 | ||
| 20 | 0.803 | 0.714 | 0.557 | 0.871 | 0.052 | 0.994 | 0.095 | ||
| 10 | 0.797 | 0.726 | 0.608 | 0.844 | 0.047 | 0.994 | 0.088 | ||
| 5 | 0.782 | 0.704 | 0.557 | 0.851 | 0.045 | 0.993 | 0.084 | ||
| CatBoost | All | 0.800 | 0.720 | 0.574 | 0.866 | 0.053 | 0.990 | 0.097 | |
| 40 | 0.799 | 0.728 | 0.597 | 0.860 | 0.053 | 0.991 | 0.097 | ||
| 30 | 0.799 | 0.725 | 0.580 | 0.871 | 0.082 | 0.990 | 0.125 | ||
| 20 | 0.802 | 0.713 | 0.568 | 0.859 | 0.064 | 0.991 | 0.106 | ||
| 10 | 0.795 | 0.709 | 0.591 | 0.827 | 0.038 | 0.991 | 0.070 | ||
| 5 | 0.761 | 0.701 | 0.557 | 0.846 | 0.034 | 0.992 | 0.064 |