Table 2.
Anti-hyperuricemic effect of flavonoids from different sources.
Source | Active ingredient | Model | Dose | Mechanism | References |
---|---|---|---|---|---|
Ginkgo biloba leaves | Quercetin, apigenin, kaempferol and isorhamnetin | XOD model in vitro | \ | ↓ XOD activity | (110) |
Sophora japonica | Isorhamnetin | PO and hypoxanthine induced HUA mice | 50, 100, and 150 mg/kg | ↓UA, XOD activity, CR, BUN | (49) |
Cyclocarya paliurus | Quercetin-3-O-β-D-galactopyranoside, quercetin-3-O-β-D-glucopyranoside, and quercetin-3-O-α-L-rhamnopyranoside | PO induced HUA mice | 0.378 and 1.140 g/kg | ↓UA, XOD activity, NLRP3 and IL-1β | (100) |
Aspalathus linearis | Quercetin | Human embryonic kidney 293-derived 293A cells | \ | ↓ URAT1 | (45) |
Sophora japonica flower bud | Hydroxygenkwanin, Genistein, Tectorigenin, Kaempferol, Sophoricoside and Quercetin | PO and hypoxanthine induced HUA mice | 100 mg/kg | ↓UA, XOD activity and BUN | (111) |
Sophora japonica | Quercetin, kaempferol, and isorhamnetin | XOD and ADA model in vitro | 0.025 mg/mL to 1.0 mg/mL | ↓ XOD and ADA activity | (112) |
Corn silk | Apigenin-6-C-glucoside-7-O-glucoside, kaempferol-3-O-rutinoside, luteolin-7-glucoside, luteolin-3′,7-di-O-glucoside, and naringenin | PO induced HUA mice | 20 mg/kg | ↓ UA and XOD activity | (91) |
Fagopyrum tataricum | Quercetin and kaempferol | XOD model in vitro | \ | ↓ XOD activity | (113) |