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Abstract

COVID-19 has claimed millions of lives during the last 3 years since initial cases were reported 

in Wuhan, China, in 2019. Patients with COVID-19 suffer from severe pneumonia, high fever, 

acute respiratory distress syndrome (ARDS), and multiple-organ dysfunction, which may also 

result in fatality in extreme cases. Cytokine storm (CS) is hyperactivation of the immune 

system, wherein the dysregulated production of proinflammatory cytokines could result in 

excessive immune cell infiltrations in the pulmonary tissues, resulting in tissue damage. The 

immune cell infiltration could also occur in other tissues and organs and result in multiple 

organs' dysfunction. The key cytokines implicated in the onset of disease severity include TNF-

α, IFN-γ, IL-6, IL-1β, GM-CSF, and G-CSF. Controlling the CS is critical in treating COVID-19 

disease. Therefore, different strategies are employed to mitigate the effects of CS. These 

include using monoclonal antibodies directed against soluble cytokines or the cytokine 

receptors, combination therapies, mesenchymal stem cell therapy, therapeutic plasma 

exchange, and some non-conventional treatment methods to improve patient immunity. The 

current review describes the role/s of critical cytokines in COVID-19-mediated CS and the 

respective treatment modalities.   

1. Introduction 

The Coronavirus Disease 2019 (COVID-19), initially reported in Wuhan, China, in December 

2019 1,2, presented a significant risk to public health as well as communal stability. It was 

officially announced as a worldwide pandemic emergency on March 11, 2020, by the World 

Health Organization (WHO) 3. The causative agent of COVID-19 is SARS-CoV-2, which is a 
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component of the β-coronaviruses subfamily. Coronaviruses generally comprise enveloped, 

positive (+) sense, single-stranded RNA (ssRNA) viruses. The virus primarily spreads from an 

infected (symptomatic and/or asymptomatic) host through respiratory droplets via sneezing 

or coughing 4–7. Indeed, a significant number of people infected remain asymptomatic, and 

approximately 10% of the patients suffering from pneumonia require ICU admission with or 

without mechanical ventilation. The usual symptoms comprise fever, shortness of breath, dry 

cough, muscle pain, headaches, malaise, etc. In some cases, sore throat, hemoptysis, nausea, 

chest pain, and diarrhea occur. More severe symptoms include high fever, exhaustion, shock, 

diffused intravascular coagulation, acute respiratory distress syndrome (ARDS), and multi-

organ failure. The unregulated Cytokine storm (CS) could also manifest death of the patient 
7–9. Within 7-14 days after the beginning of the symptomatic disease, the progression to 

pneumonia is ascertained using several radiological findings such as decreased oxygen 

saturation levels, weakening of blood gas, and multi-focal ground-glass opacities in the 

patient's CT scans. Furthermore, the patient's lung lesions may display patchy or segmental 

consolidations or vasodilation 9–12.

Evidence suggests that a subset of the population suffering from COVID-19 develops CS 

(Figure 1). CS, which has previously been documented for rheumatoid arthritis (RA) as well as 

in graft-versus-host disease, is a condition of hyperactivated immune response that is 

generally triggered as a result of various factors, including viral or bacterial infections, 

immunotherapies, and autoimmune diseases 8,13–15. When a cell is under a normal 

physiological condition, a homeostasis is maintained amid the concentrations of pro- and 

anti-inflammatory cytokines. This balance gets disrupted upon viral infection, leading to 

abnormal activation of different immune cells, including macrophages, T and B lymphocytes, 

dendritic cells or natural killer cells. This results in the abnormal activation of the immune 

cells, thereby producing extensive levels of proinflammatory cytokine/s and chemokines that 

further promote the activation of additional immune cells via a positive feedback loop. 8,16. 

Such an over-activated immune response helps clear off the viral titer and negatively affects 

the host. In COVID-19-associated CS, extensive pulmonary inflammation and damage to the 

lungs are observed 17. It has been reported that almost 1/6th of patients suffering from the 

virus go on to develop ARDS, acute renal injury, and septic shock 9. The situation is further 

worsened with the continued evolution of sub-variants of SARS-CoV-2 omicron, such as 
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sublineages of BA.5, which include BQ.1 and BQ.1.1, BA.4.6 (a sub-variant of omicron 

B.1.1.529), BA.2.75.2 and BF.7 (also identified as BA.5.2.1.7). A recent report examined the 

sera from 3-dose vaccinated healthcare workers and found increased resistance to 

neutralization in all the new sub-variants suggesting a need to find new therapeutic options 

for COVID-19 cure 18. In fact, Recently a new Covid variant (XBB.1.16 also referred as 

“Arcturus”) has been creating a new surge in Covid cases in India and it has been suggested 

to be similar to U.S. dominant XBB.1.5, which is considered as the most transmissible COVID 

variant yet 19(https://fortune.com/well/2023/03/31/arcturus-covid-variant-watch-who-

world-health-organization-xbb116-omicron-wave/).

The COVID-19-associated CS patients display elevated levels of several critical 

proinflammatory cytokines, for example, Interferon-gamma (IFN-γ), Tumor Necrosis Factor-

alpha (TNF-α), Interleukin 1 (IL-1), Interleukin 2 (IL-2), Interleukin 6 (IL-6), IFN-γ-inducible 

protein 10 (IP-10), Monocyte Chemoattractant Protein-1 (MCP-1), Granulocyte Macrophage-

Colony Stimulating Factor (GM-CSF), and Interleukin 10 (IL-10).  The levels of some of these 

cytokines were also found to correlate with the severity of the disease 20–24. Therefore, several 

agents have been investigated for their potential to diminish the covid associated CS. Some 

drugs, such as Glucocorticoids and cytokine-specific inhibitors, have effectively reduced 

overall mortality rates, particularly in critically ill patients 25. In the current review, we shall 

comprehensively describe the role of various cytokines in COVID-19-associated CS. We will 

particularly emphasize the role of GM-CSF and G-CSF cytokines and other emerging 

therapeutic strategies adopted to mitigate COVID-19.

2. Role of cytokines in CS

Cytokines are small proteins (~5–25 kDa) involved in cell signaling, which play essential roles 

in regulating the development and activity of blood and immune system cells 26. They are 

immunomodulating agents that are transiently expressed 27 and participate in various 

autocrine, paracrine, and endocrine signaling mechanisms. Cytokines play an important role 

in several biological processes, including tissue repair, cancer development, and progression, 

controlling cellular replication, and regulating cell death 28. They are the fundamental 

mediators that establish communication among the immune system cells. When required, 

cytokines are rapidly secreted from the cell. Cytokines modulate the immune system 
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functioning. The body requires a homeostatic balance of cytokine levels. However, excessive 

levels and perturbed cytokines homeostasis could harm the host system.

Interleukin 1β (IL-1β): IL-1β is a pleiotropic cytokine that is generated by 

monocytes/macrophages, dendritic cells, neutrophils, synovial fibroblasts, and B lymphocytes 

and is one of the most important cytokines engaged in COVID-19 mediated CS 29. IL-1β has 

been shown to encourage the synthesis of IL-6 30 and can induce the synthesis of 

cyclooxygenase and inducible nitric oxide synthase (iNOS) 31. The nitric oxide produced by 

iNOS has been shown to contribute to tissue damage during airway inflammation 32. IL-1β 

could also increase the expression of chemokines and adhesion molecules, particularly in 

endothelial as well as mesenchymal cells, which, in turn, promote the immunocompetent 

cells' infiltration within the injured tissues. Moreover, being a stimulant of bone marrow, it 

enhances the count of myeloid progenitor cells and neutrophils' release, resulting in 

neutrophilia 31. IL-1β is found to be secreted during the activation of the Nod-like receptor 

family, pyrin domain-containing 3 (NLRP3) inflammasome. A study has suggested that the 

Viroporin 3a protein of SARS-CoV could activate the NLRP3 inflammasome in macrophages 

that have been primed by lipopolysaccharides (LPS) 33, which in turn stimulate the IL-1β 

production. In fact, studies have reported a positive correlation between the high IL-1β 

concentration in the blood and plasma levels of COVID-19 patients 20,34 (Figure 2).

IL-6: IL-6 is a glycoprotein and is also known as "hepatocyte stimulating factor" or "B cell 

stimulating factor" and is expressed in different immune cells that may include T and B 

lymphocytes, monocytes/macrophages, fibroblasts, dendritic cells, and endothelial cells. The 

plasma concentrations of IL-6 rise during various conditions, such as septic shocks, trauma, 

and burns 35. IL-6 is a pleiotropic cytokine, which can encourage the differentiation as well as 

the growth of B lymphocytes and increase platelet generation. Furthermore, it can activate 

the hepatocytes and induce reactive protein C (CRP) and fibrinogen secretion 36–38. According 

to several studies, the COVID-19 severity positively correlates with enhanced IL-6 and CRP 

serum levels 39,40 (Figure 2).

TNF-α: Tumor necrosis factor (TNF-α), is part of the Tumor Necrosis Factor Superfamily 

(TNFSF) 41 and a potent proinflammatory cytokine whose elevated plasma concentrations are 

in positive correlation with SARS-CoV-2 infection mediated CS 20,42,43. It can be produced by 
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various cells, such as macrophages, T cells, mast cells, smooth muscle cells, and epithelial 

cells, and its synthesis can be elicited by pathogen-associated molecular patterns and IL-1 

through nuclear factor (NF-κB) activation 16. Although TNF-α is related to B cells’ proliferation 

and differentiation under homeostatic circumstances, it is also linked with a broad range of 

diseases, including pulmonary, cardiovascular, cancer, autoimmune, neurologic, and 

metabolic disorders 41 (Figure 2).

Interferon-gamma (IFN-γ): IFN-γ is an important proinflammatory cytokine implicated in 

immunity against intracellular pathogens and tumor control. However, deviation in the IFN-γ 

expression is related to several autoimmune and auto-inflammatory autoimmune diseases 44. 

As part of the innate immune response, IFN-γ is synthesized by natural killer and natural killer-

T cells. Upon onset of the antigen-specific adaptive immunity, IFN-γ can be generated by the 

effector T cells originating from Th1 CD4 cells as well as  CD8 cytotoxic T lymphocytes (CTL) 
44. Upon viral infection, the CD8+ T cells differentiate into CTL 45, which in turn, are responsible 

for producing the effector molecules responsible for viral elimination; thus, IFN-γ somehow 

links the innate and adaptive immune responses. In individuals who died with COVID-19, high 

levels of IFN-γ were detected 46. Interestingly, the combination of IFN-γ and TNF-α could be 

critical for inducing inflammatory cell death and results in pyroptosis (a programmed cell 

death pathway induced by proinflammatory cytokines, apoptosis, and necroptosis 47. TNF-α 

and IFN-γ work synergistically and trigger inflammatory cell death 47. The co-treatment of 

TNF-α and IFN-γ could activate the JAK/STAT1/IRF1 pathway, thereby inducing nitric oxide 

generation and ultimately resulting in caspase-8/FADD-interceded inflammatory cell death 

termed as PANoptosis. Mice treated with a combination of TNF-α and IFN-γ suffered from a 

fatal cytokine shock, which could mimic the inflammation and tissue injuries observed in 

COVID-19. Furthermore, PANoptosis inhibition could protect mice from such pathology and 

casualty 47. Although studies have demonstrated the significance of IFN- and TNF- in reducing 

lung damage in COVID-19 patients, more studies are required to establish the precise function 

of these cytokines in mediating CS (Figure 2).

3. Role of GM-CSF

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth 

factor and immunomodulatory cytokine that aids in the clearance of respiratory microbes by 
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stimulating alveolar macrophages. However, GM-CSF is also a key cytokine implicated during 

the hyper-inflammatory COVID-19 response. It has low or undetectable concentrations in 

healthy individuals, but several conditions can quickly raise its levels 48,49. 

Macrophages/monocytes, fibroblasts, activated B and T cells, and endothelial cells are some 

of the cells that create GM-CSF. Although it is produced locally, GM-CSF has a paracrine effect 

that can help attract lymphocytes, monocytes, and neutrophils to support host defense 48. IL-

1, IL-12, and prostaglandin E2 increase the synthesis of GM-CSF in human T cells 50,51. In cells 

like fibroblasts, chondrocytes, endothelial cells, etc., TNF-α and IL-1β stimulate the synthesis 

of GM-CSF 52.

It was previously shown that COVID-19 patients harbor greater circulating concentrations of 

GM-CSF than the healthy controls 20. Previous reports have also suggested that the levels of 

GM-CSF were higher in the bronchoalveolar fluids of patients suffering from ARDS in 

comparison to healthy patient controls and that GM-CSF could be indirectly contributing to 

ARDS by suppressing the apoptosis of neutrophils 53,54, since activated neutrophils are known 

to be involved in microvasculature and lung damages 55,56. It is speculated that excessive GM-

CSF production may act as a factor in the unregulated immune reaction that occurs during 

critical COVID-19 in the later disease stages 57, where activated T cells target macrophages 

and neutrophils before IL-1 and IL-6 are released 58. Moreover, GM-CSF is vital for the 

pathogenicity and differentiation of CD4(+) T cells; and an essential factor during the onset of 

various autoimmune or inflammatory disease conditions 58. A study from China has reported 

that only the severely affected COVID-19 patients and not the less affected patients or healthy 

controls displayed the presence of a typical pathogenic T helper 1-cells expressing GM-CSF 59. 

Indeed, such effects could be placed further upstream of other cytokines (TNF's, IL-1, IL-6, 

etc.) within an inflammatory cascade. Additionally, GM-CSF is believed to be a primary target 

for treating a number of immune-associated disorders, such as spondyloarthritis, giant-cell 

arteritis, and rheumatoid arthritis 60. It is hypothesized that antagonists of GM-CSF may be 

beneficial in treating COVID-19 and other acute inflammatory diseases like sepsis or ARDS 61.

3.1. GM-CSF: From Growth Factor to a fundamental Tissue Inflammation Mediator 

GM-CSF is encoded by a 2.5 kb mRNA and secreted in a monomeric form as a 23 kDa 

glycosylated protein. The mature human GM-CSF contains 127 residues and is derived from a 
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signal peptide-containing precursor 48. GM-CSF is found to be present in most tissues as well 

as serum; and it is also present as an integral membrane protein within the extracellular 

matrix 48,62. Although GM-CSF was initially recognized as a stimulating agent for the 

propagation of macrophages and granulocytes from the bone marrow precursor cells 63. 

However, depending on its concentration, GM-CSF can stimulate the proliferation of 

multipotent progenitor cells into different cell types such as macrophages, granulocytes, 

eosinophils, megakaryocytes, etc. 64. It also plays a key role in maintaining homeostasis in the 

innate immune system by promoting mature myeloid cell survival and activation 65 (Figure 3). 

Furthermore, it induces the proliferation of myeloid leukemia cells 66.

It is imperative to mention here that GM-CSF is known to be crucial for preserving the lung 

alveoli homeostasis, where GM-CSF is synthesized at low levels for the growth and long-

lasting maintenance of alveolar macrophages 67,68. Pulmonary alveolar proteinosis (PAP) is a 

fatal disease of interstitial lungs in which the dysfunctional alveolar macrophages fail to clear 

off surfactants. PAP is caused due to a severe deficiency of GM-CSF. The vulnerability to 

opportunistic infections is greatly enhanced in individuals suffering from PAP because of 

impaired GM-CSF signaling that leads to defects in the antimicrobial function of basal 

circulating neutrophils and alveolar macrophages 68,69. This deficiency of GM-CSF may arise 

from alterations in the GM-CSF receptor genes CSF2RA (encodes GM-CSF-Rα chain) or CSF2RB 

(encodes GM-CSF-Rβ chain) 68,70, or from high amounts of auto-antibodies directed against 

GM-CSF in an autoimmune disorder 71. However, such mutations that could alter the function 

of the GM-CSF gene have not been found, which suggests that, unlike its receptor genes, the 

GM-CSF gene is highly conserved with a mutation resulting in its loss being fatal.

GM-CSF can be effectively induced by various bacterial endotoxins and inflammatory 

cytokines such as TNF-α, IL-6, and IL-1β, etc., which is also reflected in the enhanced mRNA 

expressions of these cytokines in macrophages and monocytes treated with GM-CSF 58,72,73. 

Such findings suggest the possible role of GM-CSF in autoimmunity and inflammatory 

responses. IL-6 has been demonstrated to stimulate intestinal and splenic GM-CSF synthesis, 

promoting effects at systemic levels, including elevated splenic macrophage precursors 74. 

GM-CSF can also boost the production of proinflammatory cytokines by up-regulating the 

expression of TLR2, TLR4, or CD14 75–78. This leads to the polarization of the macrophage 

towards the M1-like phenotype, thereby enhancing the Th1-Th17 immune responses 79–82 and 
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also contributes to tissue injuries. In fact, various studies have suggested that GM-CSF is 

crucial for the Th17 cell pathogenesis 83,84 and that the Th1/17 cells have been found to be 

present at the inflammatory sites in case of multiple sclerosis (MS), inflammatory bowel 

diseases (IBD) and juvenile idiopathic arthritis 85–87. Additionally, GM-CSF controls the growth 

of resident CD8+ dendritic cells as well as the maturation of migratory CD103+CD11b+ 

dendritic cells 88–90.

Various studies have also demonstrated that GM-CSF overexpression is always followed by 

multiple pathological changes 91. For instance, an analysis using transgenic mice carrying the 

overexpressed murine GM-CSF gene displayed macrophage accumulation, retinal damage, 

critical tissue damage at various sites, and increased inflammatory mediators and cytokines 

in these mice 92. Similarly, the overexpression of GM-CSF inside the stomach may lead to 

autoimmune gastritis 93. Similarly, in another study, murine bone marrow cells were treated 

with a recombinant retrovirus expressing GM-CSF and transplanted into irradiated mice. It 

resulted in the induction of a lethal myeloproliferative syndrome that was accompanied by 

extensive neutrophil and macrophage infiltration into various tissues, ultimately leading to 

death 94. 

GM-CSF undoubtedly has the potential to function as both a regulatory cytokine and a 

proinflammatory cytokine 95. It's interesting to note that it's still unclear what causes GM-pro-

inflammatory CSF's and their immunomodulatory characteristics. These characteristics are 

thought to be influenced by the quantity and presence of other cytokines in an immune-

responsive environment. Lower doses of GM-CSF may promote the tolerogenesis of myeloid 

cells, which is essential in maintaining the balance of regulatory T-cells 95. However, higher 

doses of GM-CSF induces myeloproliferation, resulting in long-lasting immunological 

responses 72,96 (Figure 3).

3.2. GM-CSF-dependent inflammatory pathways.  

The biological activity and signaling of GM-CSF are mediated by means of attaching to the cell 

surface receptors of GM-CSF. There are two known components of the GM-CSF receptor (GM-

CSF-R). The GM-CSF-R represents a heterodimer comprising a GM-CSF-Rα-chain, involved in 

Ligand binding, and a GM-CSF-Rβ -chain, involved in signal transduction. In fact, the GM-CSF-

Rβ-chain (also referred to as βc subunit) is commonly present in the receptors of IL-3, IL-5, 
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and GM-CSF 97,98. The receptor expression could be illustrated by high affinity (Kd = 20-100 

pM) and low numbers (~20 – 200 per cell) 99,100. The GM-CSF receptor α and β chains may be 

differentially expressed, depending on the cell types, as is suggested in some studies 101,102. In 

a study, it was found that the mouse GM-CSF-Rα-chain is polymorphic and spliced 

alternatively. The mice GM-CSF-Rα-chain is also suggested to be expressed explicitly by the 

myeloid cells 101. However, in the case of endothelial cells, it was found that the GM-CSF-Rα-

chain was minimally expressed, whereas the GM-CSF-Rβ chain was expressed at high levels 
102. Interestingly, both GM-CSF receptor α and β chains lack the catalytic domain for tyrosine 

kinase activity 103,104. Regardless, the receptor-cytokine binding could induce several cellular 

responses, including tyrosine phosphorylation of the β-chain and other intracellular 

substrates along with activation of Janus kinase 2 (JAK2)/signal transducer and activator of 

transcription 5 (STAT5), a mitogen-activated protein (MAP) kinase and RAS-Raf signaling 

pathways 103–107. 

The pleiotropic behavior of the GM-CSF cytokine has been attributed to the presence of a 

conserved motif in GM-CSF-R comprising a tyrosine (Tyr577) and serine (Ser585) residue 108. 

This motif serves as a binary switch and independently regulates multiple biological functions 

in a dose-dependent manner. At lower GM-CSF concentrations, signaling occurs through the 

phosphorylation of serine residue, which activates the PI-3 kinase pathway, thus resulting in 

the survival of myeloid cells. However, at higher GM-CSF levels, tyrosine phosphorylation 

occurs, leading to cell survival, growth and differentiation vis-a-vis functional activation of 

signaling cascades such as JAK2/STAT5, RAS/MAPK and phosphoinositide 3-kinase (PI3K)-Akt 

pathway pathways. Both these processes are mutually exclusive and occur independently of 

each other 108 (Figure 3). Another critical downstream signaling pathway of GM-CSF is the 

extracellular signal-regulated kinase (ERK) pathway. The activity of ERK has been implicated 

in the survival of GM-CSF-treated human proinflammatory monocytes 109. Furthermore, the 

c-fps/fes protein-tyrosine kinase has been involved in the GM-CSF mediated receptor 

signaling pathways 110,111. 

Moreover, GM-CSF can also drive the production of CCL17 via up-regulating the expression of 

the IFN regulatory factor 4-dependent (IRF4-dependent) pathway within murine 

macrophages, in vivo mice, and human monocytes. GM-CSF could up-regulate the expression 
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of IRF4 by enhancing the activity of Jumonji domain-containing protein D3 (JMJD3) 

demethylase 73. The GM-CSF/IRF4/CCL17 axis is shown to be involved in tissue remodeling 

and inflammation 73,112. IRF4, a hemopoietic-specific transcription factor, was found to induce 

monocytic cell differentiation into dendritic cells 113, and thus it also controls the Th2 cell 

responses 114. Moreover, the GM-CSF mediated upregulation of IRF4 signaling has also been 

associated with the elevated levels of major histocompatibility complex class II (MHCII) 

expression in macrophages and mice bone marrow cultures 115–117.

3.3. GM-CSF as a therapeutic target in autoimmunity

GM-CSF is found to play imperative roles in various inflammatory as well as autoimmune 

disease conditions, such as rheumatoid arthritis (RA), multiple sclerosis (MS), intestinal 

diseases, and COVID-19 (discussed above). We will succinctly discuss autoimmune diseases 

with respect to GM-CSF in this section.

3.3.1. Role of GM-CSF in rheumatoid arthritis (RA):

RA is an autoimmune condition with a chronic systemic pathology illustrated by erosive and 

persistent inflammatory polyarthritis. It damages joints and the extra-articular organs, 

including kidneys, heart, lungs, eye, skin, digestive and nervous systems 118,119. There are 

several clinical predictors of the presence of RA complications. These include male gender, 

severe joint disease, smoking, elevated levels of proinflammatory markers, increased titers of 

rheumatoid factor, and human leukocytic antigen (HLA)-associated shared epitopes 119. 

Various studies have advocated the role of GM-CSF during RA pathogenesis 120–122. Such 

studies have indicated elevated GM-CSF concentrations in RA patients' plasma and synovial 

fluids. In fact, the administration of GM-CSF led to exacerbated collagen-induced arthritis in 

a mouse model of RA infection 123.

On the contrary, the deficiency of GM-CSF in the collagen-induced arthritis model of mice 

failed to develop any disease 124. One case study observed that recombinant GM-CSF 

administration could aggravate RA and induce IL-6 in-vivo. Furthermore, the flared-up 

arthritis symptoms were accompanied by the simultaneous release of high acute-phase 

protein levels, including C-reactive protein and serum amyloid A 125. In addition, GM-CSF was 
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also reported to be produced by human synovial fibroblasts and chondrocytes in response to 

IL-1 and TNF stimulus 126,127. GM-CSF was identified as a significant curative target in treating 

RA in light of these studies and other research on the involvement of GM-CSF in RA 

pathogenesis 128.

3.3.2. Role of GM-CSF in multiple sclerosis (MS):

MS represents a persistent inflammatory ailment of the central nervous system. The 

pathology of the disease can be illustrated via demyelination followed by axonal 

degeneration. The myelin sheath degeneration may result in the onset of some clinical 

manifestations such as muscle spasms, optic neuritis, paralysis, and neuropathic pain. The MS 

lesion pathology displays myelin sheath destruction, damage at the axonal sites, blood-brain 

barrier permeability, glial scar formation, and immune cell infiltration, especially 

lymphocytes, into the CNS 129. Encephalomyelitis (EAE) represents an established model for 

studying experimental MS 130,131. The relapsing-remitting type patients of MS have been 

found to contain elevated levels of GM-CSF and TNF-α within the cerebrospinal fluids and not 

in serum 132. T helper 1 (Th1) and T helper 17 (Th17) cells are known to mediate CNS 

autoimmunity in experimental MS and EAE 130. A study has reported that the IL-23-mediated 

generation of GM-CSF in Th17 cells was indispensable for encephalitogenicity or 

encephalitogenic potential  The study highlighted the importance of Th17 cells as a vital 

supplier of GM-CSF in autoimmunity 83. A recent study showed that the combined scRNA/TCR-

seq of >84000 Th17 cells could reveal extensive heterogeneity in Th17 cells with tissue-

specific signatures. The stem-like SLAMF6+ and CXCR6+ Th17 pathogenic populations get 

induced during an autoimmune condition. This population gets trafficked to the intestine, 

where IL-23 derives the pathogenic production of the GM-CSF+ IFN-γ+ Th17 population. This, 

in turn, dictates the onset of extra-intestinal autoimmune diseases such as MS 133.

 Another study by Dittel and group has demonstrated that the onset of EAE depends on the 

GM-CSF produced via Th1 cells. Such disease onset is driven by the activation of CNS-invading 

microglial cells in a GM-CSF-dependent process. The activated microglia could induce 

proinflammatory cytokine production, ultimately contributing to myelin sheath damage in 

the CNS. In fact, neutralizing GM-CSF or its deficit could prevent the onset of EAE disease 131. 

In addition, recombinant GM-CSF administration in C57BL6 mice exacerbated microglial 
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activity, which could be suppressed by injecting anti-GM-CSF antibody, implying that GM-CSF 

was critical for the microglial activity in CNS 134. Such Reports suggest an essential role of GM-

CSF in MS along with an indication that inhibiting GM-CSF could be a valuable approach for 

MS treatment. 

3.3.3. Role of GM-CSF in intestinal diseases

Inflammatory bowel diseases (IBD)  encompass the Crohn's disease (CD) along with ulcerative 

colitis (UC). Both of these are robustly involved in the progression of intestinal inflammatory 

lesions. Regulated macrophage activation is key to intestinal immunity. The macrophage 

activation is majorly regulated via GM-CSF within patients suffering from IBD and dextran 

sulfate sodium (DSS) mediated-colitis model of mice. During intestinal inflammation, the type 

3 innate lymphoid cells (ILC3) are a significant source of GM-CSF 135–137. The GM-CSF-

dependent macrophage polarization drives a positive feedback loop leading to further 

activation of ILC3 and the activation of Th17 immune cells 136. The extracellular matrix protein 

1 (ECM1) expression has been considerably induced during the progression of IBD. 

Macrophage-specific ECM1 knockout impaired the polarization of M1 macrophage, which is 

crucial for inflammation control and repair of tissues within the intestine. The study suggested 

that ECM1 could regulate the polarization of M1 macrophages via the GM-CSF/STAT5 

signaling pathway 138.

Generally, ILC3 has been implicated in maintaining steady-state intestinal homeostasis by 

protecting the intestinal mucosa from various pathogen infections. Such protection could be 

realized in different ways. For instance, secretion of IL-22, Il-17, and GM-CSF via ILC3 could 

trigger the production of antimicrobial peptides, including RegIIIβ and RegIIIγ, which in turn 

kill pathogens 139. ILC3s are also found to regulate the CD4+ T-cell responses that are specific 

toward the commensal bacteria through the expression of MHCII 140,141. This microbiota-

dependent crosstalk between ILC3 and macrophages is crucial for promoting intestinal 

homeostasis via ILC3-dependent GM-CSF secretion 142. However, this homeostasis might 

quickly get disrupted by uncontrolled GM-CSF levels. In a recent study, elevated levels of ILC3 

were observed in DSS induced-colitis mice and human IBD patients. Those ILC3s failed to 

express natural cytotoxicity receptors (NCR) and neutrophils. However, a co-culture of NCR- 

ILC3s with the neutrophils could help stimulate the neutrophils via enhanced GM-CSF 
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production. Such enhanced GM-CSF production by neutrophils and NCR- ILC3s could 

exacerbate IBD, and inhibit the neutrophil activity via GM-CSF blockade could inhibit such 

disease progression 135.

Elevated levels of GM-CSF auto-antibodies could influence the mucosal integrity, pathogen 

clearance, and migration, proliferation, and survival of the neutrophils 58,143. A deficiency in 

GM-CSF resulted in reduced CD11c(+) DCs, delayed pathogen clearance, and more critical 

intestinal as well as systemic infection in mice suffering from enteric diseases  144. Another 

study reported that the GM-CSF-/- mice displayed enhanced susceptibility towards acute DSS-

induced colitis compared to wild-type 145. Moreover, different studies and clinical trials have 

suggested a protective role of GM-CSF administration in IBD patients 146–149. 

4. Role of G-CSF

Granulocyte colony-stimulating factor (G-CSF) is an 18.8-kDa secreted glycoprotein encoded 

by the CSF3 gene 150. G-CSF is released in an autocrine (hormones that act as ligands and bind 

to the receptors of cells that produce them) manner. The production of G-CSF in an 

endogenous setting could be stimulated via pathogenic infection and tissue damage. 

Although a variety of cells can produce G-CSF, it is mainly generated by cells such as 

macrophages, mesenchymal cells, fibroblasts, endothelial cells, and neuronal cells in 

response to proinflammatory stimuli, including IL-1, lipopolysaccharides, and TNF-α 150–153. G-

CSF has been recognized to orchestrate the neutrophilic granulocytic colony formation in agar 

cultures of mouse bone marrow cells 154,155. In commercial settings, the recombinant G-CSF 

(rG-CSF) is retailed as Neupogen® (AMGEN®) (filgrastim). It was first launched into clinical 

trials during the mid-1980s, with a primary aim to restore neutrophil counts in patients 

subjected to chemotherapies 156 as G-CSF can mediate the differentiation as the proliferation 

of neutrophil progenitor cells. Moreover, it effectively treats neutropenia (a condition defined 

by a substantially reduced capacity to recruit or mount neutrophils in response to pathogenic 

infections) patients 150,151. The rG-CSF is administered via the subcutaneous or intravenous 

(i.v.) routes, and the serum saturation levels (~40-50 ng/ml) could be attained within 2 to 8 

hours 157. Previous studies have reported that a deficiency of G-CSF in mice resulted in chronic 

neutropenia and a deficit in granulocyte and macrophage progenitor cell populations 158. 
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Besides, G-CSF is also considered to be a potent neuroprotectant and a potential candidate 

for treating neurological conditions in human patients 153,159.

G-CSF must bind to its cognate receptor, G-CSFR, to carry out its biological activity. G-CSFR is 

a homo-oligo-dimer principally expressed on the exterior of the bone marrow precursor cells 

and neutrophils 155 and is a class I cytokine receptor superfamily 151,160,161. A large part of G-

CSFR is present in a glycosylated extracellular region. This region further comprises an 

approximately 200 amino acid-long-region named as cytokine receptor homology (CRH) 

domain, 3 fibronectin type III (FBN) domains, and an immunoglobulin (Ig)-like N-terminal 

domain 162. The CRH domain comprises four conserved cysteine residues and a highly 

conserved WSxWS motif, which is implicated in ligand identification crucial for signal 

transduction 162. On the other hand, the FBN and Ig domains are responsible for receptor 

stabilization. The membrane-proximal regions of the intracellular domains contain two 

conserved motifs, namely Box 1 and Box 2, and tyrosine residues (Y704, Y729, Y744, Y764) 

which are crucial for proliferative signaling, differentiation, and viability  163–165. The distal 

regions contain a less conserved motif (Box 3) related to the trafficking of the receptor 163,164. 

G-CSF binding with its receptor further leads to the activation of various signaling pathways, 

including JAK/STAT, PI3K/AKT and MAPK that in turn promote survival, propagation, and 

differentiation of neuronal cells, mobilize the hematopoietic stem cells and progenitor cells 
153,166–168.

4.1. Role of G-CSF in COVID-19 and associated disease conditions

Neutropenia is a common condition that is observed in cancer patients due to the killing of 

several fast-growing cell types by chemotherapeutic agents. Neutrophils also die during 

chemotherapy leading to chemotherapy-induced Neutropenia. Filgrastim (rG-CSF) is routinely 

used to treat neutropenia in oncology patients 169. Recently, an investigation was carried out 

to in a group of 379 cancer patients simultaneously suffering from COVID-19. The study 

explored the links between G-CSF administration and concurrent neutropenia on COVID-19-

related respiratory failure and death. According to the study, G-CSF therapy to these COVID-

19-positive neutropenic cancer patients may aggravate their clinical and respiratory 

conditions 169. Similarly, another study (Chinese Clinical Trial Registry: ChiCTR2000030007) 

investigated the effects of rG-CSF administration on lymphopenia in COVID-19 patients. The 
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preliminary results pointed toward reduced critical illness and morbidity counts in COVID-19 

patients with lymphopenia. However, rG-CSF administration did not help to accelerate the 

clinical improvements in such patients 170. Moreover, a meta-analysis reviewed the effects of 

rG-CSF treatment for patients with severe sepsis and septic shocks. Based on the data from 

extensive, randomized, double-blind studies, it was suggested that using G-CSF as an adjunct 

therapy does not significantly improve the clinical outcomes in severe sepsis patients 171.

It is imperative to mention here that, compared to GM-CSF, G-CSF is more predominantly 

released from lung cells in response to proinflammatory cytokines TNF-α and IL-1β 172. Few 

reports have shown reduced neutrophil infiltration and neutrophil-driven inflammation in 

mouse models of infection and asthma following G-CSF receptor blockade 173,174. Another 

study demonstrated the presence of elevated G-CSF levels in bronchoalveolar lavage fluids of 

chronic obstructive pulmonary disease patients and suggested the significance of G-CSF in the 

pathogenesis of chronic obstructive pulmonary disease and its associated comorbidities 175. 

Blocking G-CSF or its receptor (G-CSFR) could be an important strategy to cure such patients. 

Similarly, a case study reported the onset of ARDS in five patients that were administered G-

CSF in combination with chemotherapy or a hematopoietic cell transplant  176. All such reports 

indicate that giving G-CSF may worsen lung function, especially in the case of cytokine release 

syndrome, sepsis, or ARDS, which are also critical features of COVID-19 disease, thus 

warranting caution while using G-CSF in a therapeutic setting.

On the other hand, Matsushita and Arima 177 have reviewed the involvement of G-CSF during 

the propagation of mature T-cell leukemia (ATL) cells. In fact, for most of ATL patients, the 

primary ATL cells are believed to harbor G-CSFR on their cell surfaces. The ATL cells of several 

patients showed responsive proliferation to G-CSF ex-vivo, and for such patients, the ATL cell 

counts were significantly increased following G-CSF administration in-vivo, suggesting that 

care must be taken in routine G-CSF use for treating ATL 177. In addition, different meta-

analysis studies have addressed the effect of G-CSF in treating acute myocardial infarction in 

atherosclerosis patients. Interestingly, such studies show that G-CSF may be a safer remedial 

option for patients with minor side effects 178–184. Furthermore, it is suggested that as  a 

mobilization agent of bone marrow stem cells 185, G-CSF could serve as a more convenient 

treatment option for atherosclerosis than stem cell transplantation 179.
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5. Therapeutic interventions in CS  

The COVID-19 disease progresses from an early to a pulmonary infection phase and quickly 

transforms into a hyper-inflammatory phase of infection. Controlling the disease at early 

infection stages with targeted therapies could be a key to successfully treating the disease 186. 

A combination of antiviral drugs (that inhibit viral replication and transmission) and 

appropriate immunoregulatory therapies (to control the hyper-activated inflammatory 

immune response) might prove an important strategy to combat COVID-19 8. Different 

completed and ongoing clinical trials investigate the prospective treatment options for 

COVID-19-mediated CS. These include inhibitors of individual cytokines or their receptors 

(e.g., Anakinra, Tocilizumab, Emapalumab), targeting a combination of cytokines, inhibitors 

of JAK/STAT pathways (e.g., Baricitinib, Ruxolitinib), GM-CSF inhibitors (Mavrilimumab, 

Lenzilumab, Otilimab), Mesenchymal stem cell therapies and several other non-conventional 

therapies 8,187. Additionally, traditional anti-inflammatory medicines, such as Colchicine and 

corticosteroids, are also being investigated for COVID-19-associated CS 17. Despite introducing 

a range of medications to minimize CS, no definite therapy for COVID-19 have been published 

yet 188. 

5.1. Therapeutic interventions involving different cytokines

Treatments to decrease proinflammatory cytokine signaling could enhance clinical outcomes 

because cytokines play a central role in CS-related pathophysiology. Recently, treatments 

based on cytokine-specific monoclonal antibodies (MAbs) have gained wide acceptance for 

treating CS, due to high specificity and minimal side effects 189,190. Neutralizing cytokines that 

are critical components of a hyper-inflammatory pathway could effectively control CS, despite 

its low or normal circulating concentration 191,192. However, MAbs usage accompanies certain 

risks, including acute anaphylaxis, serum disorders and antibody generation. Such risks must 

be minimized to improve the overall therapeutic safety of MAbs 189.

5.1.1. Antibodies against TNF-α and IFN-γ

TNF-α and IFN-γ are important proinflammatory cytokines involved in CS and are 

regarded as potential targets for controlling COVID-19 20,47,193. The anti-TNF neutralizing 

antibodies were found to reduce pulmonary immune cell infiltration and overall disease 



17

pathology in mice infected with Respiratory syncytial virus (RSV) or influenza A virus (IAV) 194. 

In a similar experiment, anti-TNF antibody treatment reduced the bronchoalveolar TNF-α 

levels and improved survival and gross pathology in IAV-infected mice. However, despite 

controlled TNF-α levels, it did not affect viral titers in the lungs; thus implying the role of TNF-α 

in modulating the pulmonary inflammation in IAV pneumonia rather than controlling the viral 

titers 195. Unfortunately, such results could not be replicated in human subjects 196. In 

addition, Emapalumab is an anti-IFN-γ antibody endorsed by the US FDA for treating patients 

suffering from relapsed HLH 197. An earlier study reported that anti-IFN-γ neutralizing 

antibodies could improve survival and reduce serum levels of ferritin and proinflammatory 

cytokines in LPS-administered mice that overexpressed human IL-6 in a macrophage 

activation syndrome experimental model 198. 

The IFN-γ and TNF-α synergy occurs upstream of inflammatory cell death inside 

human and murine macrophages, thereby causing a subsequent release of added cytokines 

and alarmins 47. A study has reported that the simultaneous neutralization of both TNF-α and 

IFN-γ could extend mice survival by two days in IAV-infected mice co-administered with     

(SEB)  199. Furthermore, Karki et al. demonstrated that co-treatment of IFN-γ in combination 

with TNF-α leads to the activation of the JAK/STAT1/IRF1 pathway via nitic oxide release, thus 

leading to caspase-8/FADD-driven PANoptosis. The combined neutralization of IFN-γ and TNF-

α using antibodies could prevent mice death because of sepsis, HLH, cytokine shock, and 

COVID-19 as compared to blocking IFN-γ or TNF-α alone 47. However, such studies need large-

scale, randomized trials with human subjects to validate their efficacy in controlling COVID-

19-mediated CS.

5.1.2. Blocking the IL-1 family

IL-1β is a component of the IL-1 family, which is also the most crucial cytokine 

implicated in COVID-19-mediated CS 29. Anakinra (receptor antagonist of IL-1 that inhibits the 

activities of IL-1α as well as IL-1β) has been endorsed by the US FDA and European Drug 

Administration (EDA) for treating RA 200 and systemic-onset juvenile idiopathic arthritis 201. 

Anakinra was also found to be safe and well tolerated by patients suffering from severe 

cryopyrin-associated autoinflammatory syndrome (NCT00069329) and RA in long-term safety 

clinical trials 202. Anakinra treatment could also contain CS and CAR-T cell therapy-mediated 

neurotoxicity in humanized mice with elevated leukemia load 203. Anakinra has also been 
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suggested for use to treat patients experiencing COVID-19-associated CS 204. In addition, 

primitive therapy using Anakinra (± dexamethasone) is also suggested as a possible remedy 

for sHLH disease 205. Additionally, a recent retrospective cohort trial (NCT04324021) has 

shown that high doses of intravenous Anakinra are effective and safe for enhancing clinical 

outcomes in roughly 72% of patients with ARDS and COVID-19 206.

Canakinumab is a Mab directed against IL-1β cytokine that was found to be beneficial 

and well tolerated in patients suffering from adult-onset Still's disease 207. Furthermore, 

Canakinumab could help neutralize IL-1β levels in patients suffering from COVID-19-mediated 

CS 208. Although, a recent clinical trial (NCT04362813), which tested the efficiency of 

Canakinumab in critically ill COVID-19 patients, has suggested that compared to placebo, 

canakinumab treatment failed to significantly enhance the patient survival without Invasive 

Mechanical Ventilation 209.

5.1.3. Anti-IL-6 receptor antagonists

The uncontrolled IL-6 release and unregulated IL-6 receptor signaling have been 

associated with robust proinflammatory responses 210. Tocilizumab is a humanized MAb 

targeting the receptor of IL-6, which has been efficiently used in the treatment of multi-

centric Castleman's disease 211, severe RA 210 and CAR-T cell-mediated CS 212. Tolicizumab has 

been tested for its potential in COVID-19 in different studies (NCT04320615, NCT04372186) 

with variable outcomes 213. Sarilumab is another IL-6 receptor antagonist being explored in 

COVID-19 infection 214,215, with beneficial clinical outcomes during timely intervention using 

IL-6-regulatory therapies for COVID-19 216. Additionally, in a Phase IV, randomized, multi-

factorial trial (NCT02735707), combined therapy utilizing tocilizumab and Sarilumab could 

meet its primary aim of improved outcomes with greater survival in significantly ill COVID-19 

patients 217. However, it is essential to mention here that such improved outcomes could also 

be due to the auxiliary organ support received by the ICU patients. Siltuximab is an anti-IL-6 

MAb that could reduce mortality and cytokine-driven hyperinflammation in COVID-19 

patients with respiratory failure requiring ventilatory (NCT04322188) 218.

5.1.4. JAK-STAT inhibitors and other therapies

JAK/STATs mediate multiple cytokine signaling pathways, including IFNs, G-CSF, GM-

CSF, and interleukins. Fine regulation of these pathways is necessary for preventing immune 

https://clinicaltrials.gov/ct2/show/NCT04322188
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dysfunctions 47,219. JAK inhibitors may be beneficial in fighting COVID-19, as is suggested in a 

recent study where Baricitinib (a JAK inhibitor) was employed in combination with Remdesivir 

(a broad-spectrum antiviral drug) for treating patients admitted due to COVID-19 disease. The 

drug combination effectively reduced recuperation time in patients and demonstrated 

superior activity compared to only Remdesivir (NCT04401579) 220. Baricitinib mediates its 

antiviral effects via its affinity for AP2-linked protein AAK1, thus resulting in reduced SARS-

CoV-2 endocytosis 221. Ruxolitinib is another JAK1/2 inhibitor that could diminish clinical as 

well as laboratory symptoms for HLH in perforin-deficient (Prf1(-∕-)) mice models that were 

infected with lymphocytic choriomeningitis virus (LCMV) and sHLH 222. Tofacitinib 

(NCT04332042) is a JAK1/3 inhibitor, which is being investigated for its potential in COVID-19 

management, along with Barcitinib (NCT04321993) and Ruxolitinib (NCT04348695) 223.

Several other strategies are also employed to mitigate CS. Colchicine has been found to inhibit 

the inflammasome activation of NLRP3 (NLR Family Pyrin Domain Containing 3) and pyrin 

domain and is being investigated for its use in COVID-19 management (PMID: 224, PMID: 

32732245, PMID: 32472681). Moreover, it is well established that the immune system 

facilitates the recurrent release and signaling of functionally redundant cytokines. This limits 

the overall efficacy of single cytokine targeting for CS control and implies the use of 

combination treatment. For example, the combined anti-cytokine antibodies directed against 

IFN-γ and TNF-α could improve disease pathology in infected mice 47. Similarly, a treatment 

regimen directed against IL-6 and IL-1 could efficiently treat CAR-T cell-mediated 

neurotoxicity and CS 203. However, further research is necessary to validate such observations.

5.2. Therapeutic interventions involving GM-CSF 

GM-CSF might play a protective role in the early phases of virus-mediated injuries, as it is 

involved in pulmonary surfactant homeostasis 67,68. Therefore, two recombinant human GM-

CSFs, Sargramostim and Molgramostim were tested for their potential in COVID-19-

associated diseases 225,226. Sargramostim is the recombinant human GM-CSF, and was 

approved by the FDA in 1991 to speed up bone marrow recovery in varied cases of bone 

marrow failure and treat Neutropenia 225. Sargramostim was tested for efficacy in patients 

dealing with acute lung injuries or ARDS. Significant differences could not be observed in the 

count of organ failure-free days, ventilator-free days, and death at 28 days between the 

https://clinicaltrials.gov/ct2/show/NCT04332042
https://clinicaltrials.gov/ct2/show/NCT04321993
https://clinicaltrials.gov/ct2/show/NCT04348695
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hrGM-CSF treated groups versus placebo groups 227. Similarly, an inhaled formulation of 

Sargramostim (25 μg twice daily for five days) is also being investigated in patients suffering 

from COVID-19-associated acute hypoxic respiratory malfunction in phase 4, open-label, 

randomized, controlled trial (NCT04326920). A randomized, phase II, placebo-controlled trial 

tested low-dose Molgramostim's efficiency in patients with critical sepsis and respiratory 

malfunction. The trial revealed that Molgramostim intervention could help improve gaseous 

exchange along with functionally activating the pulmonary macrophages but could not 

improve the 30-day survival rates 226. Whereas a daily dose of 3 μg/kg Molgramostim for four 

days could reduce the infectious complications' rates and the duration of hospital admission 

in patients with bacterial and fungal abdominal sepsis 228.

On the contrary, at elevated levels, GM-CSF is also an important cytokine implicated in COVID-

19-mediated complications. Therefore, a potential therapeutic strategy for the treatment of 

COVID-19 patients involves directly targeting GM-CSF or blocking the GM-CSF receptor 229. 

Mavrilimumab is an entirely humanized antibody directed against GM-CSF-Rα. The phase I 

and phase II studies of mavrilimumab in RA patients demonstrated a good efficiency and 

safety profile for the drug on the whole, without any changes in pulmonary parameters 230,231. 

The treatment effects of mavrilimumab were studied in non-mechanically ventilated COVID-

19 pneumonia patients with systemic hyperinflammation, and the outcome was compared to 

standard care 232. As compared to the control group, patients administered with 

mavrilimumab showed clinical improvement, better survival, a lesser requirement of 

mechanical ventilation, and better fever resolution. The drug was tolerated well, and no 

infusion reactions were detected. However, the study is restricted by the short follow-up 

time, small sample size, and lack of randomization. Nevertheless, these results seem to be 

more favorable when compared with those observed in similarly designed studies for 

Tolicizumab 233,234 or anakinra 206.

In a Phase Ib Clinical study for MS, the effectiveness of the humanized monoclonal antibody 

(MOR103), which binds to human GM-CSF, was examined 235. MOR103 could be well-endured 

in both relapsing-remitting as well as secondary progressive MS with no indications of 

immunogenicity. MOR103 also displayed well-tolerability and preliminary efficacy data in a 

Phase Ib/IIa Clinical Trials for active RA patients 236. Lenzilumab and Otilimab are monoclonal 

https://clinicaltrials.gov/ct2/show/NCT04326920
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antibodies that directly bind and neutralize GM-CSF 237,238. Recently, a multicentre, phase 3, 

placebo-controlled clinical trial in COVID-19 patients showed that Lenzilumab could 

significantly improve patient survival without invasive mechanical ventilation at 28 days, and 

the patients displayed safety profiles similar to the placebo groups 237. Lenzilumab has 

recently received approval from the FDA for considerate use during COVID-19 infection 239. 

Additionally, the effects of Otilimab were studied in older patients aged more than 70 years. 

Interestingly, the Otilimab administration resulted in reduced inflammatory markers and 

acceptable safety profiles in patients (NCT04376684)  238. In conclusion, GM-CSF targeting 

may be an excellent strategy to combat COVID-19-associated complications. However, more 

research is warranted to validate this.

5.3.  CS treatment using Mesenchymal stem cells (MSCs) and therapeutic plasma 

exchange (TPE)

Mesenchymal stem cells (MSCs) represent a heterogenous population of pluripotent stem 

cells derived from early mesoderm as well as ectoderm 240,241. MSCs possess several 

advantages, such as abundant availability,  self-renewal potential, multi-directional 

differentiation, and low immunogenicity 240. Various cytokines, chemokines, and growth 

factors can manipulate the MSCs to adopt characteristics of a specific lineage or transform 

into a different lineage 242. MSCs have potent immunomodulatory and anti-inflammatory 

properties, which help them regulate the innate and adaptive immune systems 243,244. Thus, 

MSCs are considered an important therapeutic option for treating sepsis and COVID-19-

associated CS 245. MSCs are known to evade immunity due to the deficiency of T cell 

costimulatory molecules (CD80 and CD86); and lower expression of the MHC-I as well as MHC-

II proteins 246,247, thus rendering them safe for use in allogeneic settings. In fact, MSCs from 

human induced pluripotent stem cells might offer a more effective treatment in an allogeneic 

transplant situation without the risk of immunological rejection 248.

The COVID-19-induced CS was improved by MSC-derived exosomes (ExoFlo), which also does 

not suppress host antiviral defense 249. In addition, MSCs produce microvesicles (MV), which 

are biologically active molecules with healing properties. A recent study reported that pre-

treatment of  MSCs with siRNA of KGF protein diminished the regenerative effects of MSC-

derived MVs, implying that KGF protein expression plays a vital role in MSC-based therapy 250. 

Though MSC therapy is regarded as efficient and safe, it is crucial to note that there are some 

https://erj.ersjournals.com/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT04376684&atom=%2Ferj%2Fearly%2F2022%2F09%2F01%2F13993003.01870-2021.atom
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inadequacies in the current studies, primarily due to the small sample numbers and quick 

follow-up periods. Large-scale, multicenter clinical studies with extensive follow-ups are 

needed to prove the MSCs' safety and effectiveness in treating COVID-19.

TPE is a potential treatment strategy that has successfully treated severe COVID-19-mediated 

CS. Therapeutic Plasma Exchange (TPE) is a procedure that involves putting a patient's blood 

through an apheresis machine to filter out the plasma and discard it, then reinfusing red blood 

cells and replacing fluids like plasma or albumin in the patient, along with fluid replacement, 

including plasma or albumin in the patient 251. It works by efficiently clearing inflammatory 

cytokine/s from the blood, restoring oxygen levels, early CS resolution, and improving the 

overall survival rates 252–254. A recent report has demonstrated the efficacy of an artificial liver 

blood purification system in rapidly removing proinflammatory cytokines,  balancing the 

fluids, electrolytes, and acid-base along with blocking CS, thus, resulting in improved 

treatment efficacy 255. Moreover, a case study demonstrated the successful recuperation of 

a severe COVID-19 patient using extracorporeal blood purification therapy 256. Despite TPE's 

ability to cure the CS associated with COVID-19, there are several limitations related to the 

mode of treatment, which include allergies, bleeding, thrombocytosis, air embolism, etc., 

which require prompt detection and management to guarantee a safe and effective course 

of action 255–259.

5.4. Non-conventional treatment strategies for COVID-19 

Apart from the conventional therapeutic strategies employed to treat COVID-19-associated 

cytokine storm, several researchers have tried some potential non-conventional clinical 

therapeutic alternatives to resolve COVID-19-related illnesses. Kumar et al. recently 

demonstrated that vitamin D could ameliorate cytokine storm by increasing the counts of 

anti-inflammatory cytokines and simultaneously reducing proinflammatory cytokines for 

treating COVID-19-related cytokine storm 260. Similarly,  resveratrol and melatonin were 

found to enhance body immunity during SARS-CoV-2 disease and have been recommended 

as potential anti-SARS-CoV-2 inhibitory compounds 261,262. In addition, some natural 

remedies, especially those of plant-based origin, and supplements like vitamins, zinc, iron, 

caffeic acid, monochrome, and gallic acids have been suggested to cure COVID-19 effectively 

mediated CS by stimulating immunity 260,263,264. Furthermore, steroids and tocilizumab could 
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provide a safe and valuable alternative treatment for COVID-19 associated CS. However, the 

combined efficiency of such an anti-inflammatory treatment regime must be substantiated in 

randomized and controlled clinical trials 265.

6. Conclusion & Discussion 

The delicate balance of the pro- and anti-inflammatory cytokine responses that mediate 

effective clearance of viral titters is crucial for the effective resolution of COVID-19. CS results 

from disrupting this equilibrium, leading to uncontrolled immune cell responses. Several 

clinical trials have examined how various cytokine inhibitors affected COVID-19 treatment. 

Despite all the efforts and some initial success, the COVID-19 treatment is still constrained by 

a number of factors. Small sample sizes and shorter follow-up times limit the overall efficacy 

of these trials across the various subgroups of the population and to various stages of the 

disease, as is the case with the majority of research. Furthermore, convalescent plasma and 

monoclonal antibodies are not only costly but are plagued with issues of availability. 

Additionally, some medications, like corticosteroids, carry a risk of severe side effects, such 

as high blood pressure, stomach ulcers, etc. Furthermore, underlying medical problems like 

cancer, diabetes, cardiovascular disease, and autoimmune conditions present in COVID-19 

patients may impede the effectiveness of the treatment. Despite all the efforts put into 

developing a variety of pharmaceuticals, no firm therapeutic recommendations for COVID-19 

have been delineated. To close this gap in our knowledge of COVID-19 treatment, more 

clinical studies with a larger population and a subset of the population is required. 
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Figures

Figure 1: Clinical manifestations of Covid-19: The causative agent of COVID-19 is SARS-CoV-

2. The virus primarily spreads from an infected host through respiratory droplets via sneezing 

or coughing. The major symptoms comprise fever, shortness of breath, dry cough etc. In some 

cases headaches, sore throat, nausea, and diarrhoea may occur. The disease may manifest 

itself in the form of cytokine storm (CS) resulting in acute respiratory distress syndrome 

(ARDS), multi-organ failure or even death in severe cases. CS is a condition of hyper-cactivated 

immune response, which disrupts the normal physiological homeostasis maintained amid the 

concentrations of pro- and anti-inflammatory cytokines, leading to abnormal activation of 

different immune cells, including macrophages, T and B lymphocytes, dendritic cells or natural 

killer cells. This results in the production of extensive levels of pro-inflammatory cytokine/s 

(IFN-γ, TNF-α, IL-1, IL-2, IL-6, GM-CSF etc.) and chemokines that further promote the 

activation of additional immune cells. Such an over-activated immune response negatively 

affects the host. 
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Figure 2: Role of main cytokines in Covid-19: Cytokines are immunomodulating agents that 

are fundamental mediators for establishing communication amongst the immune system 

cells. When required, cytokines are rapidly secreted from the innate as well as adaptive 

immune cells. The body requires a homeostatic balance of cytokine levels, which if perturbed 

(such as in case of Covid-19 infection) could harm the host system. IL-1β is generated by 

monocytes/macrophages, dendritic cells, etc and is one of the most important cytokines 

engaged in Covid-19 mediated CS. IL-1β encourages the synthesis of IL-6 and can induce the 
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synthesis of cyclooxygenase and inducible nitric oxide synthase (iNOS). The nitric oxide 

produced by iNOS contributes to tissue damage during airway inflammation. IL-1β is also 

secreted during the activation of the Nod-like receptor family, pyrin domain-containing 3 

(NLRP3) inflammasome. IL-6 is expressed in different immune such as T and B cells, 

monocytes/macrophages, dendritic cells, and endothelial cells. The plasma concentration of 

IL-6 rises during Covid-19 infection. IL-6 encourages the differentiation and growth of B 

lymphocytes, increases platelet generation and induces reactive protein C (CRP) and 

fibrinogen secretion. Tumor necrosis factor (TNF-α) is a pro-inflammatory cytokine whose 

elevated plasma concentrations are in positive correlation with SARS-CoV-2 infection 

mediated CS. It can be produced by macrophages, T cells, and epithelial cells. TNF-α synthesis 

can be elicited by pathogen-associated molecular patterns and IL-1 through nuclear factor 

(NF-κB) activation. Under homeostasis conditions, TNF-α is related to B cells’ proliferation and 

differentiation. However, its unregulated levels are linked with several diseases, including 

pulmonary, cardiovascular, cancer, autoimmune, neurologic, and metabolic disorders. 

Interferon-gamma (IFN-γ) is an important pro-inflammatory cytokine implicated in immunity 

against intracellular pathogens and tumor control. IFN-γ is synthesized by natural killer and 

natural killer-T cells as part of the innate immune response. However, upon onset of adaptive 

immunity, IFN-γ can also be generated by the effector T cells, thus, linking the innate and 

adaptive immune responses. The combined increase in the levels of IFN-γ and TNF-α could 

activate the JAK/STAT1/IRF1 pathway, thereby inducing nitric oxide generation and ultimately 

resulting in caspase-8/FADD-interceded inflammatory cell death termed as PANoptosis.
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Figure 3: Concentration dependent role of GM-CSF in cytokine storm: GM-CSF has the 

potential to function as both a regulatory cytokine and a proinflammatory cytokine depending 

on its concentration. Lower doses of GM-CSF may promote the tolerogenesis of myeloid cells, 

which is essential in maintaining the balance of regulatory T-cells. However, higher doses of 

GM-CSF induce myeloproliferation, resulting in long-lasting immunological responses. The 

biological activity and signaling of GM-CSF are mediated by means of attaching to the cell 

surface receptors of GM-CSF. The GM-CSF receptor (GM-CSF-R) represents a heterodimer 

comprising a GM-CSF-Rα-chain, involved in ligand binding, and a GM-CSF-Rβ -chain, involved 

in signal transduction. The receptor-cytokine binding could induce several cellular responses, 

including tyrosine phosphorylation of the β-chain and other intracellular substrates along 

with activation of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 

(STAT5), a mitogen-activated protein (MAP) kinase and RAS-Raf signaling pathways. The 

conserved motif in GM-CSF-R comprises a tyrosine (Tyr577) and serine (Ser585) residue. This 

motif serves as a binary switch and independently regulates multiple biological functions in a 

dose-dependent manner. At lower GM-CSF concentrations, signaling occurs through the 
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Ser585 phosphorylation, which activates the PI-3 kinase pathway, thus resulting in the 

survival of myeloid cells. However, at higher GM-CSF levels, Tyr577 phosphorylation occurs, 

leading to cell survival, growth and differentiation and functional activation of signaling 

cascades such as JAK2/STAT5, RAS/MAPK and phosphoinositide 3-kinase (PI3K)-Akt pathway 

pathways. Both these processes are mutually exclusive and occur independently of each 

other.   GM-CSF can also drive the production of CCL17 via up-regulating the expression of 

the IFN regulatory factor 4-dependent (IRF4-dependent) pathway by enhancing the activity 

of Jumonji domain-containing protein D3 (JMJD3) demethylase. 
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Figure 4: Therapeutic interventions for Covid-19 cytokine storm: Controlling the Covid-19 

disease at early stages of infection with targeted therapies could be crucial for successful 

treatment of the disease. Different prospective treatment options for COVID-19-mediated CS 

include inhibitors of individual cytokines or their receptors (e.g., Anakinra, Tocilizumab, 

Emapalumab), targeting a combination of cytokines, inhibitors of JAK/STAT pathways (e.g., 

Baricitinib, Ruxolitinib), GM-CSF inhibitors (Mavrilimumab, Lenzilumab, Otilimab) etc. Apart 

from this, mesenchymal stem cells (MSCs) have potent immunomodulatory and anti-

inflammatory properties, which help them, regulate the innate and adaptive immune 

systems. Thus, MSCs are considered an important therapeutic option for treating sepsis and 

COVID-19-associated CS. Therapeutic Plasma Exchange (TPE) works by efficiently clearing 

inflammatory cytokine/s from the blood, restoring oxygen levels, early CS resolution, and 

improving the overall survival rates. Additionally, traditional anti-inflammatory medicines, 

such as Colchicine and corticosteroids, are also being investigated for COVID-19-associated 

CS.  
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Table 1: Therapeutics to treat COVID-19-mediated CS and related diseases

Drug / Therapy Target Mechanism Reference

Adalimumab

Infliximab
TNF-α Human monoclonal anti-TNFα 

antibody
187

Emapalumab IFN-γ Anti- IFN-γ antibody 187

Cankinumab IL-1β IL-1β antibody directed against 
the activity of IL-1β

208

Anakinra IL-1R IL-1α and IL-1β receptor 
antagonist

200, 201

Tolicizumab

Sarilumab Il-6R Human anti-IL-6 receptor MAb 187, 266, 214

Siltuximab IL-6 Anti-IL-6 antibody NCT04322188

Barcitinib

Ruxolitinib

Tofacitinib
JAK-
STAT

Non-selective JAK-STAT 
inhibition

221, 222, 223

MOR103

Lenzilumab

Otilimab

GM-CSF Anti-GM-CSF antibody 236, 237, 238

Mavrilimumab
GM-

CSFRα

Human antibody directed against 

the GM-CSF receptor α (GM-

CSFRα)

232

Colchicine
Non-

selective

inhibit the inflammasome 

activation of NLRP3 and pyrin 

domain

224, 267, 268

https://clinicaltrials.gov/ct2/show/NCT04322188
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Corticosteroids Non-
Selective

Inhibition of HAT and recruitment 
of HDAC activity to the 

inflammatory gene transcriptional 
complex to downregulate 

inflammatory genes

269, 270

Mesenchymal 
stem cells 
(MSCs)

Non-
Selective

regulates the behaviour of 
adaptive as well as innate 

immune cells

271

Remedesivir Non-
selective

Broad spectrum antiviral 
adenosine analogue prodrug that 

inhibits viral RNA synthesis
272

HAT: histone acetylase, HDACs: histone deacetylases, JAK-STAT:  Janus kinase-Signal 

Transducer and Activator of Transcription, NLRP3: NLR Family Pyrin Domain Containing 3
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Highlights

1. SARS-CoV-2 mediated cytokine storm is associated with the mortality and 

morbidity of COVID-19 patients.  The key cytokines implicated in the onset of 

disease severity include TNF-α, IFN-γ, IL-6, IL-1β, GM-CSF, and G-CSF.

2. This review emphasizes the role of GM-CSF and G-CSF in COVID-19.

3. Emerging therapeutic interventions involve antibodies against TNF-α and IFN-

γ, blocking IL-1 production, anti-IL-6 receptor antagonists, JAK-STAT inhibitors, 

and employment of mesenchymal stem cells and therapeutic plasma exchange.
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