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Abstract

The global impact of COVID-19 has led to the development of numerous mathe-
matical models to understand and control the pandemic. However, these models
have not fully captured how the disease’s dynamics are influenced by both
within-host and between-host factors. To address this, a new mathematical
model is proposed that links these dynamics and incorporates immune response.
The model is compartmentalized with a fractional derivative in the sense of
Caputo-Fabrizio, and its properties are studied to show a unique solution. Pa-
rameter estimation is carried out by fitting real-life data, and sensitivity analysis
is conducted using various methods. The model is then numerically implemented
to demonstrate how the dynamics within infected hosts drive human-to-human
transmission, and various intervention strategies are compared based on the
percentage of averted deaths. The simulations suggest that a combination of
medication to boost the immune system, prevent infected cells from producing
the virus, and adherence to COVID-19 protocols is necessary to control the
spread of the virus since no single intervention strategy is sufficient.
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1. Introduction1

The Coronavirus disease, globally called COVID-19, started in Wuhan, China2

and has affected millions of people across the globe [1]. The virus that causes3

COVID-19 is SARS-CoV-2, belonging to the family Coronaviridae and in the4

Nidovirals order [2]. The most common symptoms of COVID-19 include fever,5

cough, and other flu-like symptoms such as fatigue, chills, and sore throat.6

Critically ill patients can develop severe pneumonia, sometimes acute respiratory7

distress, which can lead to multiple organ failure and death. [3]. Some of the8

factors that complicate COVID-19 control are the individual’s immune response9

to SARS-CoV-2 and long period of incubation [4]. For more details as regards10

the diagnosis, symptoms, fatality rate etc. of SARS-CoV-2, see [3, 5–8].11

Our focus here is to use a mathematical model to better understand the12

dynamics and control COVID-19. Several mathematical models have been13

proposed to study the epidemiology of COVID-19. For instance, see [8–17].14

Monda & Khajanchi [18] developed a compartmental model of COVID-19 in15

India and showed that disease transmission rate has an impact on controlling the16

spread of the disease. Zenebe et al [19] proposed and validated a mathematical17

model for the transmission dynamics of COVID-19, using the COVID-19 infected18

data reported from March 13, 2020 to July 31, 2021, in Ethiopia. Their results19

showed that the spread of COVID-19 can be controlled by minimizing contact20

rate of infected people and increasing quarantine of exposed individuals. The21

results and conclusions of the articles [8–19] seem interesting however only the22

epidemiology of the virus was considered while the immunology aspect was23

neglected.24

The dynamics of SARS-CoV-2 in human host has been mathematically25

studied by few authors. For instance in [20], the authors studied an in-host26

model that gave the influence of effector T-cell to the behaviour of SARS-CoV-227

within human host. Their results suggested that SARS-CoV-2 may replicate28

fast enough to overcome T cells response and cause infection. Mathematical29

analysis of the model in [21] was analyzed in [22]. It was biologically gathered30

that for the basic reproduction number to be less than unity, infection needs31

to be cleared from a human body. Recently, the authors in [23] proposed a32

within-host mathematical model of SARS-CoV-2 dynamics incorporating innate33

and adaptive immune responses. In their results, it was suggested that blocking34

the infected cells from producing the virus can be an effective control measure.35

Animal models are often used for experimental trials, while developing36

antiviral drugs. Thus in [24], mathematical models and experimental data were37

used to characterize the in-host SARS-CoV-2 dynamics in ferrets (animal hosts).38

It was reported, by analysis and simulations, that ferrets can be an appropriate39

animal model for SARS-CoV-2 dynamics in human hosts. Immune response40

has a significant impact on the dynamics of SARS-CoV-2 within a human host41
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however, the data fitting in [24] did not support the need to include immune42

response in the model. This is a significant gap. A within-host and aerosol43

mathematical model was proposed in [25] and used to determine the relationship44

between viral kinetics in the aerosols as well as the upper respiratory track, and45

new transmissions in golden hamsters challenged with SARS-CoV-2. The authors46

reported sex-based differences in the dynamics of the virus - the within-host47

basic reproductive number is less than one in all female hamsters while basic48

reproductive number is above one in all male hamsters.49

In this article, we propose a model which links the dynamics of the disease50

within a host with the dynamics of the disease between hosts. This kind of51

model is known as multiscale model and has been extensively used to study52

the transmission dynamics of infectious diseases [26–31]. However, the use of53

multiscale model to study the dynamics of SARS-CoV-2 is very rare in literature.54

The advantage of multiscale approach is that it gives more comprehensive insights55

to the understanding the spread of a disease at different scales [26].56

Bellomo et al [32] proposed a multiscale modeling of COVID-19 pandemic and57

presented further development of the model developed by [33]. They incorporated58

the dynamics of mutations into new variants and showed that the onset of a new59

variant that is more aggressive than the primary virus, generates a progressive60

prevalence of the variant over the firstly appeared virus. Wang et al [34]61

developed a multiscale model to study the coupled within-host and between-host62

dynamics of COVID-19. Explicit analysis was carried out, in terms of local and63

global dynamics of fast, slow and full systems, which includes both forward and64

backward bifurcations. It was concluded that viral treatment can delay, but65

not prevent, the onset of disease. Between host and within host dynamics of66

pathogen evolution with application to SARS-CoV-2 was presented in [35]. The67

within-host dynamics was modelled using random walk while an SIR model was68

used for inter-host dynamics. This allowed for consideration of multiple hosts.69

However, the random walk model is not suitable for modeling interventions70

like vaccination or social distancing. Therefore, the article did not discuss71

intervention strategies or the impact of memory processes. Additionally, the72

epidemiological dynamics of COVID-19 are more complex than the SIR model73

used in the article.74

We contribute to the existing body of works by proposing and studying a75

fractional mathematical model which links the between-host and within-host76

models to investigate the dynamics of SARS-CoV-2 replication inside a human77

host and COVID-19 spread outside a human host. The main reasons for using78

a differential operator with fractional order are that many systems (including79

disease dynamics) are influenced by memory, history, or non-local effects, which80

can be difficult to model with integer order derivatives [36]. The fractional81

differential operator for the constructed model is taken in the Caputo-Fabrizio82

sense because it is non-local, non-singular and has a fading memory [37]. A83

fractional differential operator with fading memory is used with the hypothesis84

that the dynamics of SARS-CoV-2 depends on the recent past occurrences but85

not on the distant past.86

Many studies have reported that immune response is important in modeling87
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virus infections, see [20, 38, 39] and the references therein. T-cells (helper88

T-cells and cytotoxic T-cells in particular) play a significant role in the fight89

against pathogens and the risk of developing autoimmunity or overwhelming90

inflammation [39]. In within-host dynamics, helper T-cells activate other cells91

(such as B cells) to secrete antibodies that kill the invading virus while cytotoxic92

T-cells can kill virally infected cells [22, 39–41]. Helper and cytotoxic T-cells93

are parts of adaptive immune response. Innate immunity also helps to attack94

foreign bodies in human body. While adaptive immunity is specific in its actions,95

innate immunity is general and non-specific, it is also the first line of defence96

against pathogens [42, 43]. Innate and adaptive immune responses are therefore97

incorporated into our model and their impacts on the dynamics of SARS-CoV-298

are investigated. These were not considered in [32–35]. We include in our model,99

the populations of natural killer cells, B-cells and cytotoxic T-cells with the100

assumption that the transmission rate is a function of the viral load. Qualitative101

properties of our model is given after which some parameters of the model are102

estimated by fitting the model to real-life data. Simulations are then carried out103

to investigate the influence of each parameter on the dynamics of the disease104

and various intervention strategies are suggested.105

The rest of this article is organized as follows: A deterministic model is106

formulated and analyzed in Section 2. It was shown in Section 3 that the model107

has a unique solution while the disease free stationary solution of the model108

is analyzed in Section 3. Parameter estimation, sensitivity analysis and other109

simulations are done in Section 5. The work is concluded in Section 6.110

2. Model Description and Formulation111

The between-host subsystem is divided into five compartments: Susceptible112

human (HS), Exposed human (HE), Infectious human (HI) (asymptomatic and113

symptomatic), Quarantined human (HQ) and Recovered human (HR).114

The following assumptions were made:115

(i) There is no vertical transmission of the virus;116

(ii) The transmission of the virus is only by coming in contact with an infectious117

individual;118

(iii) There is no immigration of infectious individuals;119

(iv) The dynamics of the disease is independent of weather;120

(v) Humans die naturally at a rate µ.121

A new recruit enters the susceptible human population at a rate Λ. It was122

reported in [44] that the transmission of SARS-CoV-2 is directly connected to123

the viral load in infectious individuals. It is therefore assumed that transmission124

of the virus depends on the average viral load per infected individual. Susceptible125
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human comes in contact with an infectious human who sheds virus and becomes126

infected at a rate β(V ).127

Dθ
tHS = Λ− β(V )HIHS − µHS + τHR. (2.1)

Where 0 ≤ β(V ) ≤ β0, ∀ V ∈ [0,∞), β0 ∈ R. An exposed individual becomes128

infectious at a progression rate σ, becomes detected and quarantined at a rate129

πE .130

Dθ
tHE = β(V )HIHS − (σ + µ+ πE)HE . (2.2)

An infectious individual die due to infection at a rate δI , detected and131

quarantined at a rate πI , and recover at a rate ρI .132

Dθ
tHI = σHE − (µ+ δI + πI + ρI)HI . (2.3)

Quarantined human die as a result of COVID-19 at a rate δQ and recovered133

individuals lose their immunity and become susceptible after a period of 1
τ .134

Dθ
tHQ = πEHE + πIHI − (µ+ ρQ + δQ)HQ. (2.4)

135

Dθ
tHR = ρIHI + ρQHQ − (µ+ τ)HR. (2.5)

Following [22, 23, 45, 46], the within host subsystem consists of susceptible136

epithelial cell population (ES), latently infected epithelial cells (EL), infectious137

epithelial cells (EI), SARS-CoV-2 virus in the biological environment (V ), natural138

killer cells (K), B cells (B) and cytotoxic T-cells (T ).139

Viral load within an infected individual is generated following intake of SARS-140

CoV-2 through transmission from an infectious individual. When transmission141

takes place, the population of susceptible individuals decreases by 1 while the142

population of infected individuals increases by one. Thus following [26], we143

assume that when a susceptible human contract SARS-CoV-2 virus, there is a144

transition given by145

(HS(t), HE(t) +HI(t)) → (HS(t)− 1, HE(t) +HI(t) + 1).

Therefore, the average rate of intake of SARS-CoV-2 virus by a single susceptible146

human host is modelled by147

β(V )ηHI(HS − 1)

HE +HI + 1
,

leading to one infected human host. This means that the average viral load148

in an infected human increases at a rate β(V )ηHI(HS−1)
HE+HI+1 where η represents the149

average viral load intake by a susceptible individual who comes in contact with150

an infectious individual.151

Helper T-cells promote the production of virus-specific antibodies by acti-152

vating T-dependent B-cells [43, 47]. Let κV B represent the local interaction153

dynamics of the virus V with B cells (B). Due to this interaction, virus particles154

5
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are reduced at the rates κ. Also, infectious epithelial cells produce virus into the155

biological environment at a rate a. We thus have156

Dθ
t V =

β(V )ηHI(HS − 1)

HE +HI + 1
+ aEI − κV B −mV. (2.6)

Susceptible epithelial cells (ES) become latently infected (EL) by free virus157

in the biological environment at a rate ε. d represents death rate while λ is the158

regeneration rate of susceptible epithelial cells.159

Dθ
tES = λ− εESV − dES . (2.7)

Latently infected epithelial cells (EL) become infectious after 1
ϕ days and160

also die naturally at a rate d. When a cell becomes infected with the virus, it161

becomes a target for natural killer cells and cytotoxic T lymphocytes which162

attack and kill the infected cells [22, 39–41, 43, 47]. Let the γ1 and γ2 be the163

rates at which natural killer cells and cytotoxic T lymphocytes, respectively,164

interact and kill infected epithelial cells. Then we have165

Dθ
tEL = εESV − γ1KEL − γ2TEL − (ϕ+ d)EL, (2.8)

166

Dθ
tEI = ϕEL − γ1KEI − γ2TEI − dEI . (2.9)

For the dynamics of natural killer cells, B-cells and cytotoxic T-cells, we have167

the following equations,168

Dθ
tK = λK

(
1 +

ξV

1 + V

)
−ϖKK, (2.10)

Dθ
tB =

αBV

1 + V
−ϖBB, (2.11)

Dθ
t T =

αTV

1 + V
−ϖTT. (2.12)

λK represents the natural recruitment rate of natural killer cells whileϖK , ϖB , ϖT169

represent the natural clearance rates of natural killer cells, B-cells and cytotoxic170

T-cells respectively. It is assumed that the recruitment rate of natural killer171

cells increases with the inversion of the virus. B-cells and cytotoxic T-cells are172

adaptive immune responses and only respond when there is a foreign inversion173

by virus [40, 42, 43]. Therefore their recruitment depends on viral inversion. We174

denote by αB and αT the maximum proliferations in response to the presence175

of virus particles. Figure 2.1 describes the model diagrammatically. Putting176

(2.1)−(2.12) together, we have the multiscale model below177

6
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     𝛽(𝑉)𝐻𝐼𝐻𝑆        
          𝑚𝑉 
                𝜅𝑉𝐵 
       𝜏𝐻𝑅          𝜇𝐻𝐸 𝐻𝐸      𝑉     
         𝑎𝐸𝐼     𝐵 
    𝜎𝐻𝐸           𝜛𝐵𝐵 
                 
        (𝜇 + 𝛿𝐼)𝐻𝐼     𝜆        𝑑𝐸𝐼           
      𝐻𝐼         𝜋𝐸𝐻𝐸          𝐸𝑆   𝐸𝐼       𝛾1𝐾𝐸𝐼   
 
          𝜌𝐼𝐻𝐼              𝑑𝐸𝑆  𝜀𝐸𝑆𝑉      𝜙𝐸𝐿 
       𝜋𝐼𝐻𝐼         𝐸𝐿      𝐾     𝜛𝐾𝐾 
        𝐻𝑅           𝑑𝐸𝐿               
          𝜌𝑄𝐻𝑄       𝐻𝑄               𝛾1𝐾𝐸𝐿  
  𝜇𝐻𝑅         𝛾2𝑇𝐸𝐿 
     (𝜇 + 𝛿𝑄)𝐻𝑄  
         𝑇 
                𝜛𝑇𝑇 
 

 

Figure 2.1: Flow diagram of the mathematical model linking within-host and between-host
dynamics of SARS-CoV-2

Table 1: Description of state variables of between-host and within-host COVID-19 model
Variables Description
HS Susceptible human
HE Exposed human
HI Infectious human
HQ Quarantined human
HR Recovered human
V Average viral load within a single infected human
ES Susceptible epithelial cells
EL Latently infected epithelial cells
EI Infectious epithelial cells
K Killer T-cells
B B-cells
T Cytotoxic T-cells
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Table 2: Summary of the parameters

Parameter Meaning Value Refe
Λ Recruitment rate for human population N0µ individual day−1

β Effective transmission rate per infectious indi-
vidual per time

1.70× 10−7 individual−1 day−1 Data

τ Loss of immunity rate 1/76 day−1 [48]
σ Progression rate at which exposed individuals

become infectious
1/8 day−1 [19,

πE Quarantine rate of HE 0.761 day−1 Data
πI Quarantine rate of HI 0.90 day−1 Data
δI Disease-induced death rate for undetected in-

fectious individuals
0.015 day−1 [51]

δQ Disease-induced death rate for quarantined in-
dividuals

1.64× 10−5 day−1 Data

ρI Recovery rate of HI 1/15 day−1 [52,
ρQ Recovery rate of HQ 0.101 day−1 Estim
µ Natural death rate of human (43.5 year)−1 [55]
η Average viral load intake by a susceptible indi-

vidual who comes in contact with an infectious
individual

2.15 copies ml−1 Data

a Production rate of SARS-CoV-2 12 copies ml−1cell−1day−1 [34]
κ Killing rate of the virus by B-cell per time 1.0× 10−5 cell−1day−1 [23]
λ Recruitment rate of ES dES(0) cells day−1 [56]
ε Rate at which ES are infected by SARS-CoV-2 1.12× 10−5 ml copy−1day−1 Data
d Natural death rate of epithelia cells 10−3 day−1 [57]
γ1 Killing rate of infected epithelia cells by natural

killer cell
5.74× 10−5 cell−1day−1 [58]

γ2 Killing rate of infected epithelia cells by cyto-
toxic T-cell

4.84× 10−5 cell−1day−1 Data

ϕ Transition rate from EL to EI 0.60 day−1 Data
αT Activation rate of cytotoxic T-cells 1.6× 103 cells day−1 Assu
αB Activation rate of B-cells 1.6× 103 cells day−1 Assu
λK Constant regeneration rate of natural killer cells 1.6× 103 cells day−1 [59]
ϖK Natural death rate for natural killer cells 4.12× 10−2 day−1 [60]
ϖB Natural death rate for B-cells ϖK Assu
ϖT Natural death rate for cytotoxic T-cells 0.1 day−1 [57]
φ Half saturation constant for viral shedding 0.759 copy ml−1 Estim
m Natural viral clearance rate from biological en-

vironment
0.699 day−1 Data

ξ Influence of viral load on regeneration rate of
natural killer cells

0.688 Data

ψ Influence of viral load on transmission 0.598 Data

8



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofDθ

tHS = Λ− β(V )HIHS − µHS + τHR, (2.13)

Dθ
tHE = β(V )HIHS − (σ + µ+ πE)HE , (2.14)

Dθ
tHI = σHE − (µ+ δI + πI + ρI)HI , (2.15)

Dθ
tHQ = πEHE + πIHI − (µ+ ρQ + δQ)HQ, (2.16)

Dθ
tHR = ρIHI + ρQHQ − (µ+ τ)HR, (2.17)

Dθ
t V =

β(V )ηHI(HS − 1)

HE +HI + 1
+ aEI − κV B −mV, (2.18)

Dθ
tES = λ− εESV − dES , (2.19)

Dθ
tEL = εESV − γ1KEL − γ2TEL − (ϕ+ d)EL, (2.20)

Dθ
tEI = ϕEL − γ1KEI − γ2TEI − dEI , (2.21)

Dθ
tK = λK

(
1 +

ξV

1 + V

)
−ϖKK, (2.22)

Dθ
tB =

αBV

1 + V
−ϖBB, (2.23)

Dθ
t T =

αTV

1 + V
−ϖTT. (2.24)

Model (2.13)−(2.24) has the following initial conditions:178

HS(0) = HS0 > 0, HE(0) = HE0 ≥ 0, HI(0) = HI0 ≥ 0, HQ(0) = HQ0 ≥ 0,179

HR(0) = HR0 ≥ 0, V (0) = V 0 > 0, ES(0) = ES0 > 0, EL(0) = EL0 ≥ 0,180

EI(0) = EI0 ≥ 0, K(0) = K0 > 0, B(0) = B0 ≥ 0, T (0) = T0 ≥ 0.181

All parameters are non-negative for all t ≥ 0 and are as defined in Table182

2 while the fractional derivative is understood to be in Caputo-Fabrizio (CF)183

sense. We have the following definition (cf [37]):184

Definition 2.1. For a given function g ∈ H1(a, b), b > a, the Caputo-Fabrizio185

(CF) fractional derivative is defined as186

Dθ
t g(t) =

M(θ)

1− θ

∫ t

a

g′(s) exp

[
−θ t− s

1− θ

]
ds. (2.25)

where M(θ) is a normalization functions satisfying M(0) = M(1) = 1.187

Without losing generality, we take M(θ) = 1, where θ ∈ (0, 1) represents the188

fractional order index. The fractional integral corresponding to (2.25) is defined189

in [62] as190

Iθt g(t) =
2(1− θ)

2− θ
g(t) +

2θ

2− θ

∫ t

0

g(s) ds, t ≥ 0, θ ∈ (0, 1). (2.26)

The dimension of the right side of model (2.13)−(2.24) is day−1 while the191

fractional operator on the left has dimension day−θ. To address this prob-192

lem of dimensional mismatch, we use the approach in [63], in which case the193

normalization parameter is taken as 1.194

9
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3. Existence and uniqueness of solutions to the model195

In this section, we show that model (2.13)−(2.24) with the initial condition196

has a unique solution. For convenience, we define197

X(t) =




HS(t)
HE(t)
HI(t)
HQ(t)
HR(t)
V (t)
ES(t)
EL(t)
EI(t)
K(t)
B(t)
T (t)




and χ(t,X(t)) =




Λ− β (V )HIHS − µHS + τHR

β (V )HIHS − (σ + µ+ πE)HE

σHE − (µ+ δI + πI + ρI)HI

πEHE + πIHI − (µ+ ρQ + δQ)HQ

ρIHI + ρQHQ − (µ+ τ)HR

β(V )ηHI(HS − 1)

HE +HI + 1
+ aEI − κV B −mV

λ− εESV − dES

εESV − γ1KEL − γ2TEL − (ϕ+ d)EL

ϕEL − γ1KEI − γ2TEI − dEI

λK

(
1 +

ξV

1 + V

)
−ϖKK

αBV

1 + V
−ϖBB

αTV

1 + V
−ϖTT




.

Theorem 3.1. χ(t,X(t)) satisfies the Lipschitz condition198

∥χ(t,X1(t))− χ(t,X2(t))∥ ≤ ∆∥X1(t)−X2(t)∥. (3.1)

Furthermore, if there exists t0 > 0 such that199

(
2(1− θ)

2− θ
+

2θ

2− θ
t0

)
∆ < 1, (3.2)

then the fractional initial value problem (2.13)−(2.24) admits a unique solution200

on the interval [0, t0].201

Proof. Clearly, HS , HE , HI , HQ, HR, V , ES , EL, EI , K, B, T are bounded202

functions and there exist ℵi > 0, (i = 1, . . . , 12) such that ∥HS(t)∥ ≤ ℵ1,203

∥HE(t)∥ ≤ ℵ2, ∥HI(t)∥ ≤ ℵ3, ∥HQ(t)∥ ≤ ℵ4, ∥HR(t)∥ ≤ ℵ5, ∥V (t)∥ ≤ ℵ6,204

∥ES(t)∥ ≤ ℵ7, ∥EL(t)∥ ≤ ℵ8, ∥EI(t)∥ ≤ ℵ9, ∥K(t)∥ ≤ ℵ10, ∥B(t)∥ ≤ ℵ11,205

∥T (t)∥ ≤ ℵ12. Where ∥ · ∥ denotes the maximum norm.206

Now consider kernel χ1. Let H1
S , H

2
S be any two functions (with other207

variables as constant), then208

∥χ1(t,H
1
S)− χ1(t,H

2
S)∥ = ∥β (V )HI(H

1
S −H2

S) + µ(H1
S −H2

S))∥,
≤ ∥β0HI(H

1
S −H2

S) + µ(H1
S −H2

S))∥,
≤ (β0ℵ3 + µ)∥H1

S −H2
S∥.

Let H1
I , H

2
I be any two functions (with other variables as constant), then209

∥χ1(t,H
1
I )− χ1(t,H

2
I )∥ = ∥β (V )HS(H

1
I −H2

I )∥,
≤ ∥β(1 + ψ)HS(H

1
I −H2

I )∥,
≤ β0ℵ1∥H1

S −H2
S∥.

10
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Let H1
R, H

2
R be any two functions (with other variables as constant), then210

∥χ1(t,H
1
R)− χ1(t,H

2
R)∥ = τ∥H1

R −H2
R∥.

Finally, let V 1, V 2 be any two functions (with other variables as constant), then211

∥χ1(t, V
1)− χ1(t, V

2)∥ = ∥HSHI

(
β(V 1)− β(V 2)

)
∥,

≤ |β′(Γ)|ℵ1ℵ3∥V 1 − V 2∥.

Use is made of mean value theorem to obtain the above, where Γ ∈ (V 1, V 2).212

Taking ℏ1 = max{β0ℵ3 + µ, β0ℵ1, τ, |β′(Γ)|ℵ1ℵ3}, we see that χ1 satisfies Lips-213

chitz condition with respect to its arguments. By a similar argument, one can214

obtain Lipschitz constants ℏi for χi, i = 2, . . . , 12. Thus, there exists a positive215

constant ∆ such that216

∥χ(t,X1(t))− χ(t,X2(t))∥ ≤ ∆∥X1(t)−X2(t)∥. (3.3)

Applying the integral operator (2.26) to both sides of model (2.13)−(2.24),217

we have218

X(t)−X(0) =
2(1− θ)

2− θ
χ(t,X(t)) +

2θ

2− θ

∫ t

0

χ(s,X(s)) ds. (3.4)

Now, we define a recursive formula219

Xn(t) = X(0) +
2(1− θ)

2− θ
χ(t,Xn−1(t)) +

2θ

2− θ

∫ t

0

χ(s,Xn−1(s)) ds. (3.5)

From(3.4) and (3.5), we obtain

∥X(t)−Xn(t)∥ ≤ 2(1− θ)

2− θ
∥χ(t,X(t))− χ(t,Xn−1(t))∥

+
2θ

2− θ

∫ t

0

∥χ(s,X(s))− χ(s,Xn−1(s))∥ ds. (3.6)

Using (3.1), (3.6) becomes220

∥X(t)−Xn(t)∥ ≤ 2(1− θ)

2− θ
∆∥X(t)−Xn−1(t)∥

+
2θ

2− θ
∆

∫ t

0

∥X(s)−Xn−1(s)∥ ds,

≤
(
2(1− θ)

2− θ
+

2θ

2− θ
t0

)
∆∥X(t)−Xn−1(t)∥.

By iteration on n221

∥X(t)−Xn(t)∥ ≤
[(

2(1− θ)

2− θ
+

2θ

2− θ
t0

)
∆

]n
∥X(t)−X0(t)∥. (3.7)

11
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Existence of solution follows by taking the limit on both sides of (3.7).222

Next, we establish the uniqueness of solution. Assume X1(t) and X2(t) are223

different solutions of model (2.13)−(2.24), then224

∥X1(t)−X2(t)∥ ≤ 2(1− θ)

2− θ
∥χ(t,X1(t))− χ(t,X2(t))∥

+
2θ

2− θ

∫ t

0

∥χ(s,X1(s))− χ(s,X2(s))∥ ds.

Inequality (3.1) implies225

∥X1(t)−X2(t)∥ ≤
(
2(1− θ)

2− θ
+

2θ

2− θ
t0

)
∆∥X1(t)−X2(t)∥.

Condition (3.2) implies226

∥X1(t)−X2(t)∥ ≤ 0.

Uniqueness of solution follows immediately.227

4. Disease-free equilibrium solution228

Here, we find the equilibrium points, obtain the basic reproduction number229

and give some qualitative results. The disease-fee equilibrium solution of model230

(2.13)−(2.24) is given as231

Υ =
(
H0

S , H
0
E , H

0
I , H

0
Q, H

0
R, V

0, E0
S , E

0
L, E

0
I ,K

0, B0, T 0
)
,

=

(
Λ

µ
, 0, 0, 0, 0, 0,

λ

d
, 0, 0,

λK
ϖK

, 0, 0

)
. (4.1)

Below, we obtain the basic reproduction number by expressing the disease
class of the model as the difference between the new infection vector Fnew and
transmission vector Ftrans.




Dθ
tHE

Dθ
tHI

Dθ
tHQ

Dθ
t V

Dθ
tEL

Dθ
tEI



= Fnew −Ftrans

=




β (V )HIHS

0
0

βη (V )HI(HS − 1)

HE +HI + 1
εESV

0



−




(σ + µ+ πE)HE

−σHE + (µ+ δI + πI + ρI)HI

−πEHE − πIHI + (µ+ ρQ + δQ)HQ

−aEI + κV B +mV
γ1KEL + γ2TEL + (ϕ+ d)EL

−ϕEL + γ1KEI + γ2TEI + dEI



.

12
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dm
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λKγ1
ϖK

+ d
)

0


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We obtain the Jacobian matrices J F
new, J F

trans of Fnew and Ftrans at the232

disease-free equilibrium point. Then, we compute233

J = J F
new

(
J F
trans

)−1

=




β(0)Λσ

µ(σ + µ + πE)(µ + δI + πI + ρI)

β(0)Λ

µ(σ + µ + πE)
0 0 0

0 0 0 0 0
0 0 0 0 0

ηβ(0)(Λ − µ)σ

µ(σ + µ + πE)(µ + δI + πI + ρI)

ηβ(0)(Λ − µ)

µ(σ + µ + πE)
0 0 0

0 0 0
ελ

dm

ελaϕ

dm
(

λKγ1
ϖK

+ ϕ + d
)(

λKγ1
ϖK

+ d

0 0 0 0 0

Finding the eigenvalues of the above matrix, we have234

Basic reproduction number, R0 = max{RB
0 ,R

W
0 },

where235

RB
0 =

β(0)Λσ

µ(σ + µ+ πE)(µ+ δI + πI + ρI)
,

RW
0 =

ελaϕϖ2
K

dm (λKγ1 +ϖKϕ+ϖKd) (λKγ1 +ϖKd)
.

RB
0 is the basic reproduction number corresponding to the epidemiological236

(between host) part of the model while RW
0 corresponds to the immunological237

(within host) part.238

Consider the following fractional-order linear system with Caputo-Fabrizio239

derivative:240

Dθ
tX (t) = AX (t), (4.2)

where X (t) ∈ Rn, A ∈ Rn×n, and 0 < θ < 1. The following definition and result241

will be needed in the sequel:242

Definition 4.1. ([64, Definition 2]) The characteristic equation of system (4.2)243

is244

det (s(I − (1− θ)A)− θA) = 0.

Lemma 4.2. ([64, Theorem 1]) If the matrix (I − (1− θ)A) is invertible, then245

(4.2) is asymptotically stable if and only if the real parts of the roots of the246

characteristic equation of system (4.2) are negative.247

We have the following result on stability of the disease-free equilibrium point:248

Theorem 4.3. The disease-free equilibrium Υ of (2.13)−Eq.(2.24) is locally249

asymptotically stable if R0 < 1.250

13
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Proof. Lemma 4.2 is used to establish this result. We obtain matrix A by251

linearizing the model (2.13)−(2.24) at the disease-free equilibrium point:252

A =




−µ 0 −β(0)Λ
µ

0 τ 0 0 0 0 0 0 0

0 −C1
β(0)Λ

µ
0 0 0 0 0 0 0 0 0

0 σ −C2 0 0 0 0 0 0 0 0 0
0 πE πI −C3 0 0 0 0 0 0 0 0
0 0 ρI ρQ −(µ+ τ) 0 0 0 0 0 0 0

0 0 β(0)η
(

Λ
µ
− 1

)
0 0 −m 0 0 a 0 0 0

0 0 0 0 0 −ελ
d

−d 0 0 0 0 0

0 0 0 0 0 ε
λ

d
0 −C4 0 0 0 0

0 0 0 0 0 0 0 ϕ −C5 0 0 0
0 0 0 0 0 λKξ 0 0 0 −ϖK 0 0
0 0 0 0 0 αB 0 0 0 0 −ϖB 0
0 0 0 0 0 αT 0 0 0 0 0 −ϖ

where253

C1 = σ + µ+ πE , C2 = µ+ δI + πE + ρI , C3 = µ+ ρQ + δQ,
254

C4 =
λKγ1
ϖK

+ ϕ+ d, C5 =
λKγ1
ϖK

+ d.

Next, we show that (I−(1−θ)A) is invertible and the roots of det (s(I − (1− θ)A)− θA) =
0 have negative real parts. After a few lines of calculation, we have

|I−(1−θ)A| =
(
1 + (1− θ)(C1 + C2) + (1− θ)2

(
C1C2 −

Λβ(0)σ

µ

))
(µ(1−θ)+1)

× ((1− θ)C3 + 1)(µ(1− θ) + τ(1− θ) + 1)((1− θ)C5 + 1)(m(1− θ) + 1)

×(d(1−θ)+1)((1−θ)C4+1)((1−θ)ϖK+1)((1−θ)ϖB+1)((1−θ)ϖT +1) ̸= 0,

for 0 < θ < 1. This shows that (I − (1− θ)A) is invertible. Now, the roots of255

det (s(I − (1− θ)A)− θA) = 0 are256

s1 = − θϖT

1 +ϖT (1− θ)
, s2 = − θϖB

1 +ϖB(1− θ)
, s3 = − θϖK

1 +ϖK(1− θ)
, s4 = − θd

1 + d(1
257

s5 = − θµ

1 + µ(1− θ)
, s6 = − θ(µ+ τ)

1 + (µ+ τ)(1− θ)
, s7 = − θC3

1 + C3(1− θ)
,

258

s8 = −
2C1C2(1− θ)

(
1−RB

0

)
+ (C1 + C2) +

√
(C1 + C2)2 − 4C1C2

(
1−RB

0

)

2
[
C1C2(1− θ)2

(
1−RB

0

)
+ (C1 + C2)(1− θ) + 1

] ,

259

s9 = −
2C1C2(1− θ)

(
1−RB

0

)
+ (C1 + C2)−

√
(C1 + C2)2 − 4C1C2

(
1−RB

0

)

2
[
C1C2(1− θ)2

(
1−RB

0

)
+ (C1 + C2)(1− θ) + 1

] .

The remaining roots can be obtained from the equation260

s3 +P2s
2 +P1s+P0 = 0, (4.3)
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where261

P2 =
[mC4C5(1− θ)2(1−RW

0 ) + 2(m(C4 + C5) + C4C5)(1− θ) + (m+ C4 + C5)]θ

mC4C5(1− θ)3(1−RW
0 ) + (m(C4 + C5) + C4C5)(1− θ)2 + (C4 + C5 +m)(1− θ) + 1

P1 =
[3mC4C5(1− θ)(1−RW

0 ) +m(C4 + C5) + C4C5]θ
2

mC4C5(1− θ)3(1−RW
0 ) + (m(C4 + C5) + C4C5)(1− θ)2 + (C4 + C5 +m)(1− θ) + 1

P0 =
mC4C5(1−RW

0 )θ3

mC4C5(1− θ)3(1−RW
0 ) + (m(C4 + C5) + C4C5)(1− θ)2 + (C4 + C5 +m)(1− θ) + 1

Obviously, s1 − s7 are negative real numbers, s8, s9 have negative real parts262

provided RB
0 < 1. For s10 − s12, Routh-Hurwitz criterion is used to show that263

(4.3) has roots with negative real parts. By Routh-Hurwitz criterion, (4.3) has264

roots with negative real parts if and only if P2, P1 and P0 are positive and265

P2P1 > P0 [65]. Obviously, P2 > 0, P1 > 0 and P0 > 0 provided RW
0 < 1.266

After a few lines of calculations, we have267

P2P1 −P0 = 2(1− θ)
[
mC4C5(1−RW

0 )(1− θ) +m(C4 + C5) + C4C5

]2

+mC4C5(1−RW
0 )(m(C4 + C5) + C4C5)(1− θ)(3− θ)

+(C4 + C5)(m(m+ C4 + C5) + C4C5) +mC4C5R
W
0 > 0.

The result follows from Lemma 4.2.268

5. Simulations and discussions269

This section is devoted to simulations of various forms as well as discussions270

of results. Codes are written in MATLAB® for this purpose. For the choice of271

β(V ), it is assumed that β(V ) has a base transmission rate and increases as the272

viral load increases.273

β(V ) = β1

(
1 +

ψV

φ+ V

)
.

Where φ is the half saturation constant for viral shedding and ψ is the influence274

of viral load on transmission.275

5.1. Parameter estimation276

We use the COVID-19 data provided by Malaysian government from 10/01/2022277

through 10/03/2022 which is publicly available at [54] for our model fitting. We278

choose this range because of the high spread of the virus in Malaysia at this279

period.280

For this purpose, we add two new compartments - confirmed cases (HC) and281

confirmed death cases (HD) to model (2.13)−(2.12).282

Dθ
tHD = δQHQ + δIHI , (5.1)

283

Dθ
tHC = πEHE + πIHI . (5.2)
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Figure 5.1: Real-life COVID-19 data and lines of best

The quarantined compartment (Q), death compartment and confirmed cases284

compartment are fitted to the ”active cases”, ”cumulative death cases” and ”cu-285

mulative confirmed cases” data respectively. As Malaysia is roughly a 33,000,000286

population country, we therefore set S(0) = 33, 000, 000−E(0)−I(0)−Q(0)−R(0).287

Q(0) and R(0) are taken from the data while E(0) and I(0) are estimated.288

For the immunological part of the model, we fit our model to the mean viral289

load data of Hong Kong patients [66]. The model fitting for epidemiological and290

immunological parts are done simultaneously. Our simulation was carried out291

using ”fmincon” package by MATLAB® [67]. The data available in [54, 66] is not292

sufficient to estimate all the parameters involved in the dynamics of the disease.293

We therefore rely on the values found in literature for some parameters and294

assumed values for some. Our estimated parameter values and other parameter295

values are contained in Table 2. From our model fitting, it was estimated that296

E(0) = 1659 and I(0) = 982 while the order of differentiation was estimated297

as 0.569 (ie θ = 0.569). This therefore means that fractional order differential298

equations best fit the data than differential equations with classical differentiation.299

In other words, this study shows that including memory effects in modeling300

COVID-19 dynamics significantly improves the accuracy of the fit to the data.301

For subsequent simulations, we take θ = 0.569. Figure 5.1 shows the fitted curves302

and the real-life data. Using the estimated parameter values, RB
0 = 0.807 while303

RW
0 = 3.674. This shows that the major driver of the dynamics of the disease304

(during the period used for parameter estimation) is the dynamics of the virus305

within host.306
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5.2. Sensitivity analysis307

Sensitivity analysis helps to measure the influence of each parameter in the308

dynamics of infection being studied [68]. We investigate the influence of each309

parameter on the dynamics of the disease both locally and globally. While310

local sensitivity analysis examines the sensitivity of a variable or parameter with311

respect to change in a single parameter value, global sensitivity analysis examines312

the sensitivity of a variable or parameter with respect to change within the313

entire parameter range [69]. Global sensitivity analysis (GSA) seems to provide314

comprehensive result however, different methods of GSA can give different results315

and furthermore, the result of analysis greatly depends on the assumed probability316

distribution of the input parameters [68, 70]. Local sensitivity analysis, on the317

other hand, considers only the variation in one input parameter at a time, the318

sensitivity coefficient obtained can be used for comparison with other parameters319

independent of the range of parameter variations [70]. Considering the advantage320

of one approach over the other, both approaches are therefore used in this work.321

5.2.1. Local sensitivity analysis322

In order to determine the most essential parameters in the transmission323

dynamics of COVID 19, we perform a sensitivity analysis of the formulated324

model (2.13))−(2.24) according to [71].325

Definition 5.1. The normalized forward sensitivity index, of a variable, v to a326

parameter p denoted by Υv
p, is denoted as a ratio of the relative change in the327

variable to the relative change in the parameter328

Υv
p =

∂v

∂p
× p

v
.

The magnitudes and signs of the sensitivity indices of the basic reproduction329

numbers R0 with respect to model parameters obtained and shown in Figure 5.2330

reveal how changes in the model parameters affect the basic reproduction number.331

The parameters with positive indices suggest that an increase (or decrease) in332

the value of each of these parameters will lead to the increase (or decrease) in R0.333

For example, ΥR0

β = 1, implies that increasing (or decreasing) the transmission334

rate, β, by 10% also increases (or decreases) the basic reproduction number,335

R0, by 10%, provided other parameters are constant. On the other hand, the336

parameters with negative indices suggest that an increase (or decrease) in the337

value of each of these parameters will lead to the decrease (or increase) in R0.338

From the sensitivity indices in Figure 5.2, it can be seen that the basic339

reproduction number is more sensitive to the parameters corresponding to the in-340

host dynamics. Figure 5.2 suggests that immune response plays sensitive role in341

controlling the spread of the disease. It is worth mentioning that natural human342

death rate (µ), natural death rate of epithelial cell (d), human recruitment rate343

(Λ), epithelial cell recruitment rate (λ) have significant influence on R0, however344

control measures can not be built around these parameters. For example, the345

sensitivity indices in Figure 5.2 suggests that natural human death rate should346

17



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

 

 

 
 
 
 
 
 
 
 
 
 

 

 
      𝜇        𝜋𝐸       𝛿𝐼       𝜋𝐼       𝜌𝐼        𝑑        𝑚       𝜆𝐾      𝛾1 
                  𝛽        Λ        𝜎            𝜀        𝜆         𝜙       𝜛𝐾       𝑎 
 
 
 
 
 
 

 

 

Figure 5.2: Sensitivity indices of R0 to model parameters

be increased in other to curtail the spread of the virus. This is not good and347

therefore not implementable.348

Other important parameters worthy of attention are the transmission rate349

(β), progression of exposed individuals to infectious compartment (σ), quarantine350

of both exposed and infectious individuals (πE , πI), rate at which susceptible351

epithelial cells are infected by SARS-CoV-2 (ε), progression of latently infected352

epithelia cells to infectious epithelial cells (ϕ), production rate of SARS-CoV-2353

by infected epithelial cells (a), viral clearance rate from biological environment354

(m). The basic reproduction number is positively sensitive to parameters β, σ, ε,355

ϕ and a but negatively sensitive to πE , πI and m. Therefore the control measure356

be such that the values of the parameters with positive indices are reduced while357

the values of the parameters with negative indices are increased. Our point358

here is this, the sensitivity indices suggests that in order to curtail the spread359

of the virus, the following are necessary - use of drugs/medication to boost360

immune response, observance of COVID-19 protocol to reduce transmission,361

use of medication that prevents epithelial cells from being infected or prevents362

(or reduce) infected epithelial cell from producing the virus, use of drugs to363

hasten the clearance of virus from human body and contact tracing followed by364

quarantined of infected individuals.365

5.2.2. Global sensitivity analysis366

In order to further quantify the impact of each parameter on the basic repro-367

duction number (R0), we adopt a sampling-based method called Latin hypercube368

sampling with partial rank correlation coefficient index, (LHS-PRCC). The goal369
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of LHS-PRCC is to identify key parameters whose uncertainties contribute to370

the inaccuracy of prediction and to rank these parameters by their level of371

influence in contributing to the prediction imprecision. The magnitude and the372

statistical significance (p-value) of the PRCC value of a parameter indicate the373

contribution of the uncertainty in the parameter to the model’s prediction. The374

closer the PRCC value to +1 or −1, the more strongly the parameter influences375

the outcome measure. The p-value is the probability of getting a correlation as376

large as the observed value by random chance, when the true correlation is zero.377

The PRCC value is significant if the p-value is small, say less than 0.05. For a378

comprehensive description of this method, we refer to [72, 73].379

As a measure of uncertainty in our parameter values, we take 50% to the380

right and left of the parameter values given in Table 2 while R0 is the input381

function. LHS/PRCC method with 5000 uniformly distributed samples from382

each parameter range were generated and used as simulation inputs. The PRCC383

for the model parameters are shown in Figures 5.3−5.5. The magnitude of384

PRCC shows the influence of the parameter on the dynamics of the disease, the385

PRCC sign (positive or negative) shows the qualitative relationship between the386

input parameter and the basic reproduction number while the p-value gives the387

significance of the PRCC value.388

Firstly, we investigate the influence of uncertainties in each parameter on389

the epidemiological part of the model. This we do by taking RB
0 as the input390

function and obtain the PRCC result shown in Figure 5.3. Figure 5.3 shows391

the reproduction number BB
0 is strongly positively sensitive to human-human392

transmission rate (β), human recruitment rate (Λ) and progression rate from393

exposed compartment to infectious class (σ). However, the reproduction number394

BB
0 is strongly negatively sensitive to quarantine rate of exposed human (πE),395

quarantine rate of infectious human (πI), and natural human death rate (µ).396

These parameters (β, Λ, σ, πE , πI and µ) have high PRCC values which397

are statistically significant thus, uncertainty in any of these parameters is an398

important contributor to uncertainty in prevalence of the disease. While human-399

human transmission rate (β) and progression rate from exposed compartment400

to infectious class (σ) should be decreased, quarantine rate of exposed human401

(πE) and quarantine rate of infectious human (πI) should be increased in order402

to curtail the transmission of the virus. The scatter plots corresponding to403

parameters β, σ, πE , and πI indicate that with these parameters in their404

respective ranges, chances are that RB
0 < 1, a condition for disease control. Also405

since the PRCC values obtained for these parameters are statistically significant,406

understanding how to control these parameters will greatly help in controlling407

the spread of the virus among human. The PRCC value obtain for δI and ρI408

are very low which implies that these parameters have ignorable impact on the409

dynamics of the disease.410

Secondly, we investigate the influence of uncertainties in each parameter on411

the in-host part of the model. This is done by taking RW
0 as the input function412

and obtain the PRCC result shown in Figure 5.4. One can see from Figure413

5.4 that all the parameters involved in the dynamics of the within host part414

have significant PRCC values. Rate at which ES are infected by SARS-CoV-2415
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           PRCC = 0.87650                       PRCC = 0.87646                 PRCC = 0.84065   
           𝑝-value = 0                        𝑝-value = 0                  𝑝-value = 0 
 

 

 

 

  

 

 

 

 

 

                    𝛽               Λ                          𝜎 

 

                 PRCC = −0.87648                 PRCC = −0.83805   PRCC = −0.027503  
                 𝑝-value = 0                  𝑝-value = 0     𝑝-value = 0.154 
 

 

 

 

 

 

 

 

 

        𝜇              𝜋𝐸             𝛿𝐼  

 

                      PRCC = −0.85507           PRCC = −0.12278      
             𝑝-value = 0            𝑝-value = 3.58 × 10−10     
 

 

 

 

 

 

 

 

 

                   𝜋𝐼                𝜌𝐼 

Figure 5.3: PRCC showing the influence of each parameter on RB
0
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     PRCC = 0.72583              PRCC = 0.72583        PRCC = 0.63468 
     𝑝-value = 0               𝑝-value = 0                  𝑝-value = 0 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

              𝜀             𝜆              𝜙 

 
 

     PRCC = 0.88486              PRCC = −0.72615           PRCC = 0.63468 
     𝑝-value = 0               𝑝-value = 0                        𝑝-value = 0 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

           𝜛𝐾              𝑎               𝑑 
 
 
 

              PRCC = −0.72586              PRCC = −0.88432       PRCC = −0.88429 
                   𝑝-value = 0               𝑝-value = 0                  𝑝-value = 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               𝑚            𝜆𝐾               𝛾1 

Figure 5.4: PRCC showing the influence of each parameter on RW
0

(ε), recruitment rate of susceptible epithelial cell (λ), rate at which latently416

infected epithelial cells become infectious (ϕ), death rate for natural killer cells417

(ϖK) and production rate of SARS-CoV-2 (a) all have positive correlation418

with reproduction number RW
0 . These parameters need to be reduced in order419

to control the dynamics of the virus within a host individual however, looking420

through the scatter plots corresponding to these parameters, ϖK has the greatest421

PRCC value and with this parameter in its range, chances are that RW
0 < 1. The422

implication of this is that having vaccines that boost human immunity system423

is paramount to curtaining SARS-CoV-2 dynamics. RW
0 is negatively sensitive424

to natural death rate of epithelial cells (d), natural viral clearance rate from425

biological environment (m), constant regeneration rate of natural killer cells426

(λK) and killing rate of infected epithelial cells by natural killer cell (γ1). Again,427

one can see that parameters corresponding to immunity are the parameters with428

most correlation coefficient.429

Lastly, we have Figure 5.5 which shows the impact of the within-host and430

between-host parameters on the basic reproduction number. It is obvious from431

the PRCC values in Figure 5.5 that the influence of between-host parameters is432

almost insignificant compared to the influence of the within-host parameters. This433

suggests that in order to control the dynamics of the virus, great attention must be434
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paid to the behaviour of the virus within infected individuals while not neglecting435

the transmission dynamics. It is also very clear from the scatter diagrams that436

no single parameter can single-handedly make the basic reproduction number437

less that unity. This suggests that multiple intervention strategies must be438

implemented if the spread of SARS-CoV-2 will be curtailed.439

5.3. Model simulations440

In this section, model (2.13)−(2.12) is solved numerically using two-step441

fractional Adams Bashforth method (see [74, Theorem 3.2]). Codes are written442

in MATLAB® for this purpose. Effects of control strategies on the dynamics443

of the disease are investigated numerically. The parameter values in Table 2444

are used to carry out the numerical simulations. We take HS(0) = 32, 794, 000,445

HE(0) = 3, 000, HI(0) = 1, 000, HQ(0) = 2, 000, HR(0) = 200, 000, V (0) = 104,446

ES(0) = 200, 000, EL(0) = 700, EI(0) = 300, K(0) = 38, 835, B(0) = 10 and447

K(0) = 10.448

Solving model (2.13)−(2.24) numerically, we obtain the graphs in Figure449

5.6. It can be seen that the population of infected epithelial cells decreases.450

This is as a result of infection by SARS-CoV-2 and the killing effects of natural451

killer cells and cytotoxic T-cells. This observation is supported by the work of452

Deinhardt-Emmer et al [75]. The viral load also decreases due to the presence453

of B-lymphocytes and the decrease in the population of epithelial cells. In spite454

of these immune responses, the disease still persists in human population. This455

is because the remaining virus in human body is enough to ensure that the456

disease persists in human population. While most articles on the epidemiological457

dynamics of COVID-19 concluded that reducing the transmission such that458

RB
0 < 1 will help in curtailing the spread of the virus, this research has shown459

that this condition is not enough. Both RB
0 < 1 and RW

0 < 1 are necessary460

before the disease can be curtailed.461

5.3.1. Influence of viral load on transmission462

The condition R0 < 1 guarantees the local stability of the disease-free463

equilibrium, however it is shown in Figure 5.7 that the disease still persists in464

human population when R0 < 1. This is because the transmission rate depends465

on the average viral load in infectious individuals whereas the basic reproduction466

number does not capture this. We therefore have the effective basic reproduction467

number468

Effective basic reproduction number, effR0 = max
{
effRB

0 ,R
W
0

}
,

where469

effRB
0 =

β1(1 + ψ)Λσ

µ(σ + µ+ πE)(µ+ δI + πI + ρI)
,

RW
0 =

ελaϕϖ2
K

dm (λKγ1 +ϖKϕ+ϖKd) (λKγ1 +ϖKd)
.
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    PRCC = 0.10444           PRCC = 0.10455     PRCC = 0.08865         PRCC = −0.11843 
    𝑝-value = 1.84 × 10−7         𝑝-value = 1.96 × 10−7    𝑝-value = 8.81 × 10−6        𝑝-value = 1.50 × 10−9 
 
 
 
 
 

 
 
 
 
 
 
 
 

      𝛽                     Λ               𝜎          𝜇  
 
 
 

    PRCC = −0.09765          PRCC = −0.00219     PRCC = −0.10725         PRCC = −0.00918 
    𝑝-value = 2.71 × 10−7         𝑝-value = 0.496      𝑝-value = 2.23 × 10−8        𝑝-value = 0.442 
 
 
 
 
 
 
 
 
 
 
 

 

                𝜋𝐸             𝛿𝐼               𝜋𝐼           𝜌𝐼 
 
 
 
 

    PRCC = 0.60040           PRCC = 0.60042       PRCC = 0.50205         PRCC = 0.80311 
    𝑝-value = 0                  𝑝-value = 0        𝑝-value = 0              𝑝-value = 0 
 
 
 
 
 
 
 
 
 
 
 
 

               𝜀            𝜆         𝜙          𝜛𝐾  

 
 
 
 

    PRCC = 0.60060           PRCC = −0.60247       PRCC = 0.60218         PRCC = −0.80513 
    𝑝-value = 0                  𝑝-value = 0        𝑝-value = 0              𝑝-value = 0 
 
 
 
 

 
 
 
 
 
 
 
 
 

    𝑎             𝑑         𝑚           𝜆𝐾 
 
 
 
 

    PRCC = 0.80515 
    𝑝-value = 0   
 
 

 
 
 
 
 
 
 
 
 
 
 

    𝛾1 

Figure 5.5: PRCC showing the influence of each parameter on R0
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Figure 5.6: Simulation of (2.13)−(2.24) using parameter values in Table 2
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Figure 5.7: Influence of viral load on transmission

where ψ is the parameter that accounts for the increase in transmission rate470

caused by viral load. It can be seen in Figure 5.7 that ψ has a significant impact471

on the dynamics and control of SARS-CoV-2. The implication of this is that472

incomplete recovery from COVID-19 is a treat to the control of the disease. The473

assumption that transmission rate depends on the viral load was also made in474

[34] however, there was no discussion on its influence on transmission dynamics475

of the disease. We conclude this session by stating that R0 ≤eff R0 < 1 is the476

requirement for the disease control.477

5.3.2. Intervention strategies478

Next we explore various intervention strategies. For each intervention strategy,479

we compute the percentage death averted (PDA). PDA is the ratio of the total480

number of death averted to the total number of death when there is no control481

measure while the total number of death averted (TDA) is the difference between482

the total death due to infection over the simulation period in the absences of483

control and the total death due to infection when there is control.484

PDA =

∫ T

0

[δIHI + δQHQ]without control dt−
∫ T

0

[δIHI + δQHQ]with control dt

∫ T

0

[δIHI + δQHQ]without control dt

.

485

Vaccine486

There are many COVID-19 vaccines being used in countries of the world487

- Moderna mRNA-1273, Pfizer/BioNTech BNT162b2, Gamaleya Sputnik V,488

Janssen Ad26.COV2.S, Oxford/AstraZeneca AZD1222 and Covishield (Ox-489

ford/AstraZeneca formulation) [76]. COVID-19 vaccines help the body to develop490

immunity to SARS-CoV-2. It normally takes some weeks after vaccination for491

the body to build resistance against the virus. It is therefore possible for a492

person to still contract COVID-19 just after vaccination. This is due to the fact493

that the vaccine has not had sufficient time to offer protection [77]. It was also494

noted in [78] that COVID-19 vaccine does not provide 100% protection. Since495

the vaccine works with immune system, we numerically study the impact of496
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natural K-cells, B-lymphocytes and cytotoxic T-cells on the dynamics of the497

disease in what follows.498

Firstly, we consider vaccination leading to increased amount of natural K-499

cells, B-lymphocytes and cytotoxic T-cells. As shown in Figure 5.8, increase in500

the population of immune compartments lead to a decline in the peak values of501

viral load and infected epithelial cells. However, in the human population, the502

impact of this intervention strategy is not seen until after a later time (of about503

35 days). The PDA of the strategy is in Table 3.504

Secondly, we consider vaccination leading to increased efficacy of natural K-505

cells, B-lymphocytes and cytotoxic T-cells. This is shown in Figure 5.9. Increase506

in the efficacy of immune compartments lead to a rapid decline in the peak507

values of viral load and infected epithelial cells. Also in the case, it will take508

a while before the impact of this strategy is found in human population. This509

strategy appears (pictorially) to be more effective however Table 3 shows that it510

averts less human death when the vaccine improves the efficacy of the immune511

components by 10% and 30%.512

513

514

Social distancing, face mask and other measures to reduce transmission515

rate516

It is known that the countries of the world have initiated certain control measures517

(such as frequent hand washing with alcohol-based sanitizer, use of face masks in518

public, social distancing, movement restrictions, etc). Malaysian government has519

also initiated such containment measures during the period used for parameter520

estimation. This is responsible for the low value of β and high values of πE and521

πI . Yet in this section, we consider the cases where the transmission rate (β)522

is further lowered. Figure 5.10 shows the impact of this strategy. It is obvious523

that the infected human compartments reduce drastically which accounts for524

the high percentage death averted (see Table 3). Figure 5.10 further shows that525

reduction in transmission rate has negligible impact on within-host dynamics.526

When there is 30% decrease in transmission rate, effRB
0 = 0.902, RW

0 = 3.674.527

This accounts for the drastic reduction in the populations of infected individuals.528

The average viral load per infectious individual (V ) also decreases however, the529

virus remains in the system. A quick way to know that the virus remains in the530

body is to check the volume of immune cells. A high volume of immune cells531

is an indication of the presence of virus/pathogens. The remnant virus in the532

body can cause another surge any time the COVID-19 protocol is relaxed. Thus,533

taken care of epidemiological components only provides a temporary measure to534

curtailing the spread of the virus, the within-host dynamics will drive the entire535

dynamics and the virus will continue to live within human population.536

Figure 5.11 shows the effect of increase in the rate at which infected individuals537

are detected and quarantined. It is reasonable to assume that it takes a minimum538

of 1 day to detect and quarantine an infected individual. In Figure 5.11, the539

infected human compartments reduce drastically which accounts for the high540

percentage death averted (see Table 3). Also Figure 5.11 shows that increase in541
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Figure 5.8: Simulation of (2.13)−(2.24) considering the increase in proliferation rates of
immune cells
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Figure 5.9: Simulation of (2.13)−(2.24) with increase in the strength of immune cells
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Figure 5.10: Simulation of (2.13)−(2.24) with reduction in transmission rate

quarantine rate has negligible impact on within-host dynamics.542

543

Reduction in viral infection of epithelial cells using medication or544

vaccine545

Although there is no particular medication for treating COVID-19, people can546

recover by following a treatment protocol. Nonetheless, there are few questions547

to consider: Can we have drugs or vaccines that can prevent the epithelial cells548

from being infected? Can we have drugs or vaccines that can prevent the infected549

epithelial cells from reproducing the virus? Interferon, a component of human550

immune system interfere with viral replication and protects uninfected cells from551

the virus. Interferons, are produced and secreted by infected cells following virus552

infection. The secreted interferons act on neighboring cells to induce enzymes553

that render these cells more resistant to viral infection [43]. Resistance to viral554
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Figure 5.11: Simulation of (2.13)−(2.24) with increase in the rate at which infected individuals
are detected and quarantined
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infection causes reduction in the infection of epithelial cells by SARS-CoV-2. We555

therefore investigate the effect of the reduction of infection of epithelial cells by556

the virus as well as the reduction in the production rate of SARS-CoV-2.557

Figure 5.12 shows the effects of the reduction of infection of epithelial cells by558

the virus as well as the reduction in the production rate of SARS-CoV-2. This559

strategy lowers the peak values of viral load and infected epithelial cells however560

it has no significant effect on the immune cells. Figure 5.12 and Table 3 show561

that this strategy does not have immediate impact on the population of infected562

human until when it is 50% effective. This intervention strategy is very good563

when combined with other strategies. Table 3 shows a drastic increase in PDA564

when this strategy is combined with other strategies. This further suggests that565

vaccines that offer at least 50% reduction in ε, a and at least 50% increase in κ,566

γ1, γ2, λK , αB, αT will have a notable impact in controlling the spread of the567

virus. Our point here is that vaccine/medication should be made to achieve the568

following purpose: boost immune response, prevents epithelial cells from being569

infected or prevents (or reduce) infected epithelial cell from producing the virus,570

hasten the clearance of virus from human body.571

5.3.3. Influence of memory on the disease dynamics572

Memory indicates the dependence of a system not only on the present state573

of the system, but also on the previous history of the system. One advantage574

of using fractional order differential equations is that it incorporates memory.575

In Figure 5.13, we present the effect of memory on the dynamics of the disease576

on human population. Parameter values in Table 2 are used for our simulation.577

The dynamics of the disease changes more rapidly as the order of the derivative578

tends to one (θ → 1) while the infection reaches greater peak value as the579

order of the derivative tends to zero (θ → 0). This is due to the contribution580

by the previous history of the system. Caputo-Fabrizio fractional derivative581

has a fading memory [37]. Although fractional derivative incorporates memory,582

Caputo-Fabrizio fractional derivative is such that the dynamics of the disease is583

more influenced by the weight given to the moments near the present, and the584

further we go back in time, the more the weight decreases.585

6. Conclusion586

In this study, we propose a deterministic model which links between-host587

(population transmission) dynamics with within-host (disease processes within588

a single host) dynamics. Immune response is incorporated into our model in589

order to understand the interaction between SARS-CoV-2 and immune cells590

and how this inform the transmission from human to human. Considering the591

fact that disease dynamics leaves a memory in human immunologically and592

epidemiologically, a compartmentalized model with fractional derivative in the593

sense of Caputo-Fabrizio is proposed. The existence and uniqueness of solution594

to the model is established by fixed point method. The disease-free equilibrium595

solution is found to be locally asymptotically stable when R0 < 1. Parameters596
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Figure 5.12: Simulation of (2.13)−(2.24) with decrease in viral infection of epithelial cells
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ofTable 3: PDA of intervention strategies

Intervention strategy PDA

Vaccination

Increased prolifera-
tion rate of immune
cells (V1)

10% increase in λK , αB , αT 1.08

30% increase in λK , αB , αT 3.33

50% increase in λK , αB , αT 5.68

70% increase in λK , αB , αT 8.07

Increased efficacy of
immune cells (V2)

10% increase in κ, γ1, γ2 0.10

30% increase in κ, γ1, γ2 1.33

50% increase in κ, γ1, γ2 4.51

70% increase in κ, γ1, γ2 9.18

(V1) & (V2)

10% increase in κ, γ1, γ2, λK , αB , αT 1.40

30% increase in κ, γ1, γ2, λK , αB , αT 7.21

50% increase in κ, γ1, γ2, λK , αB , αT 16.5

70% increase in κ, γ1, γ2, λK , αB , αT 23.4

Social distanc-
ing, face mask
and other mea-
sures to reduce
transmission

Reduction in trans-
mission rate

10% decrease in β 65.8

20% decrease in β 86.5

30% decrease in β 93.4

Increase in quaran-
tine rate

πE = 0.9, πI = 0.9 73.3

πE = 1.0, πI = 0.9 86.8

πE = 1.0, πI = 1.0 93.1

Reduction in
viral infection of
epithelial cells
using medica-
tion or vaccine

Reduction in viral
infection of epithe-
lial cells (V3)

10% reduction in ε and a 0%

30% reduction in ε and a 0%

50% reduction in ε and a 5.32

70% reduction in ε and a 19.3

(V1),(V2),(V3)

50% reduction in ε, a and 50% increase
in κ, γ1, γ2, λK , αB , αT

22.8

70% reduction in ε, a and 70% increase
in κ, γ1, γ2, λK , αB , αT

37.0

33



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

 

 

 

 

 

 

 

 

 

Figure 5.13: Simulation of (2.13)−(2.24) showing the effect of memory on the disease dynamics
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are estimated by fitting the model to four sets of real-life data simultaneously.597

We use cumulative confirmed cases, cumulative death cases and active cases data598

provided by Malaysian government which is publicly available at [54] for our599

model fitting. For the immunological part of the model, we fit our model to the600

mean viral load data of Hong Kong patients [66]. Local and global sensitivity601

analysis are carried via normalize forward sensitivity index and Latin hypercube602

sampling with partial rank correlation coefficient index respectively. Lastly the603

model is solved numerically using two-step fractional Adams-Bashforth method604

and various intervention strategies are investigated. Percentage death averted is605

computed to compare various intervention strategies.606

By data fitting, parameters are estimated and we see that within-host dy-607

namics is the major driver of SARS-CoV-2 dynamics during the period used608

for data fitting. Data fitting further shows that the order of differential equa-609

tions involved in the model is 0.569. This therefore means that fractional order610

differential equations best fit the data than differential equations with classical611

differentiation.612

Sensitivity analysis helps to measure the influence of each parameter in the613

dynamics of infection being studied. While local sensitivity analysis (LSA)614

measures the influence of a parameter on the disease dynamics when other615

parameters are constant, global sensitivity analysis (GSA) measures the influence616

of uncertainties in parameter values on disease dynamics. Both are needed in617

order to know the parameters that influence the dynamics of the disease and to618

propose control measures. LSA reveals that immune response plays sensitive role619

in controlling the spread of the disease. It further shows that viral transmission620

rate, progression of exposed individuals to infectious compartment, rate at which621

susceptible epithelial cells are infected by SARS-CoV-2, production rate of SARS-622

CoV-2 by infected epithelial cells are to be controlled in order to curtail the623

spread of the disease. GSA reveals that no single parameter can single-handedly624

make the basic reproduction number less that unity. Thus, suggesting that625

multiple intervention strategies must be implemented if the spread of SARS-626

CoV-2 will be curtailed. Both GSA and LSA suggest that in order to curtail627

the spread of the virus, the following are necessary: use of drugs/medication628

to boost immune system, use of medication that prevents epithelial cells from629

being infected or prevents (or reduce) infected epithelial cell from producing the630

virus and observance of COVID-19 protocol to reduce transmission.631

It is shown, by simulations that in order to reduce human death, it is632

encouraged to strictly maintain measures that reduce transmission of the virus,633

however to automatically solve the problem of SARS-CoV-2, attention must be634

paid to the use of vaccines/medications which greatly improve on human immune635

systems, prevent epithelial cells from being infected and also prevent infected636

epithelial cells from reproducing more virus. While immune system (innate and637

adaptive) needs to be boosted greatly, it is crucial that adaptive immune cells638

be made to specifically recognise SARS-CoV-2. This is because occasionally, the639

adaptive immune system may fail to distinguish between what is foreign and640

what is not and reacts destructively against the host’s own molecules [42].641

For our simulation, we employed a particular type of β that varies as an642
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increasing function of V . This selection was made based on the fact that SARS-643

CoV-2 transmission rises with an increase in viral load [44]. Despite using a644

specific form of β for the simulation, the outcome of our study remains applicable645

to any β that is an increasing function of V . Generalization of the findings to646

the case where β is a piecewise continuous function or time-dependent function647

is straightforward with little modifications. Summarily, the assumption that648

the transmission rate increases with viral load aligns with clinical findings and649

underscores the importance of our model in emphasizing the effects of pandemic650

prevention and control measures.651

Our proposed model is based on other assumptions, one of which is that the652

entire population is homogeneously mixed. Heterogeneity may be incorporated653

using a risk-structured model. Another limitation of our multiscale model is654

that it assumes individual hosts have the same internal states at a time. An655

improvement in this direction is subject to further study but possible in view656

of [35, 79]. Nonetheless the result of this work is robust as it presents the657

efforts of public health interventions to control SARS-CoV-2 which are focused658

on the reduction of human-to-human transmission of the virus on one hand659

and medical interventions to treat the disease which are focused on enhancing660

immune response on the other hand.661
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