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In many species, individuals that experience harsh conditions during devel-
opment have poor health and fitness outcomes in adulthood, compared with
peers that do not. These early-life contributions to inequality are often attrib-
uted to two classes of evolutionary hypotheses: Developmental Constraints
(DC) models, which focus on the deleterious effects of low-quality early-life
environments, and Predictive Adaptive Response (PAR) hypotheses, which
emphasize the costs individuals incur when they make incorrect predictions
about conditions in adulthood. Testing these hypotheses empirically is
difficult for conceptual and analytical reasons. Here, we help resolve some
of these difficulties by providing mathematical definitions for DC, PAR
(particularly focusing on ‘external’ PAR) and related concepts. We propose
a novel, quadratic regression-based statistical test derived from these
definitions. Our simulations show that this approach markedly improves
the ability to discriminate between DC and PAR hypotheses relative to the
status quo approach, which uses interaction effects. Simulated data indicate
that the interaction effects approach often conflates PAR with DC, while the
quadratic regression approach yields high sensitivity and specificity for
detecting PAR. Our results highlight the value of linking verbal and
visual models to a formal mathematical treatment for understanding the
developmental origins of inequitable adult outcomes.

This article is part of the theme issue ‘Evolutionary ecology of
inequality’.
1. Introduction
Early-life adversity is associated with a wide variety of negative outcomes in
adulthood, including poor health, short lifespans, and low evolutionary fitness.
These ‘early-life effects’ are believed to contribute to inequalities in adult out-
comes and thus have generated strong interest from many fields, including
ecology and evolution [1–3], public health and medicine [4–7], psychology
and psychiatry [8,9], sociology [10] and economics [11].

The widespread observation of early-life effects across species [12] has given
rise to two broad classes of hypotheses that seek to explain the evolution of such
effects (reviewed in [13–15]). The first class, often termed Developmental Con-
straints (DC) or ‘silver spoon’ hypotheses [16,17], posits that harsh conditions
in early life decrease later-life phenotypic quality (and thus, evolutionary fitness),
perhaps because organisms make tradeoffs in harsh developmental environ-
ments that promote immediate survival but compromise long-term outcomes
[15]. The second class, Predictive Adaptive Response (PAR) hypotheses, proposes
that there is selection for organisms to use their early-life conditions to predict
characteristics of their adult environment and adjust their responses to the
early environment accordingly [17,18]. Under this model, incorrect ‘guesses’
about the future lead to poor outcomes during adulthood. Organisms may pre-
dict something about their external environment (referred to as an external PAR),
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Figure 1. Visualizations of the predictions of the Developmental Constraints (DC) hypothesis (a), external Predictive Adaptive Reponse (PAR) hypothesis (b) and a co-
occurrence of the two (c). If environmental quality is a continuous variable bounded by 0 (worst) and 1 (best), (a) the DC hypothesis predicts that low-quality
developmental environments will result in worse adult outcomes (e.g. health or longevity) than high-quality environments. (b) The external PAR hypothesis predicts
that, controlling for other factors, bigger differences between an organism’s prediction about its adult environment and its actual adult environment lead to worse
adult outcomes. The centre of the x-axis (0) represents a perfect match between prediction and realized adult environment. Negative x-axis values (bounded by −1)
represent an organism that predicted that its adult environment would be worse than it actually ended up being; i.e. it predicted a high-quality adult environment
but ended up in a low-quality one. Positive x-axis values (bounded by 1) represent an organism that predicted that some feature of its adult environment would be
worse than it ended up being; i.e. it predicted a low-quality environment and ended up in a high-quality one. An organism that predicted some intermediate
outcome in adulthood (a moderate-quality environment) can experience either a negative or positive prediction error (bounded by −0.5 and 0.5 in our figure). (c)
The DC and external PAR hypotheses, as defined in §2, can be true simultaneously. An organism that experienced a low-quality developmental environment can
have worse outcomes relative to what its outcomes would have been had it experienced a high-quality developmental environment, and can fare worse the greater
the error in its prediction about its future environment.
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or the quality of their own somatic state (an internal PAR)
[18,19]). A key difference between the DC and PAR hypotheses
is whether the early environment per se is the primary determi-
nant of later-life outcomes (figure 1a), or whether the accuracy
of an organism’s prediction about some aspect of its future is
the determining factor [20,21] (figure 1b).

As conceptualized above, the DC and PAR hypotheses
are not mutually exclusive, as many people have noted
[14,22–24]. Adult outcomes can simultaneously be deter-
mined by the quality of the developmental environmental
and how well organisms predict some feature of adulthood
[21,25]. For example, depending on the size of the effects of
DC, an organism that starts off in a low-quality environment
may always fare worse than if it had started in a high-quality
environment, even if it would also fare worse if its prediction
about the future was wrong (figure 1c). In parallel, higher-
quality adult environments may also yield better outcomes
independent of the developmental environment or an organ-
ism’s predictive accuracy [23,26]. This conceptually related
idea, termed the Adult Environment Quality (AEQ) hypoth-
esis [17], is implicit in tests of the relationship between adult
environment and fitness that do not consider early life.

Currently, in humans and other long-lived mammals, the
DC hypothesis has stronger empirical support than PAR
hypotheses (reviewed in [14]). However, it is difficult to
know what conclusions to draw from this pattern because
the ubiquitous verbal and visual models used for testing
these hypotheses create uncertainty about precisely what is
being evaluated. Explicit mathematical definitions for DC,
PAR and AEQ models can help remedy these problems
and resolve ambiguity in interpreting the empirical data
[27,28]. Here, we provide definitions of DC, external PAR
and AEQ, and use those definitions to motivate a quadratic
regression model and tests for these hypotheses. Using simu-
lations, we demonstrate substantial improvements in the
sensitivity and specificity of tests of these hypotheses with
our quadratic regression approach over a commonly used
interaction regression model [17,29]. We show that a key
reason for this improvement is that, unlike the interaction
regression approach, the quadratic regression method
avoids conflating DC with external PAR. In addition, we dis-
cuss conceptual issues that continue to constrain formal tests
of DC and PAR models, and provide guidance on practical
implementation of tests for these hypotheses.
2. Mathematical definitions and predictions
In this section, we propose formal mathematical definitions
for DC, PAR and the related AEQ hypothesis. We then out-
line the theoretical predictions that follow from these
definitions, and make explicit assumptions that are often
left implicit in studies of the early-life origins of inequality.
Our definitions and predictions are summarized in table 1.

We note three conceptual points about our definitions.
Firstly, they posit what would happen if, for a given organ-
ism, its developmental environment were to be different
from what it is, or if it made a different prediction about its
adult environment. A useful way to phrase the inquiry is:
How would a given individual’s outcome differ if, in a paral-
lel universe, its environment were different? In the real world,
some studies of identical twins attempt to approximate this
hypothetical scenario. Therefore, another way to conceptual-
ize this is to ask: What would happen if identical twins were
separated and raised in two different environments?

It is also helpful to clarify what our definitions are not.
Our definitions are not about the distributions of environ-
ments and outcomes across individuals in a given
population. For example, we will not define DC as a claim
that organisms with better outcomes tend to have been
born in better environments. These clarifications are required
because, though our definitions are intra-individual (in the



Table 1. Formal definitions and derived predictions of theories for the relationship between the quality of developmental environments and inequalities in
adult outcomes. The variables we use here align with the numbered causal chain in §2b that focuses on external environments. However, one can substitute
other inputs for external environment e, as described in our first, non-numbered causal chain in §2b. Here, y0 is outcome during development; y1 is outcome
during adulthood; e0 is developmental environment; e1 is adult environment; E(e1) is adult environment the organism expects; Δe = e1− e0 is the difference
between developmental and adult environments; and p is a phenotypic adaptation to a given environment. Definitions assume a differentiable function that
maps from environment, or from discrepancy between environment and adapted-to environment, to outcomes. Refer to §2 for details on all theories.

theory definition
observable
variation

prediction or test
(eqn no.)

Developmental Constraints (DC) @y1=@e0 . 0 (y1, e0) @y1=@e0 . 0 (2.1)

Predictive Adaptive Response (PAR) E(e1) = e0
@p=@Eðe1Þ , 0

@2y1=@p @e1 , 0

phenotypic adaptation test (e0, p) @p=@e0 , 0 (2.5)

prediction error test (y1, |Δe|) @y1=@jDej , 0 (2.7)

Adult Environmental Quality (AEQ) @y1=@e1 . 0 (y1, e1) @y1=@e1 . 0 (2.8)
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sense that they compare an individual with itself in another
hypothetical world), the DC and PAR hypotheses are often
empirically tested with data that relies on inter-individual
comparisons. That is, tests of the theories we define often
rely on data that compare one individual with another (e.g.
[30,31]), though there are situations (especially when doing
experimental work, either in the lab or with wild animals)
where it is possible to observe the same individual under a
range of prediction error or adult environmental quality
conditions (e.g. [32–34]). Whether it is appropriate to use
inter-individual data to test intra-individual hypotheses is a
methodological question concerning causation that is
beyond the scope of this article. We recommend [35,36] for
a detailed discussion of such issues.

Secondly, our definitions constitute theories or hypoth-
eses about the influence of early environment on an
organism’s outcome, and they generate (testable) predictions
about how environments affect outcomes. In some cases, the
theory and the prediction are the same: the prediction of
the theory is mathematically identical to the statement of
the theory. An example is DC, where the theory says low-
quality early environments cause poor adult outcomes and
the prediction is that low-quality early environments cause
poor adult outcomes. In other cases, such as PAR, the
definitions and the predictions are not the same.

Thirdly, our definitions assume that developmental and
adult environments are continuous variables and that one
can take derivatives of the mathematical functions that
relate those environments to outcomes. Our conclusions
can be extended to categorically coded variables if some
technical modifications are used. We will by default use
partial derivatives, indicated by the symbol ∂, because
we are typically examining the impact of changing input
into a function, holding all other inputs into that function
constant.
(a) Developmental Constraints hypothesis
The Developmental Constraints (DC) hypothesis proposes
that lower-quality developmental environments will lead
to worse outcomes in adulthood, relative to higher-quality
developmental environments [17]. For example, Drosophila
melanogaster larvae that are nutritionally stressed become
smaller adults and have lower egg viability in adulthood
than larvae that are not [37].

DC can be described by a simple, within-individual
causal chain:
Mathematically, this can be represented as follows:

y1 ¼ fðe0Þ, where
@y1
@e0

. 0, ð2:1Þ

where y1 represents adult outcomes (e.g. health or longevity),
f is an increasing function and e0 is the developmental
environment. (This definition is also stated in row 1 of table
1.) Higher values of y1 and e0 indicate better outcomes and
higher-quality environments, respectively. The expression ∂
y1/∂e0 > 0 can be restated as follows: an improvement in
early-life environment (the denominator e0) causes an
improvement in adult outcomes (the numerator y1). We use
a partial derivative ∂ because we are holding all else constant.
DC can be directly tested with empirical data, assuming that
the developmental environment is independent from other
factors that predict adult health and fitness. Our definition
of DC is evolutionary in the sense that it proposes that
early-life adversity is potentially a selective force, but it
takes no stance on the mechanism(s) by which early adversity
is connected to worse adult outcomes.
(b) Predictive Adaptive response hypothesis
Predictive Adaptive Response (PAR) hypotheses propose that
an organism adopts a phenotype optimized for something
that it expects to experience in adulthood [18,38]. The
within-individual causal chain that motivates PAR has
four steps:
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The subscripts indicate aspects of early life (0) or adult life (1).
The definitions of x and z can accommodate a range of inputs.
The variable y always refers to some outcome, such as fitness.
To shorten our exposition, we will specifically focus on a version
of PAR known as external PAR, where organisms base their pre-
dictions about the future on cues in the external environment
(e.g. temperature or rainfall). The definitions of x and z can
accommodate a range of inputs (see electronic supplementary
material, §SA for a brief discussion of potential variants of
PAR. This requires naming variables in the aforementioned
causal chain in a manner that is consistent with external PAR.
Specifically, x0 will be developmental environment and renamed
e0, and z1 will be adult environment and renamed e1. These
substitutions generate the following causal chain:
The aforementioned numbered chain assumes that all else is
held constant, and that there is an analogous causal chain for
high-quality environments.

This causal chain has clear similarities to the develop-
mental mismatch hypothesis, which is ubiquitous in the
evolutionary health literature [19,39].1 It posits that the
more closely the environment at life-history stage m matches
the environment to which the organism adapted at some
prior stage, m− k (for k > 0), the better an organism’s
outcomes at stage m will be.

Each step in the aforementioned numbered chain
is necessary. The proximate mechanism underlying PAR
is captured by steps 2 to 3: the organism makes a predic-
tion about its adult environment, and that prediction
must lead it to adjust to cope with that predicted
future environment. Step 4 is required to complete the evol-
utionary logic of PAR (i.e. the ‘ultimate’ mechanism): this
response evolves because adopting a phenotype optimized
to a low-quality adult environment improves fitness outcomes
for an organism in adulthood relative to the outcomes it would
have experienced if it had not adopted that phenotype.

Steps 1 and 4 typically correspond to things that can be
observed and measured directly. For example, step 1 can
be captured by measures of environmental variation where
some values are thought to be high-quality/benign (e.g. abun-
dant food, favourable temperature) and some low-quality/
adverse (e.g. restricted food, unfavourable temperatures). Step 4
can be captured by measures of health- or fitness-related
outcomes. Step 3 is theoretically observable, if the relevant, opti-
mizable phenotypic response is known (e.g. smaller body size if
the environment is food-restricted). However, step 2, an organ-
ism’s prediction, is not typically observable, so step 1 serves as a
proxy for an organism’s prediction:

Eðe1Þ ¼ e0: ð2:2Þ
In other words, an organism expects (the function E( · )) that
its adult environment will be the same as its developmental
environment. Equation (2.2) is critical for making the PAR
hypothesis falsifiable.

The steps outlined earlier can be mapped to mathematical
expressions. PAR is defined by two claims. The first captures
steps 2 to 3:

p ¼ fðEðe1ÞÞ, where
@f

@Eðe1Þ ¼
@p

@Eðe1Þ , 0, ð2:3Þ

where p is the value of a given phenotype (e.g. the weight or
length of an organism if body size is the phenotype of interest)
that is protective in low-quality environments. The variable e1
represents the quality of the adult environment. (Our choice to
define the adaptation to high e1 to be low p, i.e. to suppose
that it is a bad environment that needs an adaptation, is arbi-
trary. We could have assumed that high p is better suited for
high e1 so long as we also reversed the sign of ∂p/∂E(e1).) The
derivative (∂p/∂E(e1)) < 0) in equation (2.3) says that predicting
a higher-quality environment (i.e. the expectation of e1, or
E(e1)) reduces the degree to which an organism adopts a
phenotype suited for a low-quality environment.

The second claim captures steps 3 to 4:

y1 ¼ gðp, e1Þ, where
@

@e1

 
@y1
@p

!
¼ @2y1

@p@e1
, 0, ð2:4Þ

where y1 is the outcome of interest, measured in adulthood.
Note that y1 must be an outcome that can be ordered to rep-
resent better or worse outcomes (e.g. good versus poor
health). The derivative in equation (2.4) says that adopting a
phenotype that is adaptive in a bad adult environment (i.e. a
phenotype where ∂y1/∂p > 0 when e1 is low) leads to worse
outcomes when the adult environment improves (∂(∂y1/∂p)/
∂e1 < 0), assuming all else is held constant. Equation (2.4) is
written as a derivative of a derivative, i.e. a cross-derivative,
because a cross-derivative provides information about how a
derivative changes when other variables are changed.
Together, these two propositions (equations (2.3) and (2.4)) for-
malize steps 2 to 4. This definition of PAR, including equations
(2.2), (2.3) and (2.4), is also stated in row 2 of table 1.

To illustrate the logic of the last two paragraphs, suppose
that low-quality environment (low e0) maps onto a cold
environment and that growing a thick coat (p) is a phenotypic
adaptation to the cold environment. An organism that predicts
that the adult environment will be warm (higher E(e1), as pre-
dicted by high e0) will grow a thinner coat (less fur p). If the
adult environment is indeed warm as predicted, then this phe-
notype (less fur) is likely to improve adult outcomes (e.g. less
fur p means less overheating, so higher y1).

See the electronic supplementary material for related
information about the relationship between PAR and the
developmental adaptive response hypothesis, which posits
that an organism adapts to its developmental, rather than
its predicted adult environment (electronic supplementary
material, §SB).
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(i) Tests for Predictive Adaptive Response
In this section, we explain the tests that are implied by our
definition of PAR. Two basic tests are used in the literature
(e.g. [32,41]), which we will refer to as ‘phenotypic adaptation
tests’ and ‘prediction error tests’. Both of these strategies are
appropriate for our mathematical models.

Phenotypic adaptation tests focus on the mechanism
of PAR, i.e. the phenotypic ‘choice’ an organism makes
during development based on some input that it receives.
We refer to the phenotypic adaptation (e.g. butterflies devel-
oping a specific wing spot pattern, or voles developing thick
coats [42,43]) as a mechanism because developmental
‘choices’ about these phenotypes are how an organism gets
from a prediction to a fitness outcome. To understand the
two-part test implied by this phenotype-focused strategy,
we can collapse the three equations that capture PAR
(equations (2.2), (2.3) and (2.4)) into two expressions. The
first expression is

p ¼ fðe0Þ, where
@f
@e0

¼ @p
@e0

, 0, ð2:5Þ

which is obtained by plugging equation (2.2) (which
describes steps 1 to 2 of our causal chain) into equation
(2.3) (steps 2 to 3). This inequality says that low-quality devel-
opmental environments cause phenotypic adaptations to
low-quality adult environments. The second expression is
simply equation (2.4). That equation describes steps 3 and 4
of our causal chain and says that a phenotypic adaptation
to a low-quality environment improves adult outcomes if
adult environment is indeed low-quality. Each of these two
expressions offers a separate test for PAR that makes use of
data on phenotypic adaptations.

The second strategy for testing for PAR, prediction error
tests, ignores information about specific phenotypes and
instead focuses on the difference between an organism’s pre-
diction and its realized adulthood. Prediction error tests
evaluate whether an organism does better, on a given health
or fitness measure, if its prediction about the future was cor-
rect. In steps 1–4 above, the organism would have predicted
its adult environment based on its developmental environ-
ment. The implication is that it will do better if its
developmental and adult environments more closely ‘match’
than if they do not (i.e. the mismatch hypothesis)
(e.g. [23,32]). This strategy plugs the inequality from equation
(2.5) into steps 3 to 4 (equation (2.4)) to connect developmental
and adult environment, without reference to any specific
phenotypic adaptation:

y1 ¼ gðfðe0Þ, e1Þ,

where
@2y1

ð�@e0Þ@e1 ¼
@2y1

ð�@pÞ@e1
@p
@e0

, 0:
ð2:6Þ

This inequality gives both the definition and the test of
the mismatch hypothesis. To see why, it helps to evaluate
the function at the point where e0 = e1 (i.e. simply assign e0
the same value as e1, so that an organism’s developmental
and adult environments match perfectly). A concomitant
decrease in developmental environmental quality (−∂e0) and
increase in adult environmental quality (∂e1), or vice versa,
increase the mismatch between developmental and adult
environments, leading to worse outcomes (∂2y1 < 0).2 While
mathematically useful, this definition of the mismatch hypoth-
esis is awkward because it relies on a cross-derivative (i.e.
taking the partial derivative of the function with respect to
developmental environment, and then the partial derivative
of that result with respect to adult environment), as well as
potentially placing restrictions on e0 and e1

2. However, we
can simplify the mismatch hypothesis to be more user-
friendly as follows:

@y1
@je1 � e0j ¼

@y1
@jDej , 0: ð2:7Þ

From this point forward, we will define Δe = e1− e0 and
|Δe|=|e1− e0|. Now, the hypothesis states that adult outcomes
decline as the difference between developmental and adult
environments increases.

There is nothing about the prediction error testing
strategy that precludes also using a phenotypic adaptation
testing strategy. Indeed, the latter can complement predic-
tion error tests by providing more specific information
about the mechanism(s) by which organisms arrive at out-
comes, which is information that prediction error tests do
not provide. For more on the phenotypic adaptation test
strategy, refer to electronic supplementary material, §SC.
Going forward, we will focus on prediction error tests,
which are commonly invoked in the literature (e.g.
[23,29,32]).

(c) Adult Environmental Quality hypothesis
Finally, we define the Adult Environmental Quality (AEQ)
hypothesis, which says that a higher-quality adult environ-
ment will result in better adult outcomes, i.e.

@y1
@e1

. 0: ð2:8Þ

This equation says that an improvement in adult environment
(∂e1) causes an improvement in adult outcomes (∂y1 > 0). This
definition of the AEQ hypothesis is restated in row 6 of
table 1.

The AEQ hypothesis is not a primary focus of the litera-
ture on understanding the early-life drivers of inequality.
We include it here to facilitate the discussion of concep-
tual issues surrounding the DC and PAR hypotheses in the
next section.
3. Conceptual issues in testing models
Four conceptual issues are central to any empirical tests of the
DC, PAR and AEQ hypotheses. We discuss two of these
issues below. The other two (overlapping predictions gener-
ated by the theories, and the difficulty of testing intra-
individual theories with inter-individual data) are discussed
in electronic supplementary material, §SD.

(a) Issue 1: non-independence of e0, e1 and Δe
Testing DC depends on variation in e0; the prediction error
test of PAR depends on Δe; and testing AEQ depends on e1.
Because these variables are not independent (varying e0 or
e1 by necessity changes Δe), testing the DC, PAR and AEQ
hypotheses independently is challenging. For instance, if we
hold e0 constant but increase e1, we cannot determine if
observed changes in outcomes are associated with an
increase in e1 or an increase in the change in environment
(Δe). This means that researchers testing for DC and for
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PAR must make additional assumptions to also test the AEQ
hypothesis. For example, one must define PAR as having
equally deleterious effects regardless of whether the adult
environment is better or worse than the developmental
environment (‘symmetric’ rather than ‘asymmetric’ PAR;
see electronic supplementary material, §§SA and SE and
figure S1). Because symmetric PAR posits that changes in
environment have the same effect on outcomes whether the
change is positive or negative, a smaller reduction in out-
comes with positive changes than with negative changes
suggests AEQ, but also could, in theory, be consistent with
asymmetric PAR.3

To deal with this issue (called an identification problem in
many literatures) in away that does not arbitrarily prioritize test-
ing one hypothesis over another, we recommend (i) explicitly
stating the relationships among developmental environment,
adult environment and the difference between the two, and
(ii) decidingwhich of these is/are independent of the theoretical
model (i.e. exogenous to the model’s structure), and which a
byproduct of the model’s structure (i.e. not independent of
the model’s structure, but simply a byproduct of the exogenous
variation). Only hypotheses that concern the independent
variation are testable [45].

The process that we feel best represents the phenomenon
of interest here is that e0 and Δe are independent, and that
these collectively generate e1 via the formula e1 = e0 + Δe. An
alternative assumption—that Δe is simply a byproduct—
seems less defensible, because time moves linearly: e0 and
Δe come before e1, so it is unlikely e1 causes either e0 or Δe.
Imagine an adult baboon living through a drought. It has
already experienced e0, and the drought it is now experien-
cing is familiar (i.e. matches prior experience, a low Δe), or
unfamiliar (i.e. does not match prior experience, a high Δe).
The baboon does not experience e1 independently of what it
experienced during development. One could assume a differ-
ent process, but it is still the case that only two of the three
hypotheses will be testable.
(b) Issue 2: non-mutually exclusive theories
A second difficulty is that the DC, PAR and AEQ theories,
as we have chosen to define them, are not mutually exclusive.
Any combination of them could be true at the same time
[46,47], and indeed meta-analyses suggest that more
than one may often be at work [48]. This means that univari-
ate models without higher-order polynomial terms (e.g.
interacting and squared variables) may not be able to dis-
tinguish which theories are true. Consider the following
simple model:

y1 ¼ FðjDejÞ ¼ bjDej þ e: ð3:1Þ
The goal of this model is to correlate adult outcomes with the
mismatch between early-life and adult environments. We
distinguish this model from the theoretical models in the pre-
vious section by using capital letters to define the function.
Suppose, however, that both DC and PAR are true. The
model described earlier (equation (3.1)) does not simply con-
trol for or eliminate the influence of DC just by excluding a
separate e0 term. The functional consequence of this is that
the model will mistakenly attribute the effect of e0 to
Δe = e1− e0 (something that is often referred to in the statistics
and economics literature as omitted variable bias [36]).
The result is that the estimated coefficient will not equal the
partial derivative of adult outcomes with respect to mismatch
(∂y1/∂|Δe|):

Eðb̂Þ ¼ bþ g0d0d, ð3:2Þ
where γ0 is equal to ∂y1/∂e0 and δ0d is the coefficient from a
regression of |Δe| on e0. Put simply: the coefficient may be
biased. A similar problem will afflict any regression equation
that does not allow all plausible models to be true, a difficulty
that has been noted before [48]. At best, effect sizes are likely
to be over- or under-estimated; at worst, such models will
generate answers that are the opposite of the real-world
truth (e.g. concluding that DC or PAR do not exist when in
fact they do). Moreover, simply including an e0 (or e1) term
in such a model does not solve the problem, for reasons we
will explain in §6.
4. Issues with a common visualization and
testing strategy

One common approach for implementing a prediction error
test for PAR (§2b) relies on running a regression that contains
a term for an interaction between the developmental and
adult environments (e.g. [23,32,49–53]), i.e.

y1 ¼ bþ b0e0 þ b1e1 þ b01e0e1 þ u, ð4:1Þ
where u is a regression error term. We refer to this equation as
‘the interaction regression’.

Testing for DC with the interaction regression focuses
on the coefficient on e0, while the test for PAR focuses on
the coefficient on the interaction term β01. We believe that
this strategy is partly motivated by visualizations like the
one depicted in figure 2, which plot adult outcomes against
adult environmental quality separately for organisms that
experienced different developmental environments (e.g.
[17,23]). Rejecting the hypothesis that β0 = 0 (i.e. the null,
that low-quality developmental environments do not lead
to worse adult outcomes) is interpreted as evidence for DC,
while rejecting the hypothesis that β01 = 0 is interpreted as
preliminary evidence for a PAR (so long as β0 < 0 is also
true, as in figure 2a, regardless of what β0 is, as shown in
figure 2b).

To interpret the direction of the effect of the interaction
term β01, researchers often use visualizations. In these
visualizations, if the line for organisms with high-quality
developmental environments crosses from below the line
for organisms with low-quality developmental environments
(as shown in figure 2b), this is interpreted as evidence for
PAR, because organisms whose developmental and adult
environments ‘match’ do better than those whose environ-
ments do not match.4 Figure 2b is indeed consistent with
predictions derived from the PAR hypothesis: organisms do
better in adult environments that are more similar to their
developmental environments. It is also consistent with the
AEQ hypothesis (equation (2.8)), since all organisms do
better as their adult environmental quality improves.

However, any visualization with the axes in figure 2 is
manipulating two variables simultaneously—the developmen-
tal environment (implicitly, DC) and differences between the
developmental and adult environment (PAR). This makes it
hard to determine which one is responsible for the observed
effect. For example, on the right-hand sides of figure 2a,b
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Figure 2. Commonly used depictions of empirical evidence for the Developmental Constraints (DC; §2a) and Predictive Adaptive Response (PAR; §2b) hypotheses.
(a) As adult environmental quality improves, health and fitness outcomes improve. However, organisms that started in low-quality developmental environments
always fare worse than peers that started in high-quality environments. (b) Organisms that experienced similar-quality developmental and adult environments have
better outcomes than organisms that experienced ‘mismatched’ developmental and adult environments. These depictions manipulate both the starting point (e0 in
table 1, the variable that DC theory is concerned with) and how well the developmental and adult environments match (Δe in table 1, the variable that PAR theory
is concerned with) simultaneously. This approach makes it difficult to distinguish between these two hypotheses. Moreover, the x-axis shows variation in the adult
environment, which is the key variable of interest for the Adult Environmental Quality (AEQ) hypothesis (e1 in table 1).
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(where adult environmental quality is high), the organisms
represented by the dashed line began their lives in a low-
quality environment, which may account for their worse
outcomes relative to the organisms that began their lives in a
high-quality environment (those represented by the solid
line). However, the organisms that began in a low-quality
environment are also in an adult environment that does not
match their developmental environment (i.e. they predicted
their adult environment poorly), while the organisms that
began in a high-quality developmental environment are in
an adult environment that matches their developmental
environment (i.e. they predicted their adult environment
accurately). It is not clear whether the individuals with high-
quality developmental environments have better outcomes
because they started their lives on top or because their develop-
mental and adult environments match. This conceptual issue
(i.e. the inability to distinguish between DC and PAR when
limiting comparisons to individuals that end up in high-
quality adult environments) has been noted repeatedly in the
literature (e.g. [14,32,50,54]).

Comparing individuals from low- and high-quality devel-
opmental environments in low-quality adult environments
(the left-hand side of the x-axis in figure 2a,b) is essential to
executing the prediction error test for PAR, something that
has been referred to as the ‘fully factorial’ version of this
test (e.g. [32]). However, this approach still does not cleanly
separate the effects of starting point from the effects of predic-
tion error, because it is manipulating two different variables
(e0 and Δe) while embedding information about a third
(e1) (see electronic supplementary material, §SF for additional
discussion). As such, it fails to place the independent variable
of primary interest on the x-axis, making these plots difficult
to interpret. When visualizing DC, we recommend creating
figures with an x-axis that represents the developmental
environment (figure 1a), and when visualizing prediction
error tests for PAR, creating figures with an x-axis that reflects
difference-from-prediction (in our particular use case, how
well the developmental and adult environments match
(figure 1b,c)). This allows separate visual identification of
DC and/or PAR, as well as determination of how a negative
change in environment might be different from a positive one
(see also [32] for another visualization strategy).
5. Constructing theoretically derived tests of the
Developmental Constraints and Predictive
Adaptive Response models

Here, we derive the empirical tests that follow from our
formal definitions of DC and PAR. The definitions of DC
and PAR are compatible with a very general mathematical
function where outcomes are proposed to be the result of
both developmental environment and the difference between
developmental and adult environments:

y1 ¼ Fðe0, jDejÞ, ð5:1Þ
where capital F indicates a continuous empirical function (i.e.
a curve) involving observed data. We do not include adult
environment in the function (and thus the AEQ hypothesis)
for the reasons given in §3a.

Testing these theories with data requires a regression
equation that we can estimate. A simple example of such
a regression equation, where y1 varies linearly with Δe, would be

y1 ¼ bþ b0e0 þ bdjDej þ u: ð5:2Þ
βd is the marginal effect of the absolute value of the mismatch
between developmental and adult environments (i.e. the effect
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of prediction error when all else is held constant). While equation
(5.1) is too general to directly estimate via regression analysis,
equation (5.2) is specific enough to estimate. Equation (5.2) is a
useful example, but assuming a linear relationship between y1
and Δe is likely to be too simple to capture many possible pat-
terns in the data. In the next section, we present a regression
equation that is both mathematically connected to equation
(5.1), and also flexible enough to allow for diverse real-world
relationships between environment and outcomes.
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Phil.Trans.R.Soc.B

378:20220306
(a) Regression model derived from mathematical
definitions

To obtain a more flexible regression model than equation
(5.2), we assume F (the function describing the relationship
between early environments (e0) and the difference between
early and adult environments (Δe)) is differentiable (i.e. that
it is possible for us to take the derivative of the function)
and take a Taylor expansion. A Taylor expansion is a math-
ematical method for approximating a section of a curve like
equation (5.1) as the sum of different powers of its inputs
in that section of the curve. The Taylor Series theorem says
that as this sum grows to include infinitely different powers
of the function’s inputs, i.e. e0 and |Δe| for F, the sum will
converge to the relevant section of the function F. Of
course, one cannot use an infinite sum for a regression
because more explanatory variables reduce power for any
given sample. So we must choose a cutoff on the number of
powers in our series to balance power and precision. More-
over, we must choose a section of the curve to approximate.

We choose a second-order expansion around e0 = e1 =
|Δe| = 0, i.e. a sum of only first and second powers of the
inputs in F. Estimating a regression model with only first-
order terms cannot capture both DC and PAR. Moreover, it
would be difficult to relate to the interaction regression
(equation (4.1)), since an interaction term requires a second-
order (or higher) expansion. A higher than second-order
expansion is possible, but requires more data to be ade-
quately powered relative to a model with fewer terms.
Sample sizes in the real world often cannot accommodate
this requirement. A second-order expansion implies the
following regression model:

y1 ¼ gþ g0e0 þ gdjDej þ g00e0
2 þ gddjDej2 þ g0de0jDej þ u,

ð5:3Þ
where the subscript 0 on γ indicates the coefficient is on e0, d
indicates it is on |Δe|, 0d indicates it is on e0|Δe| and so on.
The error term u captures factors that influence the observed
outcomes in a given dataset but which were omitted (pre-
sumably unintentionally) from the model. The first three
terms are included in a first-order Taylor expansion; the last
three terms, including the interaction term (equation (4.1)),
are added by a second-order expansion.

Equation (5.3) is the primary regression model that we
recommend and evaluate in the remainder of this paper. It
balances capturing important elements that are omitted
from the interaction model (which we discuss in the next sec-
tion) with the power limitations of real-world datasets.
Researchers with larger datasets may attempt to estimate
higher-order polynomials and apply the appropriate tests
implied by the definitions of DC and PAR. For simplicity’s
sake, the version of the regression in the main text assumes
‘symmetrical’ prediction error effects (i.e. that the costs of
erroneously predicting that the adult environment will be
better than it really is, are the same as the costs of erroneously
predicting that the adult environment will be worse than
it really is). One can modify the regression to accommo-
date asymmetric prediction error costs; see electronic
supplementary material, §§SA and SE for more details.

Before proceeding, we should note that this article does
not have much to say about the domain of y1 and (e0, e1),
the distribution of the error term and the method one uses
for estimation. Our focus is on the use of an interaction
term in the interaction model. Our recommendation is to
use the same units, distribution of u, and method of esti-
mation as one would have used in an interaction regression
model. If the researcher would ordinarily conduct an inter-
action regression in log units, using logy1 and (loge0, loge1),
then we would recommend using logy1 and (loge0, log|Δe|)
in the quadratic regression. Likewise, if y1 is binary and
one would use a logit model, where y1 ¼ Lðf ðe0, e1Þ to
account for the distribution of the error term, where the func-
tion f is an interaction model, then our recommendation is to
replace the f with a quadratic function but keep the logit
structure. Finally, if one would like to estimate the model
with maximum likelihood or generalized method of
moments [55], there is no reason not to do so. The key con-
straint the quadratic regression adds is replacing e1 with
|Δe| and adding squared terms of these two inputs to the
regression model.
(b) Testing for Developmental Constraints and
Predictive Adaptive Response with a quadratic
regression

The quadratic regression (equation (5.3)) implies specific and
different statistical tests for DC and PAR. The test for DC can
be derived by taking the derivative of equation (5.3) for adult
outcomes y1 with respect to early-life environment e0, i.e.
seeing how adult outcomes would change (∂y1) with a
change in early environment (∂e0). According to our math-
ematical definition of DC, the change should be positive.
This implies the following test for DC:

@y1
@e0

¼ g0 þ 2g00e0 þ g0djDej . 0: ð5:4Þ

If one cannot reject that ∂y1/∂e0 = 0 in favour of the aforemen-
tioned inequality, then one cannot reject the null hypothesis
that DC is false.

The test for PAR can be derived in a similar manner: take
the derivative of the regression model of adult outcomes in
equation (5.3) with respect to a greater difference between
early-life and adult environments (i.e. greater |Δe|), and
then apply the definition of the PAR hypothesis from
equation (2.7). The test that emerges is:

@y1
@jDej ¼ gd þ 2gddjDej þ g0de0 , 0: ð5:5Þ

If one cannot reject ∂y1/∂|Δe| = 0 in favour of the aforemen-
tioned inequality, then one cannot reject the null hypothesis
that PAR is false.
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6. Implications for the interaction regression
model

Although the interaction regression (equation (4.1)) is
commonly used to test for PAR and also may be used to
test for DC (via the coefficient on e0), we have identified
two main problems with using that regression to test
these hypotheses. In this section, we show why the inter-
action regression is mathematically incompatible with the
existence of PAR as we formally define it. In electronic sup-
plementary material, §SG we also show why (i) the test for
DC in an interaction model may yield a different result
compared with the simple test for a correlation between
developmental environment and adult outcomes, and,
(ii) if the interaction regression does not accurately describe
reality, the coefficients estimated from that regression are
likely to be misleading.

Why is the interaction regression mathematically incom-
patible with our definition of PAR in table 1? In short, the
reason is that this regression does not allow for the possibility
that positive and negative prediction errors could both be
harmful, which is a key prediction of the PAR hypothesis.
For the interaction regression to test the mismatch prediction
of PAR, it must be the case that either positive errors are
harmful or negative errors are harmful, but not both. We
demonstrate this problem in two steps: first, we show how
outcomes must change with increased prediction error,
assuming the interaction model is correct, and second, we
show that that change is not feasible.

The first step requires us to manipulate the interaction
regression model. Equation (4.1) posits that adult outcomes
are a function of early-life and adult environments (including
the interaction of the two), but not of the mismatch in
environments. However, because the PAR hypothesis says
that a mismatch between early and adult environment is
bad for outcomes, we want to manipulate the interaction
model to express adult outcomes as a function of early-life
environment and the mismatch between early and adult
environments.

To accomplish this manipulation, we do two things.
Firstly, we can re-write adult environment e1 as a function
of early environment e0 and change in environment |Δe| as
follows: e1 = e0 + (e1− e0) = e0 + Δe. If we plug this equation
for e1 into the interaction model, that model can express the
relationship between early environment and change in
environment:

y1 ¼ bþ b0e0 þ b1ðe0 þ DeÞ þ b01e0ðe0 þ DeÞ þ u: ð6:1Þ

Importantly, PAR as we have defined it focuses on the
impact of mismatch (|Δe|=|e1− e0|), not just the differences
between early and adult environments (Δe = e1− e0). There-
fore, we complete our manipulation using tools from
calculus that enable us to take the derivative of the last
equation with respect to mismatch, even though that
equation does not have mismatch in it. The first tool is the
chain rule: the derivative of y1 with respect to |Δe| is equal
to the derivative of y1 with respect to Δe times the deriva-
tive of Δe with respect to |Δe|. The second tool is that
∂Δe/∂|Δe|=|Δe|/Δe, i.e. the effect of the mismatch on the
difference in outcomes depends on whether the difference
is positive or negative.
To see what the interaction model says about how out-
comes must change with increasing mismatch, we take the
derivative of equation (6.1) with respect to mismatch:

@y1
@jDej ¼

�
@y1

@ðe1 � e0Þ
�

@ðe1 � e0Þ
@jDej ¼ �b1 þ b01e0

� jDej
ðe1 � e0Þ , 0:

ð6:2Þ
Equation (6.2) now reflects the prediction of the PAR hypoth-
esis in equation (2.7), which is that PAR exists if this
derivative is negative. In other words, on average, bigger
gaps between developmental and adult environments lead
to worse outcomes when all else is held constant.

Our second step is to show that the inequality in equation
(6.2) cannot hold if the interaction regression was correct.
Our PAR definition requires that the derivative must be nega-
tive when Δe is both positive and negative, i.e. when the adult
environment turned out to be better than was predicted, as
well as when it was worse than was predicted. This is
required even if the environment is coded as a binary vari-
able. For example, coding a low-quality environment as
e = 0 and a high-quality environment as e = 1 yields mismatch
if Δe is 1 or −1 or, equivalently, |Δe|> 0.

Regardless of how environments are coded, it is not poss-
ible for the derivative to be negative both when environment
improves and when it worsens between development and
adulthood. If Δe > 0, then Δe/|Δe|> 0, and if Δe < 0, then
Δe/|Δe| < 0. So, for the inequality in equation (6.2) to hold,
β1 + β01e0 has to be negative for positive Δe and positive for
negative Δe. However, if we start from a given developmental
environment e0, this is impossible: the β1 + β01e0 term is
constant and does not flip signs.

Importantly, and by contrast, the mismatch prediction of
PAR is not a theoretical impossibility with the quadratic
regression because it includes a |Δe| term that the interaction
model does not. The derivative in the quadratic regression
equation (5.5) can theoretically be negative regardless of
whether the adult environment was better or worse than
predicted (i.e. for the full range of Δe).

Strictly speaking, the interaction regression will only fail
to find evidence of PAR if researchers test for PAR based
on the prediction in equation (2.7) (adult outcomes decline
as the difference between developmental and adult environ-
ments increases). The interaction regression cannot generate
results that pass that test. However, this impossibility likely
also undermines the two-part test that supplements the inter-
action regression with a visualization of the interaction. That
two-part test can be thought of as an effort to approximate
testing the prediction in equation (2.7). However, if directly
testing that prediction with the interaction regression
cannot find evidence for mismatch, then the approximation
that combines the interaction regression with a visualization
is also unlikely to find it.
7. Simulations of alternative tests
fors Developmental Constraints and Predictive
Adaptive Response

We conducted simulations to determine how often the
interaction regression (equation (4.1)), as compared with the
quadratic regression (equation (5.3)), correctly finds or rejects
the predictions generated by DC or PAR. Our process has
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five steps. We provide a brief overview of our simulation
design below, but provide additional details in electronic
supplementary material, §SI.
 lsocietypublishing.org/journal/rstb

Phil.Trans.R.Soc.B
378:20220306
(a) Simulation design
Step 1: Generate a large number of different virtual realities. Each
simulation posits a virtual reality where, by assumption, a
third-order polynomial perfectly describes the effect of (a) an
organism’s developmental environment and (b) the mismatch
between its developmental and adult environments on adult
outcomes. We chose a third-order polynomial because it is
the lowest-order polynomial that allows both the interaction
and quadratic regression models to generate erroneous test
results and compare error rates.

However, a third-order polynomial can have infinitely
different coefficient values and thus describe infinitely differ-
ent realities. To reduce these possibilities, we pared those
possible realities down to five evenly spaced values of
e0∈ [0, 1] and of Δe∈ [− 1, 1], and excluded realities where
at any allowed value of e0 or Δe generated an outcome outside
the range of [0, 1]. This left 130 201 ‘pruned’ realities where
each reality is defined by a third-order polynomial and a
10 × 1 vector of parameters for that polynomial.

Step 2: Determine whether PAR or DC is true in each reality.
Each of the 130 201 realities was evaluated for PAR and DC
by applying the tests in equations (2.7) and (2.1), respectively.
Of all the pruned realities, 2697 (2.07%) were truly positive
for PAR, 2697 (2.07%) were truly positive for DC and 58
(0.04%) were truly positive for both. These feasible and true
positive realities are the benchmark against which tests
based on each regression model are evaluated.

Step 3: Simulate a dataset for each reality. For each pruned
reality, we generated a simulated dataset for estimating
regressions by adding noise to the outcomes that are
generated in that reality for 16 different combinations
of developmental and adult environments. Each dataset
included 2000 observations on the variables (ŷ1, e0, De). For
each observation, e0 is drawn uniformly from four evenly
spaced points between 0 and 1; Δe from a normal distribution
with mean −0.03 and standard deviation 0.215 but truncated
at −1 and 1; and an error term v from a normal distribution
with mean 0 and variance equal to that of the outcome at
the mean value of (e0, Δe) in each reality. The observed out-
come ŷ1 is generated by adding v to the true outcome in
that pruned reality at the drawn (e0, Δe).

Step 4: Apply different empirical tests for PAR and DC on
simulated data for each reality. We applied tests that researchers
currently use (based on the interaction regression) and tests
we recommend (based on the quadratic regression) to deter-
mine if each test finds that there is PAR and DC in each
virtual reality. Specifically, we generated four test results for
PAR in each reality:

1. PAR test 1: Visualization test for PAR using the interaction
regression (equation (4.1)). This test finds evidence for
PAR if (i) β01≠ 0, and (ii) the visualization shows that
the fit line depicting the adult environment/adult out-
comes relationship for organisms from low-quality
developmental environments (the dotted line in figure
2b) intersects from above the same line for organisms from
high-quality developmental environments (the solid line
in figure 2b).
2. PAR test 2: ‘Relaxed’ version of the visualization test with
the interaction regression (equation (4.1)). In the presence
of DC, the fit line for the relationship between adult
environment and adult outcomes for organisms from
low-quality developmental environments may be shifted
downwards relative to organisms from medium- and
high-quality developmental environments (as depicted
in figure 1c). In this case, PAR might exist even if
the lines for low- and high-quality developmental
environments do not cross. This suggests a relaxed visual-
ization test which finds evidence for PAR if (i) β01≠ 0
and (ii) the visualization shows that the fit line depicting
the relationship between adult environment and adult
outcomes for organisms from low-quality developmen-
tal environments has a lower slope than the same
line for organisms from high-quality developmental
environments.

3. PAR test 3: Theoretically motivated test (equation (2.7)) applied
to the interaction regression (equation (4.1)). This test finds
evidence for PAR if the derivative of the interaction
regression with respect to |Δe| is negative (i.e. equation
(6.2)). We implement this test notwithstanding the fact
that the mismatch prediction of the PAR hypothesis
cannot be true if the interaction regression is a correct
specification of reality.

4. PAR test 4: Theoretically motivated test (equation (2.7)) applied
to the quadratic regression (equation (5.3)). This test finds evi-
dence for PAR if the derivative of the quadratic regression
with respect to |Δe| is negative (equation (5.5)).

We also generated three tests for DC in each reality:

1. DC test 1: Naive test for DC with the interaction regression
(equation (4.1)). This test finds evidence for DC if β0 in
equation (4.1) is positive.

2. DC test 2: Theoretically motivated test (equation (2.1)) applied to
the interaction regression (equation (4.1)). This test finds evi-
dence for DC if the derivative of the interaction regression
with respect to e0 is positive, i.e. β0 + β01e1 is positive.

3. DC test 3: Theoretically motivated test (equation (2.1)) applied
to the quadratic regression (equation (5.3)). This test finds evi-
dence for DC if the derivative of the quadratic regression
with respect to e0 is positive. This test is presented in
equation (5.4).

(b) Evaluating empirical tests
Finally, we computed the rate at which each test correctly con-
cludes there is PAR or DC and correctly concludes there is no
PAR or DC. The upper part of table 2 provides the sensitivity
and specificity of each of the four methods of testing for PAR
across all feasible realities (sensitivity is the percentage of the
2755 realities where PAR was true in which PAR was correctly
detected; specificity is the percentage of the remaining 127 504
realities where PAR was not true in which it was correctly not
detected). The second column shows the performance of a
coin-flip test, which we use as a benchmark of a data-
uninformed test (i.e. a test with performance equal to chance).

The interaction regression has poor or imbalanced
performance across a range of tests. For instance, the inter-
action regression with the visualization approach to testing
for PAR has sensitivity that is only slightly better than a
coin flip (58.84%). A relaxed visual test has higher sensitivity
(79.24%) but specificity that is only marginally better than



Table 2. Percentage of simulated realities where Predicitive Adaptive Response (PAR) and Developmental Constraints (DC) were correctly detected (sensitivity)
and correctly not detected (specificity) using different tests.

Predictive Adaptive Response (PAR)

regression none interaction interaction interaction quadratic

test coin

flip

β01≠ 0 in (4.1) and strict

visual test (test 1)

β01≠ 0 in (4.1) and

relaxed visual test (test 2)

theory-motivated test in

(6.2) (test 3)

theory-motivated test in

(5.5) (test 4)

sensitivity 51.54 58.84 79.24 9.76 90.74

specificity 50.13 72.40 56.64 73.67 71.45

Developmental Constraints (DC)

regression none interaction interaction quadratic

test coin

flip

naive test (β0 > 0) (test 1) theory-motivated test

(β0 + β01e1 > 0) (test 2)

theory-motivated test in

(5.4) (test 3)

sensitivity 49.43 93.21 100.00 100.00

specificity 50.09 10.11 56.76 66.57
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a coin flip (56.64%); in other words, it incorrectly detected
PAR 43.46% of the time. The interaction regression showed
even worse performance with the theoretically motivated
test for PAR: sensitivity (9.76%) was much worse than a
coin flip. This very poor sensitivity is to be expected. If the
interaction regression is a correct description of reality, we
demonstrated that one theoretically cannot find PAR. The
visualization test using the interaction regression actually
gets the right answer more often than the theoretically motiv-
ated version precisely because the former is not testing the
prediction generated by the PAR hypothesis (equation
(2.7)). This allows it to perform the same as or marginally
better than a coin flip, while a theoretically motivated use
of the interaction regression is specifically biased against find-
ing the mismatch prediction of PAR even when it exists.

The quadratic regression combined with a theoretically
motivated test performs best of all. Sensitivity (90.34%) is
higher than any test using an interaction regression and speci-
ficity is roughly the same (71.61%) as the best tests under the
interactionmodel. This test is not perfectly sensitive and specific
because it too suffers from bias due to omitted variables, since
the realities it approximates also have third-order terms.

The lower part of table 2 provides the sensitivity and
specificity of three methods of testing for DC across feasible
realities. The interaction model performed poorly relative to
the quadratic regression. The naive test using the interaction
regression has good sensitivity, but much worse specificity
than a coin-flip. The test often finds DC whether or not it is
true. The interaction regression combined with a theoretically
motivated test has perfect sensitivity, but specificity that is
only marginally better than a coin flip. Switching to a quad-
ratic regression and using a theoretically motivated test for
DC performs best of all. It too has perfect sensitivity, and
somewhat better specificity (66.57%).
8. Discussion
DC and PAR are currently the most commonly invoked
evolutionary explanations for early-life determinants of
inequality in adult health and fitness outcomes. However,
these theories lack precise and consistent definitions. Further,
different forms of DC and PAR make their own assumptions,
assumptions that need to be made explicit rather than left
implicit. Making definitions and assumptions explicit has
the benefit of clarifying where different flavours of hypoth-
eses do and do not generate differentiating predictions,
what steps researchers must take to differentiate between
them, and under what conditions it is possible to do so.

In this article, we have chosen to focus on one specific
consequence of the lack of formal definitions for DC and
PAR, namely, that a common test meant to disentangle
these hypotheses—linear regression models with interaction
effects—ends up conflating the two theories. Testing a key
prediction generated by the PAR hypothesis requires
researchers to detect the effects of prediction errors—in our
use case here, of environmental mismatches. Doing so with
any accuracy is difficult with an interaction model and its
complementary data visualization strategy. Indeed, such an
interaction model is theoretically incapable of testing the mis-
match prediction of PAR. A test that applies the mismatch
prediction to the quadratic regression does not suffer from
a basic mathematical incompatibility problem. Similar argu-
ments justify the use of a reasonable, formal definition of
DC along with a quadratic regression. Our simulations
show that using the theoretical predictions of PAR and DC
specified in table 1, together with the quadratic regression,
dramatically improved sensitivity/specificity tradeoffs (rela-
tive to any use of an interaction model) when testing for
PAR and DC. Critically, there is no downside to using the
quadratic specification, beyond requiring slightly larger
sample sizes. It will produce reliable answers even in a
world where an interaction regression is an accurate represen-
tation of the biological reality, a possibility we discuss in
more detail below. The reverse is not true, for the many
reasons discussed earlier.

Currently, support for PAR in the literature is mixed,
especially in mammals [14]. The definitional and testing
issues highlighted here raise the question of whether this is
because of flaws in the methods used to detect them. Our
results show that statistical tests derived from mathematical
definitions of the DC and PAR concepts, along with more
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flexible regression models, provide clearer answers and will
improve our ability to compare results across studies.

Because there is already a literature that employs visual-
izations such as figure 2 and the interaction regression in
equation (4.1) to test for PAR, it is useful to know if there
are conditions under which this approach is a valid test. Suf-
ficient conditions for the interaction regression to be valid are
if (a) prediction errors in only one direction reduce health/
longevity/fitness (so to avoid the problem we highlight in
§6), and (b) the relationship between outcome, developmental
environment and the change in environment over a lifetime is
quadratic, but with certain parameter restrictions that cause
the quadratic model to be identical to the interaction
model. For example, focusing on a positive change in
environment, so that the quadratic regression can be written
as follows:

y ¼ b0e0 þ bDðe1 � e0Þ þ b00e
2
0 þ bDDðe1 � e0Þ2

þ b0De0ðe1 � e0Þ þ u, ð8:1Þ
condition (b) implies the following restrictions on the coefficients
in this equation: βΔΔ = 0, β00 =−β0Δ and β0Δ≠ 0. If these restric-
tions are plugged into the equation above, then that equation
collapses to the interactionmodel in equation (4.1). One problem
with this approach is that the required coefficient restrictions
have no biological meaning. A second problem is that it is diffi-
cult to know ex ante whether condition (b) is satisfied without
first estimating a quadratic regression.

Given the high rates of both false positives and false nega-
tives generated by the interaction model plus visual test
strategy (table 2), it is reasonable to infer that somewhere
between 20 and 40% of the PAR-related results in the litera-
ture that rely on the tests described here are false negatives,
30–45% are false positives, and that it may contain a signifi-
cant number of false positives for DC. Of course, this
assumes that researchers are equally likely to publish null
results and results in which they found evidence for PAR
and/or DC. Assuming the ‘file drawer’ effect applies to this
literature [57], then false positives may be over-represented
relative to false negatives.

TheDCandPARhypotheses appear in the literature ofmany
academic fields [5,18,19,21,32,44]. Significant human and finan-
cial resources are being devoted to untangling their effects
because of their important implications for public health and
policy [59], and for our understanding of if and how variation
in early environments explains inequality in adult outcomes
[60]. Clear, careful definitions and appropriate statistical tests
are absolutely essential for forward progress in this important
research area. We recommend that researchers take the
following steps when testing the DC and PAR hypotheses:

1. Rely on statistical tests that are derived from mathematical
definitions, to avoid conflating different phenomena being
evaluated in the same model.

2. Avoid using interaction or first-order polynomial models
to test for prediction error (a.k.a. mismatch) effects;
instead, use a quadratic or higher-order regression
model. We provide Stata and R code at https://github.
com/anup-malani/PAR.git to assist with implementation
of quadratic models and the associated statistical tests for
DC and PAR.

3. Verify that data visualizations cleanly separate the
concept(s) of interest. It is better to use multiple
visualizations that each address a single phenomenon than
a single visualization that potentially conflates different
phenomena.

4. Keep in mind that the overlapping predictions made by
DC and PAR, their non-mutually exclusive nature, and
the non-independence of the variables under consider-
ation mean that separately identifying the effects of
developmental and adult environments, alongside the
effects of prediction error, is frequently not possible.

Data accessibility. The code for the simulation is available at https://github.
com/anup-malani/PAR/blob/main/PAR_simulation_220117b.do.

Supplementary material is available online [58].
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Endnotes
1The developmental mismatch hypothesis should not be confused
with the evolutionary mismatch hypothesis [40], which replaces
early-life environment with environment during some historical
time period and stresses the mismatch between ancestral environ-
ment and current environment. We discuss this version in
electronic supplementary material, §SE.
2A technical caveat: opposite sign changes can decrease the mismatch
if one starts from where e0 > e1. Therefore, the mismatch hypothesis
may require the assumption that e0≤ e1 to be a valid test of PAR.
When that is not true, mismatch may be true but needs a theoretical
justification aside from PAR. This is related to the limited environ-
ments in which one can test for PAR listed in electronic
supplementary material, §SD and table S2.
3In electronic supplementary material, §SE, we give more details
about conditions under which all three hypotheses are testable.
One is the exception given in the main text. The other is when one
defines an evolutionary version of PAR focused on the differences
between ancestral and current environments [44].
4If the low-quality developmental environment line merely has a
lower slope than the high-quality developmental line, the plot can
be interpreted as evidence for a PAR: the lines do not need to cross
and may be likely not to if DC are also at work (e.g. [17]).
5Values are motivated by the mean and s.d. from data on a natural
population of wild baboons in Kenya that are the subject of
long-term, individual-based monitoring by the Amboseli Baboon
Research Project in Kenya [56]. Details can be found in electronic
supplementary material, §SH.

https://github.com/anup-malani/PAR.git
https://github.com/anup-malani/PAR.git
https://github.com/anup-malani/PAR/blob/main/PAR_simulation_220117b.do
https://github.com/anup-malani/PAR/blob/main/PAR_simulation_220117b.do
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