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SUMMARY

A certain degree of uncertainty is always associated with the transcript abun-
dance estimates. The uncertainty may make many downstream analyses, such
as differential testing, difficult for certain transcripts. Conversely, gene-level
analysis, though less ambiguous, is often too coarse-grained. We introduce
TreeTerminus, a data-driven approach for grouping transcripts into a tree struc-
ture where leaves represent individual transcripts and internal nodes represent
an aggregation of a transcript set. TreeTerminus constructs trees such that, on
average, the inferential uncertainty decreases as we ascend the tree topology.
The tree provides the flexibility to analyze data at nodes that are at different
levels of resolution in the tree and can be tuned depending on the analysis of
interest. We evaluated TreeTerminus on two simulated and two experimental
datasets and observed an improved performance compared to transcripts
(leaves) and other methods under several different metrics.

INTRODUCTION

Transcript abundance estimation is among the key target applications of RNA-Seq. A gene can express

multiple transcripts due to alternative splicing where a combination of exons and introns can be joined

in a different manner. The variation in transcript expression plays a key role in development1–3; and

characterization of diseases and their subtypes.4–6 One approach to estimating transcript abundances is

to probabilistically assign a given fragment to the transcripts using maximum likelihood or Bayesian infer-

ence.7–9 This has to be done since there exists an ambiguity toward finding the true locus of origin for a

given sequencing fragment when it can map equally well to the shared sequences within transcripts.

Thus, a certain degree of uncertainty is associated with the point estimates of transcript abundance,

depending on the nature of the fragments. This in turn makes downstream analysis, such as differential

testing, difficult for certain transcripts and impacts their accuracy. Uncertainty also exists for gene

expression estimates since the sequencing fragments can come from the shared sequences within genes,

however, gene expression estimates will be less ambiguous than transcripts. The uncertainty of a tran-

script/gene can be estimated from the inferential replicates generated either through MCMC/Gibbs

Sampling; or through a bootstrap sampling of the reads and rerunning the abundance estimation

algorithm for each bootstrap replicate.7–11

The highly uncertain transcripts/genes may become invisible when the inferential replicates are incorpo-

rated into the downstream tasks. To circumvent this problem, some methods have grouped transcripts/

genes into distinct inferential units that share a lot of multi-mapping reads.12 mmcollpase13 proposes to

group transcripts by computing the correlation between every pair of transcripts on the posterior

replicates and the pair that has the most negative correlation is grouped. This process is repeated for

multiple iterations until a stopping criterion is reached, where at each iteration the correlation is recom-

puted for every transcript/group with the group from the previous iteration and a new group is formed.

Terminus14 also provides transcript groups as an output but employs difference in inferential relative

variance15 between the group and the mean of its underlying transcripts/subgroups as the statistic for

group creation. It first creates a graph on the transcripts, with an edge denoting that the transcripts

co-occur in at least one range-factorized equivalence class16 and only the transcripts that are

connected by a path on the graph are considered for grouping. Terminus first finds groups across

each individual sample and uses a consensus approach to output consensus groups across samples.

Notably, both mmcollapse and Terminus provide a single level of resolution for analysis, not permitting

analysis across different levels.
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Another limitation with both of the above methods is that the resolution at which grouping is stopped is

governed by a threshold determined heuristically that does not take the downstream analysis into ac-

count. When performing downstream tasks such as differential analysis, these methods can either thus

over-aggregate transcripts, masking the signal in the process or under-aggregate leading to weaker sig-

nals, and an inability to make confident calls. Since the goal of these methods is to provide concrete

groups as output without doing much aggregation, they introduce many filtering constraints on tran-

scripts in order for them to be considered for aggregation which might further lead to missing good

candidates.

In this work, we introduce TreeTerminus, a new method that aims to address some of the shortcomings

mentioned previously. TreeTerminus expands upon the idea of Terminus and groups transcripts in a

tree structure where leaves represent individual transcripts and internal nodes represent an aggregated

set of leaf transcripts. Across the samples in the experiment, inferential uncertainty decreases on average,

ascending the tree topology. TreeTerminus can be run on a single sample and we provide two different

approaches in order to extend it for the multi-sample settings. The tree provides the flexibility to analyze

data at nodes that are at different levels of resolution in the tree and can be tuned depending on the

analysis of interest. Thus, TreeTerminus provides the ability to represent the structure of the inferential

uncertainty present in the data, and to convey this structure to methods for downstream analysis. While

this representation of RNA-seq quantification data are quite new, we believe that it will be important in

helping to develop more accurate approaches for problems like differential testing, where testing proced-

ures may eventually choose to convey results at a level that maximizes resolution while simultaneously

reducing the inherent quantification uncertainty. The groups of transcripts tested can be linked by biolog-

ically meaningful characteristics, like sharing a particular sequence of exons or a common transcription start

site, though these annotations need not be known or provided as input to the method. To obtain fixed

groups for downstream analysis, we provide a dynamic programming (DP) approach that can be used to

find a cut through the tree that optimizes one of several different objectives. In addition, the DP approach

has the ability to optimize for other user-defined objective functions provided they adhere to the

required constraints necessary to be efficiently optimized on a tree. The inner nodes that are obtained

from solving the DP might contain those transcripts which would not have been recoverable by doing

the analysis at the transcript level, but whose signal can be preserved at a higher level that is provided

by the inner nodes.

To the best of our knowledge, this is the first time that transcripts have been arranged in a tree-like

structure, that too in a data-driven manner. We evaluated TreeTerminus on two simulated and two exper-

imental datasets and observed an improved performance compared to transcripts (leaves) and other

methods under several different metrics. TreeTerminus has been implemented in Rust. We have also

created an R Package beaveR that parses the output of TreeTerminus, implements DP algorithms for

finding an optimal cut, and provides helper functions to obtain useful statistics for subtrees within the

TreeTerminus-derived tree structures.
RESULTS

Overview of TreeTerminus

We briefly describe TreeTerminus pipeline as shown in Figure 1. Using the abundance estimates and infer-

ential replicates for an RNA-Seq experiment that are generated by Salmon, TreeTerminus outputs a forest

of trees, where leaves represent individual transcripts and internal nodes represent an aggregation of a

transcript set. The trees are constructed such that, on average, the inferential uncertainty decreases as

we ascend the tree branches. To construct trees for a single sample, first, a graph is created on the set

of transcripts, with an edge denoting that they co-occur in at least one range-factorized equivalence class

for that sample. The edge weight denotes the reduction in inferential uncertainty (Equation 1 in STAR

Methods) that will be observed if the two transcripts/transcript groups were to be merged. The edges

are then greedily collapsed from the graph creating a forest of trees, each representing a transcript group.

The group consist of transcripts, such that between any two transcripts there exists a path between them in

the initial transcript graph at iteration I0. TreeTerminus provides two modes to output a forest of transcript

trees across the set of samples for an RNA-Seq experiment. The Mean tree uses the mean reduction in

inferential variance across samples as the edge weight for aggregating nodes, whereas the Cons tree ap-

plies a majority rule extended consensus algorithm on the individual trees obtained across samples for a

given transcript group.
2 iScience 26, 106961, June 16, 2023
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Figure 1. Schematic overview of TreeTerminus pipeline

(A) Taking an RNA-Seq experiment as an input, that has been quantified with Salmon and for which inferential replicates

have been generated, TreeTerminus outputs a forest of trees.

(B) Toy example demonstrating how from the transcript graph (G), how a forest shall be generated by TreeTerminus for a

single sample using the procedure B(G). A forest will consist of multiple trees when the graph consists of disconnected

components or some of the necessary conditions that are required for aggregating transcripts/groups are not met. The

color red indicates the edge with the lowest weight chosen for aggregation at each iteration.

(C) When there are multiple samples—TreeTerminus provides two modes to generate the forest, Mean and Consensus.

In the toy example, both procedures are demonstrated using a single transcript group, thus the forest consists of a

single tree.
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Experimental setup

Datasets

We ran TreeTerminus on two simulated and two experimental bulk RNA-Seq datasets.17,18 TPM (Tran-

scripts per Million) estimates extracted from GTEx V8 frontal cortex dataset were used as an input to

generate the simulated datasets, containing 12 samples in 2 conditions with 6 samples in each. Two simu-

lated data variations were created and referred to as BrSimNorm and BrSimLow, respectively. The first

experimental dataset is derived from two different mouse muscle tissues, consisting of 6 samples in

each and we refer to it as MouseMuscle. The second experimental dataset is obtained for the brain tissues
iScience 26, 106961, June 16, 2023 3



Table 1. Peak memory usage and running time for the different steps of Terminus and TreeTerminus (both Mean

and Cons modes) on BrSimNorm dataset

Method

Terminus TreeTerminus (Mean) TreeTerminus (Cons)

Group Consensus Group Group Consensus

Peak Memory (MB) 234 2721 3340 435 458

Time (h:m:s) 0:23:40 0:02:29 0:03:08 0:20:14 0:17:26
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of Chimpanzee, consisting of a total of 73 samples. The two groups for our analysis consist of 5 and 68 tis-

sues, respectively. The resource usage and time performance comparing Terminus to TreeTerminus are

provided in Tables 1 and S2.

Creation of a baseline anti-correlation tree

For comparison with TreeTerminus, we are unaware of any other existing methods that create transcript-

trees. Thus, to create a baseline tree, we create a tree using Anti-Correlation (AC) (negative correlation)

between transcripts computed on the inferential replicates, which we also refer to as the AC tree. The moti-

vation for using AC comes frommmcollapse,13 which was also used as a baseline method for comparison in

Terminus.14 Since mmcollapse does not create trees, we use UPGMA.19 UPGMA applies a hierarchical clus-

tering procedure on the leaf set to generate a tree, which based on the current input, will group an anti-

correlated set of transcripts, leading to a reduced uncertainty. We thus believe the UPGMA tree is a fair

baseline for comparison with the TreeTerminus trees where uncertainty decreases as we ascend the tree.

Different tree methods that have been compared in this study

In this study, we have used both the variations of TreeTerminus, where a unified tree is constructed from the for-

est of Cons and Mean trees. We evaluate their performance on several parameters. To see if there are any ben-

efits of removing the constraints imposed in Terminus, we also compare with the unified trees obtained after

running the consensus algorithm on the sample trees that were constructed with the variations of those con-

straints (seeSTARMethods). In the first variation, the consensus tree approach is appliedon trees obtainedusing

both constraints i.e. Filt and ES (Early Stop) which is referred to by ConsFiltES. In the second variation, we only

apply the constraint Filt and the corresponding consensus tree that is created is referred to by ConsFilt. The AC

tree serves as the baseline tree. We create trees for all the aforementionedmethods for both the simulated and

experimental datasets. We also compare with Terminus groups (Term) and transcripts (Txp) whenever possible.

The total number of transcripts covered bydifferentmethods across the different datasets is provided in Table 2.

Mean tree covers the most transcripts followed closely by Cons tree while ConsFiltES tree and Term cover the

least number of transcripts. To facilitate the comparison between themethods, we ensure that all trees cover the

same transcripts. A transcript set is created by taking the union of the transcripts covered by the trees in the set

fMean;Cons;ConsFilt;ConsFiltES;ACg, and groups in Term, with Txp referring to that transcript set. To the chil-

dren of the root node of the above trees, we append any transcripts that were present in Txp but missing in the

transcripts coveredby the individual trees. Similarly, nodes in Termconsist of all nodes output by Terminus along

with any transcripts present in Txp but not covered by Terminus groups.
TreeTerminus nodes have the lowest mean inferential variance

The violin plot in Figure 2 compares the distribution of log2 MIRV (mean inferential relative variance) for the

inner nodes across trees stratified by their height for the BrSimNorm dataset. For comparison, log2 MIRV
Table 2. Total number of transcripts covered by different methods across the datasets

Method BrSimNorm BrSimLow MouseMuscle ChimpBrain

Mean 135138 135208 98091 39856

Cons 134377 134371 97360 39491

ConsFilt 121784 121657 89429 37858

AC 73205 73493 68062 35114

ConsFiltES 27156 26891 17939 15773

Term 13612 13730 7792 5428
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Figure 2. Distribution of log2 MIRV(mean inferential relative variance) across the inner nodes for the BrSimNorm dataset, stratified by their height

The total number of inner nodes belonging to a method at a given height is written on top of the violin plot. Also plotted for comparison at each height is the

distribution of lg of MIRV for the transcripts and genes.
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for genes and transcripts has been plotted along with the trees at each height. The transcripts have the

highest range of variation in the MIRV and as expected have the largest values. Genes have the lowest

MIRV with the majority of genes having the lowest possible value of 0.01 that can be obtained using the

default thresholds (Equation 2). Among the trees, the nodes of Cons and Mean trees have the lowest

MIRV across different heights followed by ConsFilt and AC trees . The nodes belonging to ConsFiltES

tree have the highest MIRV. As expected, going up the tree, MIRV decreases across the methods getting

closer to gene MIRV levels. These trends are summarized by the median values of MIRV in Table S3. The

previous pattern is also repeated in the BrSimLow dataset(Table S4 and Figure S3). A similar trend is

observed for theMouseMuscle dataset (Figure S4 and Table S5). The only change is observed on the nodes

at height greater than or equal to 5 for the ConsFiltES tree which shows the most downward shift in MIRV

distribution. It is important to note that across all the datasets, ConsFiltES has the lowest number of nodes.

For the ChimpBrain dataset, a very similar distribution is observed for the trees across all themethods and a

modest downward shift in the upper tail is observed as the height increases. TheMIRV though is very low for

the height 2 inner nodes to begin with (Table S6 and Figure S5). However, a considerable downward shift in

the distribution of MIRV is still observed for the inner nodes compared to the transcripts.
TreeTerminus nodes map to relatively fewer genes and gene families

We next look at the distribution of the number of uniquely mapped genes at the inner nodes located at

different heights across the trees. The mapped genes associated with a node are found by mapping the

descendant leaves (transcripts) for that node to the genes. Figures 3, S6, S7, and S8 plots this distribution

for the different datasets. The proportion of nodes that map to more than one gene is considerably higher

for the AC tree compared to others, with the number of nodes at a height two that map to two genes, 10 to

100 of times larger for the AC trees. The increase in the relative number of multi-gene mapping nodes is

also the highest for the AC tree and it has the highest magnitude of the number of unique genes to which

an inner node can map. With the exception of the AC tree, the proportion of nodes that map to only one

unique gene dominates nodes mapping to multiple genes across different heights in the other trees. The

AC tree has the highest number of inner nodes that map to more than one hundred genes across the data-

sets (Table S7). No such nodes exist in the other trees obtained across the datasets, barring the

MouseMuscle dataset, for which there exist a reasonable number of such inner nodes, with some even

mapping tomore than a thousand genes. When we looked at the genes mapping to these nodes, we found
iScience 26, 106961, June 16, 2023 5



Figure 3. Comparison of different methods with respect to the number of genes to which an inner node in the tree maps for the BrSimNorm

dataset, stratified by their height

The x axis represents the number of unique genes that transcripts belonging to the inner nodes map to and the y axis represents the frequency of such

mappings at a given height for a tree. For all the inner nodes located at a height greater than or equal to 5, the number of unique genes was binned using the

set f1;2;4;16;128;1024;16384g, with the bin representing the number of unique genes less than or equal to the bin but larger than the bin left to it.
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that a large proportion of such genes were either predicted or pseudogenes, which was not necessarily the

case for most of such nodes in the AC tree.

We also explored the distribution of the number of gene families to which inner nodes belonging to

different trees map in Figure 4. The number of gene families have been binned into bin numbers

f1; 2; 4; 10; 100; 500; 1000; 12000g so that each bin represents the number of unique gene families less

than or equal to the bin but larger than the bin left to it. For theMouseMuscle dataset, the number of nodes

mapping to more than one family is the largest for the AC tree and the difference in the number of nodes

increases between AC and the remaining trees as the magnitude of the number of gene families they map

to is increased on the x axis. While the AC tree has more than 5000 nodes that map to ð10; 100� gene fam-

ilies, this number is only 124 for the Mean tree and much less for the other trees. There are more than 500

nodes that map to more than 100 gene families for the AC tree while hardly any such node exists for the

other trees. A similar trend is observed for the ChimpBrain dataset, while for the AC tree there are more

than 2500 nodes that map to more than 10 gene families, such nodes don’t exist for the other trees. The

nodes belonging to the AC tree thus map to many more gene families. While the nodes belonging to

the other trees map to fewer gene families, we have not explored them in the current work.
Cuts obtained from TreeTerminus trees are among the top performers when optimizing for

the different objective functions

In order to do any downstream analysis and interpret its results, we require discrete inferential units. The

discrete inferential units can be obtained by finding a cut on the tree that solves for an objective function

which optimizes a node metric. The inferential unit that represents a transcript group might represent a

stronger signal w.r.t a nodemetric that the end user is interested in optimizing as compared to aggregation

for that metric on the individual transcripts contained in that group. The type of objective function that we

optimize is described in detail in STAR Methods and requires a metric as input for every node in the tree.

Specifically, in this manuscript, we have used two metrics to demonstrate the benefits of our proposed tree

structure. For the first objective function, we want to find nodes that have a low MIRV and at the same time

are at a level close to the leaf in order to provide the finest resolution for downstream analysis. We refer to
6 iScience 26, 106961, June 16, 2023



Figure 4. Comparison of different tree methods with respect to the number of gene families to which an inner node maps

The number of gene families that map to an inner node has been binned into the set f1;2;4;10;100;500;1000;12000g, with the bin representing the number of

unique gene families less than or equal to the bin but larger than the bin left to it. The x axis represents the bin and the y axis represents the total frequency of

inner nodes mapping to the gene families in that bin for a given tree. This has been plotted for MouseMuscle and ChimpBrain datasets.
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this objective function as irv_height_desc (see STAR Methods). Figures 5 and S9 plots the optimal values

and the cut sizes obtained by solving for the previous objective function on the different trees for each data-

set. Also plotted for comparison are these values when the cut consists of only the transcripts(Txp).

The cuts for different trees have been obtained by using g values from the set f0:05;0:1;0:5;1;5g. Increasing
g will provide more weight to the height, leading to cuts with lower height nodes. The highest (worst)

optimal value is seen for the cut consisting of transcripts, whereas the cuts obtained for Cons, ConsFilt,

Mean trees consistently have the lowest(best) optimal values. The relative difference in the optimal value

between them is smaller compared to differences in optimal values for the cuts obtained from the other

trees. As g increases, the size of the cut increases as expected along with the increase in the optimal value.

Further, the differences in the optimal values and cut sizes between the methods also decrease, with these

values individually becoming comparable at g = 5 across the trees.We also looked at the distribution of the

values of the metric in the cuts for the different trees and the transcripts in Figure S10. A large proportion of

nodes for the Cons, Mean, ConsFilt trees show a very low value for the metric compared to the other

methods, showing that the net value of the objective function is not dominated by just a few outlier nodes.

For the second objective function, we find nodes that have a high log fold change and lowMIRV.We refer to

this objective function as lfc_desc(see STAR Methods) and plot the optimal values and cut sizes obtained

for this objective for the different trees on each dataset in Figure 6. Also compared are the values that are

obtained when the cut consists of—Terminus (Term) groups and the transcripts(Txp). The cuts obtained

from the Cons tree have the highest (best) optimal value followed closely by the Mean tree. These are

then followed by the cuts obtained for the ConsFilt and AC tree. The cuts obtained for ConsFiltES tree,

Term and Txp have the lowest (worst) optimal values. An opposite trend is observed for the cut sizes,

with Txp having the largest size followed by cuts from Term and ConsFiltES tree.
An optimal performance is observed for differential expression analysis on the cuts obtained

from TreeTerminus trees

We also evaluate the performance of doing differential expression analysis on the base inferential units

consisting of cuts obtained from the Cons tree along with genes, transcripts and Terminus groups for
iScience 26, 106961, June 16, 2023 7



Figure 5. Barplot representing the values for the objective function on the cut obtained by minimizing the sum of metric—the sum of the metric

(irv_height_desc) on the different datasets

For each dataset, optimal values of the objective function are compared across the methods for a range of g values. Also plotted for comparison is the

optimal value obtained using transcripts (Txp) as the cut.
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the BrSimLow and BrSimNorm datasets (Tables 3 and S8). For the BrSimLow dataset, we observe that the

genes have the lowest FDR (False Discovery Rate) and a high TPR (True Positive Rate), while the lfc_desc cut

has the highest TPR. Similarly, the cuts obtained for irv_height_desc at the various g values have compara-

ble FDR and higher TPR compared to Txp and Term. For the BrSimNorm dataset, barring the 0.01 FDR

threshold, a similar trend is observed across the cuts compared to Term and Txp. It is important to note

that since the reference units are different, the metrics are not directly comparable between the methods.

We thus, next compared the number of transcripts belonging to the significant nodes in the lfc_desc cut

that are also true positives but are not covered by either Txp or transcripts belonging to Term for the

0.1 FDR threshold. We find more than 2200 such transcripts while only 278 true positive transcripts exist

in Term that are not covered by lfc_desc cut. These 2K transcripts map to around 828 inner nodes in the

cut, which in total maps to more than 9500 transcripts. However, this cut allows us to recover signal w.r.t

these true positive transcripts at a higher level in the tree which would have been lost by looking at just

the transcripts.
DISCUSSION

TreeTerminus organizes the transcripts in a tree structure, with the leaves representing the transcripts. The

tree accounts for experiment-wide inferential uncertainty and provides the flexibility to analyze data at no-

des that are at different levels of resolution that are best supported by data for the downstream analysis of

interest. The cut given by the DP implementation on the objective functions used in this paper provides one

possible way to get a set of nodes that can be used for downstream tasks. The DP is generalized and the

base metric inside the objective function can be easily replaced by a user-defined function. Furthermore,

the end user can also define a completely different approach to find a cut from the tree.

We have provided two different approaches for getting the transcript trees as output from an RNA-Seq

experiment, Mean and Cons. They both cover a similar number of transcripts and have comparable perfor-

mance across the different datasets for the various analyses that have been explored in this paper. They

have superior performance compared to the consensus trees that were obtained when the constraints

were kept on the various evaluation metrics and cover the largest number of transcripts. The sub-par

performance for the other methods, especially ConsFiltES and Term perhaps indicate that these methods
8 iScience 26, 106961, June 16, 2023



Figure 6. Comparing the performance on the cuts obtained by solving the objective function that maximizes the sum of metric (lfc_desc) for the

nodes in a cut on the different datasets

The performance is also compared when the transcripts and Term groups are taken as the cut.

(A) Value of the objective function.

(B) Size of the cut for the different trees.
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under-aggregate. While no other method exists that arrange the transcripts in a tree-like structure, for

comparison we also provide the AC tree as a baseline, which is constructed using UPGMA—a well-known

method for tree construction in phylogenetics. However, construction of the AC tree is both highly memory

and time intensive, with the tree construction process not taking into account the equivalence class

information. As a result, we observe that the nodes belonging to AC tree map to a large number of distinct

genes and gene families, not offering much biological interpretation. The nodes belonging to trees

constructed from TreeTerminus map to a smaller number of distinct genes and gene families, even though

annotation of the underlying organism was not a part of the input.

Differential expression or differential abundance analysis is an important downstream application of RNA-

Seq and other sequencing-based datasets. Various differential testing methods that leverage a tree

structure20–23 have been proposed, reporting an increased power. In microbiome analysis, investigators

have tried to associate nodes, located at different levels on the tree built through phylogenetic analysis,

with a response variable of interest,24 with some using replicability as a metric to determine optimal levels

of aggregation.25 We believe that the tree (unified) provided by TreeTerminus can be used with these

methods for improved differential analysis in RNA-Seq. While we do perform differential testing on the

cuts, they are not necessarily optimized for that task. Further, TreeTerminus in the future can also be

extended to tagged-end scRNA-seq protocols where the trees will be constructed on genes rather than

transcripts, owing to read mapping ambiguity at the gene level itself since the exons of one gene can over-

lap with exons or introns of other genes,26 as these are 30- biased, often single end reads.
Limitations of the study

There do exist some areas where the underlying tree construction methods can be improved further. Tak-

ing the mean of difference in inferential relative variance on all samples for constructing Mean tree might

prevent transcripts from aggregation that had high uncertainty but were expressed only in the samples

belonging to a population that was not in the majority in the experiment. This can be replaced by a

weighted reduction in inferential relative variance, where the mean is computed over the samples in which

the transcripts are expressed. Further, in the current implementation of TreeTerminus for the Mean tree, all
iScience 26, 106961, June 16, 2023 9



Table 3. True Positive Rate and False Discovery Rate for the different methods at nominal FDR cutoffs 0.01, 0.05,

0.10 for the BrSimLow Dataset

Method

FDR TPR

0.01 0.05 0.10 0.01 0.05 0.10

irv_height_desc(g =

0:05)

0.006 0.033 0.070 0.283 0.398 0.455

irv_height_desc(g =

0:10)

0.005 0.034 0.071 0.273 0.385 0.445

irv_height_desc(g =

0:50)

0.006 0.034 0.074 0.244 0.373 0.432

irv_height_desc(g = 1) 0.007 0.040 0.076 0.235 0.369 0.426

irv_height_desc(g = 5) 0.007 0.040 0.083 0.220 0.356 0.418

irv_height_desc(g = 10) 0.001 0.024 0.065 0.124 0.301 0.390

lfc_desc 0.006 0.037 0.081 0.314 0.437 0.495

Gene 0.002 0.025 0.061 0.256 0.413 0.491

Txp 0.008 0.039 0.080 0.208 0.345 0.407

Term 0.008 0.038 0.079 0.223 0.352 0.415

The cuts are obtained by optimizing the metric irv_height_desc at different g values and lfc_desc on the Cons tree. The per-

formance is also computed when the inferential units consist of genes, transcripts and terminus groups.

The entries in bold describe the best performing method across the different columns.
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samples’ inferential replicates are loaded in the memory, which might not scale well for an RNA-Seq exper-

iment with large number of samples. A limitation with the Cons tree is the consensus tree algorithm that

requires all the underlying input trees to span the same leaf set, causing us to modify the individual sample

group trees that were provided as input. An alternative to consensus algorithms can be supertreemethods,

such as STELAR27 and FastRFS,28 which don’t require that all the input trees should cover the same leaf set.

However, STELAR is very slow for trees that span large leaf sets and FastRFS provides an unrooted tree as

an output, which makes using them as a direct replacement not trivial. Modifications to these approaches

can be explored in the future.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Gencode V26, Transcript sequences fasta Frankish et al.29 https://ftp.ebi.ac.uk/pub/databases/

gencode/Gencode_human/release_26/

gencode.v26.transcripts.fa.gz

Gencode M25, Transcript sequences fasta,

reference genome fasta

Frankish et al.29 https://ftp.ebi.ac.uk/pub/databases/

gencode/Gencode_mouse/release_M25

Pan_tro 3.0, ncRNA, cDNA, reference DNA Cunningham et al.30 https://ftp.ensembl.org/pub/release-104/fasta/

pan_troglodytes/

Mouse Muscle Dataset Terry et al.17 https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE100505

Chimp Brain Dataset Sousa et al.18 https://doi.org/10.7303/syn7067053

Software and algorithms

Terminus v 0.1.0 Sarkar et al.14 https://github.com/COMBINE-lab/Terminus

Salmon v 1.5.2 Patro et al.9 https://github.com/COMBINE-lab/salmon

PySAT v 0.1.7.dev19 Ignatiev et al.31 https://github.com/pysathq/pysat

Snakemake v 6.6.1 Mölder et al.32 https://github.com/snakemake/snakemake

bedtools v 2.29.1 Quinlan and Hall33 https://github.com/arq5x/bedtools2

fastqc v 0.11.7 Andrews et al.34 https://github.com/s-andrews/FastQC

multiqc v 1.8.dev0 Ewels et al.35 https://github.com/ewels/MultiQC

R Packages This study https://doi.org/10.5281/zenodo.7807370

TreeTerminus This study https://github.com/COMBINE-lab/TreeTerminus/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Noor Pratap Singh (npsingh@umd.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The paper analyzes simulated and existing publicly available data. The script to generate the simulated

data has been uploaded to Zenodo with the DOI listed in the key resources table. The study accession ids

for the experimental datasets are also listed in the key resources table. To obtain the raw Chimpanzee

brain datasets, access has to be requested from the PsychEncode Portal.

d TreeTerminus is publicly available online from https://github.com/COMBINE-lab/TreeTerminus.

d The R Package beaveR is publicly available online from https://github.com/NPSDC/beaveR.
METHOD DETAILS

We first briefly describe Terminus,14 as our method builds on top of it. The group step of Terminus takes as

input an individual Salmon9 quantified sample from an RNA-Seq experiment and outputs a set of transcript

groups. It makes use of the range-factorized equivalence classes x,16 and inferential replicates P ob-

tained after running Salmonwith the appropriate flags. An equivalence class denotes an association from a
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set of transcripts to a set of reads, that are mapped to all the transcripts in that set. A range-factorized

equivalence class in addition also encodes the mapping quality, with a single class constituting a set of

pairs ðti ;wiÞ rather than just set of ti, where ti denotes the transcript and wi represents the average

conditional probability with which the fragments in the equivalence class arose from that transcript. The

Terminus groups consist of transcripts that share large numbers of ambiguously-mapped fragments. It em-

ploys a union-find data structure, with the first step being to scan over x and group the transcripts that

appear in the same set of equivalence classes and have near-identical conditional probability vectors using

the Union operation. This ensures that these transcripts will belong to the same partition, when checked

through the Find operation. It then constructs a graph with the transcripts as nodes, where an edge be-

tween any two nodes vi; vj implies that they co-occur in at least one equivalence class and have the

edge score sðvi; vjÞ% t where

s
�
vi; vj

�
= infRVi+j � infRVi+infRVj

2
(Equation 1)
infRVi =
max

�
s2
pi

� mpi
; 0
�

mpi
+pc

+d (Equation 2)

pi are the posterior (Gibbs) replicates for transcript i, s2pi
and mpi

are the variance and mean over the pos-

terior replicates, pc is the pseudocount (default is 5), d is a small global shift (default is 0.01) and t is a

threshold of difference in inferential relative variance. A min heap H is constructed over the edges keyed

by sðvi; vjÞ and at each iteration t an edge with the lowest score is popped out till the iteration H becomes

empty. If the partition(group) of any endpoint vertex for the popped edge has been modified but its cor-

responding score was not updated, then the edge is called stale. If the edge is not stale then the corre-

sponding nodes vi ; vj are grouped using the Union operation and the posterior samples for vi are updated

with pi = pi +pj, assuming i < j. The score sðvi; xÞ is recomputed for all the vertices

fx��x ˛ adjðviÞWadjðvjÞ � fvi; vjgg with adjðviÞ denoting the neighbours of vertex i in the graph at

iteration t. The edge with the updated sðvi ; xÞ is pushed to H, if sðvi ;xÞ% t.

The consensus step outputs a set of transcript groups across samples using the groups obtained for the

individual samples. The procedure involves creating a connected undirected graph on the transcripts,

with an edge between any pair of transcripts denoting that they co-occur in a group in any sample and

the edge weight denotes the count of the total number of samples in which the pair co-occurs in a group.

To create the consensus groups, it finds the connected components on the updated graph obtained after

only keeping the edges that occur in atleast a certain proportion of samples. This proportion is a user-

defined parameter and by default has been set to 0.5.
TreeTerminus

The transcripts in a Terminus group consist of at least two transcripts that have reads multi-mapped to

them, which is the source of uncertainty for transcript abundance estimation. TreeTerminus outputs a

tree for each individual group, encoding the summarized order in which a set of transcripts should be

aggregated within a group, such that across the samples, average uncertainty decreases as we ascend

the tree created for that group.

TreeTerminus has a group step, that constructs transcript-trees for a single sample. It starts by creating a

single node tree corresponding to each transcript. For any pair of transcripts/subgroups that are aggre-

gated in the group step of Terminus, a binary tree is created with its children being the individual trees

corresponding to the node-pairs that are grouped. The process of tree creation continues till the time

heap H becomes empty. In addition, some of the constraints that Terminus imposed on transcripts/groups

before they could be even considered for further grouping have also been relaxed. It is no longer necessary

that a node vi should have infRVðviÞR d (called filtered or Filt) and that for a pair of nodes vi ;vj, sðvi; vjÞ% t

(called early stop or ES). For the N groups that will be obtained from a sample m, a forest of N trees Tm =

fT1m;.;TNmg will be generated, such that for a group g, LðgÞ = LðTgmÞ, with L representing the set of

transcripts covered by a tree or a group and Dm represents all the trees belonging to sample m. We

next propose and describe two different approaches to obtain trees, representative of all samples in the

experiment.
14 iScience 26, 106961, June 16, 2023
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Mean tree

This is a single step procedure where all the samples are processed together and a single tree is produced

from all the samples w.r.t a group. The steps in the tree construction follow directly from what we have

described above, with some modifications. To find transcripts that have near identical conditional proba-

bility weights across all the equivalence classes, the search space is expanded to all samples rather than a

single sample. Later, when the graph across transcripts is constructed, an edge between any two nodes

implies that they co-occur in the same equivalence class in at least one sample where the edge score

s0ðvi; vjÞ is updated as, s0ðvi ;vjÞ =

PM

j = 1
sjðvi ;vjÞ
M , and M represents the total number of samples in the experi-

ment. The indicator function hð:Þ that determines whether a transcript is a good candidate for aggregation

when considered in isolation is also updated as:

hðviÞ =
(
1 if max

M

j = 1
mij R1 and max

M

j = 1
spij R l

0 otherwise
(Equation 3)

where mij = meanðpijÞ and spij =
maxðpijÞ�minðpijÞ

meanðpijÞ , with pij denoting the posterior replicates for transcript i in

sample j and l is a user-defined parameter that is set to 0.1 that serves as a threshold for spread.

Consensus tree

Construction of consensus trees is more involved and takes as input the sample group trees obtained by

running group step on each sample. Given a set of trees for a given transcript group across samples, we

want to find a tree that summarizes the topological structure of the input trees. Such a tree is called

consensus tree.36,37 There exists a wide variety of methods to get consensus trees, depending on the input

and downstream applications.37–40 In this work we have used the majority rule extended or greedy

consensus tree algorithm38,41 which we describe below.

Given a tree T, let VðTÞ denote the set of all nodes and LðTÞ denotes the set of transcripts covered by the

tree T. For any node u˛VðTÞ, T ½u� is the subtree rooted at u, LðT ½u�Þ is the cluster associated with it and

CðTÞ represents the set of all clusters associated with tree T. Let S denote the collection of trees ðT1;T2;

::TMÞ, with LðTiÞ = L;ci˛ f1;.;Mg, aka all trees have the same leaf set. Let X be the set of all clusters

that occur in S sorted by the decreasing order of the frequencies with which they occur in the trees.

Construct a set Y of clusters as: Initialize Y = B, then traverse X and for each cluster C encountered in

this order, check if C and are pairwise compatible for all C0 ˛Y , if yes then Y = YWfCg. A greedy or

majority extended consensus tree of S is a tree T such that LðTÞ = L and CðTÞ = Y .

A constraint of a consensus tree algorithm is that it requires all the input trees should span the same leaf set.

To obtain a consensus tree Tg for group g in an experiment containing M samples, we want to provide

group trees across samples Dg = fTg1;.;TgMg as an input to the Majority Rule Extended Consensus

Tree Algorithm, with Tgi representing the tree for sample i for the group g and LðgÞ = LðTgiÞ , ci˛ f1;
.;Mg. L represents the transcripts covered by a tree or a group. However, a group covering a transcript

set in one sample might not be preserved in other samples. We can have tree/s within a sample that covers

a transcript set that overlaps but is not the same as the transcript(leaf) set in a tree from some other sample

in the experiment. This is demonstrated in the example shown in Figure S1A. For the five different samples,

we have trees that cover different transcript sets, covering overlapping transcripts. First sample contains

the tree built on 5 transcripts. The second and fifth samples span the same set of 4 transcripts but are sub-

sets of the transcripts covered by T11. The third and fourth samples each have two trees containing tran-

scripts that are also a subset of LðT11Þ. Thus, we cannot directly apply the consensus tree algorithm on

the trees obtained by the group step of TreeTerminus.

To resolve this issue, we thus first create a set of updated groups G0 = fg0
1;.;g0

Ng, with updated group g0
i

representing a union of all transcripts for all trees across samples that contain overlapping transcripts.

Further, the transcripts covered by any such tree should not contain any overlapping transcripts with the

transcripts of any other updated group g0
j or: Lðg0

iÞ = WM
m = 1 W

Nm

g = 1 LðTgmÞ where LðTgmÞ3Lðg0
iÞ and

LðTgmÞXLðg0
jÞ = B, cj˛ f1;.;Ng; jsi. To create the updated group g0

i , we employ the union-find data

structure. We scan through the trees across all samples and apply Union operation on the transcript set

covered by the tree, which will group these transcripts covered. This ensures that the transcripts belonging

to any two trees Ti ;Tj across the samples where LðTiÞXLðTjÞsB will be grouped together. For the toy
iScience 26, 106961, June 16, 2023 15
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example in Figure S1B, this leads to creation of the updated group spanning transcript set f1;2;3;4;5g. The
consensus tree Tg0

i
will be created for the updated group g0

i , with LðTg0
i
Þ = Lðg0

iÞ.

We next create trees Tg0
i
m for every sample m˛ f1;.Mg w.r.t each updated group g0

i ˛G0, such that tree

Tg0
i
m covers same set of transcripts as the updated group g0

i or LðTg0imÞ = Lðg0
iÞ. Tree Tg0im on the updated

group g0i for sample m is created using the following steps:

1. For each samplem, all the trees Tgm from Dm which cover transcripts that overlap with the transcripts

covered by g0
i are extracted to form the set Dg0

i
m where fDg0

i
m = fT1m;.;Tdmg3Dm j LðTgmÞ3Lðg0

iÞ
cg˛ f1;.;dg & Lðg0

iÞXLðTjÞ = B, mcTj ˛Dm � Dg0
i
g.

2. A transcript set D is constructed that consists of transcripts covered by the updated group g0
i but not

by the trees in Dg0
i
m. Formally D = Lðg; 0iÞ � Wd

i = 1 LðTimÞ, with Tim ˛Dg
0
im
.

3. If the set Dg0
i
m consists of only one tree Tgm and D is empty, it implies that the tree Tgm already covers

the same transcript set as g0
i and thus we can safely output Tgm as Tg

0
im
.

4. Otherwise, an empty tree is constructed and added to it’s children are all the trees in Dg0
i
m along with

the transcripts in the set D. This newly created tree forms Tg0
i
m.

For each group g0
i ˛ fg0

1;.;g0
Ng, there now exists a set ofM trees Dg0

i
= fTg0

i
1;.;Tg0

i
mg, - one for every sam-

ple. PHYLIP’s42,43 implementation of Majority Rule Extended Consensus Algorithm is then applied on the

setDg0
i
to get the consensus tree Tg0

i
for the updated group g0

i . Themotivation behind using themajority rule

extended consensus algorithm is to provide a chance to preserve a topology present in set of samples that

represent a phenotype not present in the majority of samples, which would have been ignored otherwise.
Creating a unified tree from the output of TreeTerminus

Given the output of TreeTerminus D = fTg0
1
;.; Tg0

N
g, a unified tree TU is created such that its children

consist of all the trees in D as shown in Figure S2. This is done through our R package beaveR, which

also provides the option to append transcripts to the children of TU that are not covered by the trees in

D but still should be considered for downstream analysis.
Solving objective functions to obtain discrete inferential units

We provide a dynamic programming (DP) approach that can be used to optimize different objective

functions on a tree, following certain constraints. The DP solving a given objective function outputs a set

of nodes in the tree T or cut C = ðc1;.;cdÞ, where C has the following properties:

� The union of leaf nodes belonging to nodes in the cut should cover all the leaf nodes in the tree T or

UWd
i = 1 LðciÞ = LðTÞ.

� The intersection of leaf nodes belonging to any two distinct nodes in the cuts should lead to an

empty set or LðciÞXLðcjÞ = B;ci; j˛ f1.dg.

The DP optimizes the objective functions of the following form to obtain the optimal value and a cut C:

argmin
C

f ðCÞ or argmax
C

f ðCÞ
wheref ðCÞ =
X
c˛ C

metricðcÞ

where metricðcÞ represents the metric for node c in the tree T, whose sum we want to optimize over all

nodes in the cut. We solve for f ðCÞ using the procedure described in Algorithm 1. For a given metric of in-

terest, it outputs the optimal value for the objective function and a set of nodes (cut), on which summing up

the metric provides the optimal value. Algorithm 2 (CompOptVal) returns the optimal value for the objec-

tive function at a given node and Algorithm 3 (CompOptCut) returns the cut for a tree/subtree for that

objective function.

We have solved for the objective functions employing two different metrics to obtain cuts on the tree TU

which we describe in the section below.
16 iScience 26, 106961, June 16, 2023



Algorithm 1. Finding optimal value of the objective function and the corresponding cut for a given metric

Input: T ;met arr; type 8 T is the tree, met arr is the array containing the value of the metric for all nodes in the tree,

type tells whether minimize or maximize the objective function

Output: cut = ½c1;.;cd �
procedure findOptValCut

root) FindRoot(T) 8 get the index corresponding to the root node in the tree

t nodes) length(T) 8t nodes are the total number of nodes in the tree

cut)½�
opt arr)½0; t nodes�
for n in 0::t nodes do

opt arr½n�) CompOptVal(T ;n;met arr; type) 8. Optimal value at all nodes for the objective function

end for

CompOptCut(T ; root;met arr;opt arr;cut) .

return cut

end procedure
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Minimize mean infRV and height

- We minimize the sum for the node metric - sum of mean inferential relative variance and height weighted

by g; and thenmultiplied by the number of descendant leaf nodes. This metric is called irv_height_desc and

is described formally below with the objective function as:

argmin
C

X
c˛ C

irv height descðcÞ (Equation 4)
irv height descðcÞ = irv heightðcÞ � jLðcÞj (Equation 5)
irv heightðcÞ = mirvðcÞ+gheightðcÞ (Equation 6)

mirv(c) is themean inferential relative variance for a node across samples, height(c) is defined as the number

of edges on the longest path from node c to its descendant leaf,LðcÞ represents the descendant leaves for

a given node c, with jLðcÞj = 1, if c is a leaf node. The reason that the number of descendants of a node are

multiplied is because the value of the objective function is dependent on the number of nodes in the cut

and will be biased towards nodes with higher height as they end up replacing multiple lower height

descendant nodes. To get the optimal value and desired cut for the above objective function we use

the Procedure defined in Algorithm 1 as:

opt val; cut = FindOptValCut
�
TU; irv height desc;min

�
(Equation 7)
Algorithm 2. Function for finding optimal value of objective function at given node

Input: T ;node;met arr; type

Output: opt_val_node

procedure compOptVal

if node isLeaf then

return met arr½node�
end if

children) findChildrenðT ;nodeÞ
child opt)

P
n˛ children

CompOptVal ðn;met arr; typeÞ
if type = min then

return minðmet arr½node�;child optÞ
else

return maxðmet arr½node�;child optÞ
end if

end procedure

iScience 26, 106961, June 16, 2023 17



Algorithm 3. Function for finding optimal cuts

Input: T ;node;opt arr;met arr;opt cut

Output: cut = ½c1;.;cd �
procedure CompOptCut

if opt arr½node� = met arr½node� then
opt cut.append ðnodeÞ
return opt cut

end if

children) findChildrenðT ;nodeÞ
for child in children do

return CompOptCut(child;opt arr;met arr;opt cut)

end for

end procedure
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Maximize log fold change

In this objective function, we maximize the sum of node metric - absolute log fold change using CPM

(counts per million) multiplied by the number of the descendant leaves for that node. This metric is called

lfc_desc and is described formally below with the objective function as:

argmax
C

X
c ˛ C

lfc descðcÞ (Equation 8)
lfc descðcÞ = wlfcðcÞ$jLðcÞj (Equation 9)

where lfc is the log2 fold change. Assuming the samples can be grouped into two conditions represented

by the sets m1 and m2, lfc is given by:

lfcðcÞ = median
�
lfcðcÞk

�
; k ˛ f1::Rg (Equation 10)
lfcðcÞk = log2

 Pm1
j = 1cpmðcÞjk

jm1j + pc

!
� log2

 Pm2
j = 1cpmðcÞjk

jm2j + pc

!
(Equation 11)

where R represents the total number of inferential replicates, cpmðcÞjk represents kth inferential replicate’s

CPM for node c of sample j. We again use the procedure defined in Algorithm 1 to get the optimal value

and the cut as:

opt val; cut = FindOptValCutðTU;wlfc desc;maxÞ (Equation 12)

Datasets

To demonstrate the benefits of TreeTerminus, we ran it on both simulated and experimental datasets span-

ning different organisms.

Simulated human datasets

Polyester44 was used to generate simulated RNA-seq data. TPM estimates were extracted from GTEx V8

frontal cortex dataset with the distribution of mean and dispersion values derived from GEUVADIS sam-

ples.45 The process of read generation has been described in detail in.46 We generated 12 samples with

6 samples in each condition. All transcripts were differentially expressed for 10% of the genes with all hav-

ing the same fold change (DGE) and genes had a single transcript differentially expressed (DTE). We

created two variations of this simulation by varying the range of fold change - in the first variation we

keep the same fold change as in46 and in the second variation, the maximum range of fold change is low-

ered from 6 to 3 . The first variation is referred to as BrSimNorm and second is referred as BrSimLow.

Mouse muscle dataset

This dataset is taken from the skeletal muscle study GSE100505.17 In this paper, we have used 12 samples

with 6 samples belonging to Atria and 6 to Tibialis Anterior, with the accession numbers provided in

Table S1. All the samples belong to organism mus musculus. This dataset is referred as MouseMuscle.
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Chimpanzee brain dataset

The final dataset that has been analyzed in our study is the RNA-Seq data from,18 SynapseID - syn7067053

collected from 5 Chimpanzees (Pan Troglodyte). We refer to this dataset as ChimpBrain. For each spec-

imen, samples from 16 different tissues representing hippocampus, amygdala, cerebellar cortex, medio-

dorsal nucelus of thalamus, striatum and 11 areas of neocortex were sequenced. The samples belonging

to the medial dorsal nucleus were removed before running TreeTerminus. The lfc change was computed

by taking 5 cerebellum samples as the first group and remaining 68 samples belonging to other tissues as

the second group. Batch effects were observed w.r.t specimen label and corrected using sva.47

Construction of anti-correlation tree

All transcripts that had 0 counts across the samples and 0 counts across the inferential replicates for any

sample were removed. For each sample k, Pearson correlation rkij was computed between each pair of tran-

scripts across the inferential replicates. rkij is multiplied by � 1 to give rk0ij so that any pair of transcripts that

had the highest negative correlation now have the largest positive correlation. To convert (anti)correlation

into distance, rk0ij is transformed as dk
ij = ð1 � rk0ij Þ=2 or dk

ij =
1+rkij
2 . Unweighted Pair GroupMethod with Arith-

metic Mean (UPGMA)19 was used to create the anti-correlation tree with the implementation derived from

the R package phangorn.48 The mean for dk
ij across samples is computed and fed as input to UPGMA in

order to get the final tree. The AC tree could also have been created for every sample and then provided as

input to the consensus tree algorithm to get the final tree, however consensus tree algorithms do not scale

well on the number of leaves. Since for most cases the number of leaves(transcripts) on trees would be in

the order 104 � 105, consensus tree algorithms would have taken a lot of time to converge.

Mapping to gene families

The gene family labels for a gene were extracted using R package biomaRt49 using Ensembl version 101. We

want to extract the total number of unique gene families to which an inner node maps. A gene can map to

more than one gene family and when an inner node maps to multiple genes; with atleast one gene mapping

to more than one family, finding the unique number of gene families for that node is not trivial. Simply, taking

a union of gene families across genes for an inner node is undesirable since this might lead to a situation where

number of reported gene families are larger than the number of mapped genes for some nodes. Between

different trees, the interpretation of the distribution of the number of gene families to which an inner node

mapswill also be biased towards the tree that hasmore nodes containing genesmapping tomultiple gene fam-

ilies. Thus, in order to find the number of unique gene families associated with a node, we formulate this as the

minimial hitting set problem.50 We want to find the minimum number of gene families for a node in the tree,

whose intersection with the gene families associated with every gene for that node leads to a non-empty set.

We use the implementation provided by the Python library PySAT31 to solve the minimal hitting set problem.

QUANTIFICATION AND STATISTICAL ANALYSIS

For the Chimpanzee dataset, only bam files were available as the raw data which were converted into fastq

using bamToFastq in bedtools.33 The quality control analysis for Chimpanzee and mice dataset was done

using fastqc34 and multiqc.35 For creating the salmon indexes, gencode versions v26, M25 and Pan_tro 3.0

were used for human, mice and chimpanzee datasets. Salmon was used for quantification and generating

100 Gibbs replicates for each sample with a thinning factor of 100. All the pipelines used for analysis in this

paper were created using Snakemake.51

Differential expression analysis

Differential expression analysis is carried out on both the simulated datasets using Swish.15 It is performed

individually for the cuts obtained on the Cons tree by optimizing the objective functions defined in the sec-

tion above. The inner nodes belonging to a cut are directly used as the inferential units for the analysis, and

their underlying descendant transcripts are not considered. The performance is evaluated using True

Positive and False Discovery rates computed at different nominal FDR thresholds (0.01, 0.05, 0.1). The per-

formance is also evaluated when the inferential units consist of genes, transcripts(Txp), and Terminus

groups(Term). The true differential status of a transcript group is determined by computing lfc on its aggre-

gated transcript counts w.r.t each condition in the sim.counts.mat matrix that is created during the

generating the input for Polyester44 and checking if jlfcj is beyond a threshold. It is important to keep in

mind that these evaluation metrics are not directly comparable across the methods as the base reference

units are different.
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