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ABSTRACT Freshwater network ecosystems consist of interconnected lotic and lentic
environments within the same catchment area. Using Plitvice Lakes as an example, we
studied the changes in environmental conditions and microbial communities (bacteria
and fungi) that occur with downstream flow. Water samples from tributaries, interlake
streams, connections of the cascading lakes, and the Korana River, the main outflow
of the system, were characterized using amplicon sequencing of bacterial 16S rRNA
and fungal ITS2 genes. Our results show that different environmental conditions and
bacterial and fungal communities prevail among the three stream types within the
freshwater network ecosystem during multiple sampling seasons. Microbial community
differences were also confirmed along the longitudinal gradient between the most dis-
tant sampling sites. The higher impact of “mass effect” was evident during spring and
winter, while “species sorting” and “environmental selection” was more pronounced
during summer. Prokaryotic community assembly was majorly influenced by determin-
istic processes, while fungal community assembly was highly dominated by stochastic
processes, more precisely by the undominated fraction, which is not dominated by
any process. Despite the differences between stream types, the microbial community
of Plitvice Lakes is shown to be very stable by the core microbiome that makes up
the majority of stream communities. Our results suggest microbial community succes-
sion along the river-lake continuum of microbial communities in small freshwater net-
work ecosystems with developed tufa barriers.

IMPORTANCE Plitvice Lakes represent a rare freshwater ecosystem consisting of a com-
plex network of lakes and waterfalls connecting them, as well as rivers and streams
supplying water to the lake basin. The unique geomorphological, hydrological, biogeo-
chemical, and biological phenomenon of Plitvice Lakes lies in the biodynamic process
of forming tufa barriers. In addition to microbial communities, abiotic water factors also
have a major influence on the formation of tufa. Therefore, it is important to understand
how changes in environmental conditions and microbial community assembly affect the
functioning of the ecosystem of a freshwater network with developed tufa barriers.

KEYWORDS microbial communities, spatiotemporal, freshwater ecosystem,
mass effects, species sorting, community assembly, tufa barriers

Unique freshwater ecosystems consisting of lotic systems, such as streams and riv-
ers, and lentic environments, such as lakes, connected within a catchment area,

represent a spatial and temporal continuum from the source system to the mouth.
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Significant hydrologic and biogeochemical changes occur with community succession
during runoff within lotic systems. Rivers and streams are primary receivers of nutrients
and organic matter due to input from groundwater (1), soil, and surface runoff (2) but
also from anthropogenic point sources (3). All this input with hydrology can signifi-
cantly influence the microbial community in the ecosystem (4).

The streams’ water flow contributes to the structuring of microbial communities by
massive advection of microbes from other systems through so-called “mass effects” (5,
6). Reaching lakes, microbial communities are massively influenced by the local hydro-
logical and geochemical conditions, and through “environmental selection” and “spe-
cies sorting,” the allochthonous communities can be displaced by more competitive
species (7). Therefore, hydrology, the system position in a network and local environ-
mental conditions, alongside community assembly processes (6) are the main influ-
encers shaping freshwater microbial communities in network ecosystems.

Understanding the mechanisms underlying microbial community assembly, it is neces-
sary to capture community composition across time and space. Temporal history shapes
local communities, and unilateral water flow links temporal and spatial history. The control
of the microbial community distribution patters is still an open box (8), but from the mac-
roecological studies, we can identify four fundamental categories: selection, dispersal,
diversification, and drift (9); the categories are shaped by the deterministic or stochastich
microbial assembly processes (10). These processes are not mutually exclusive, and their
relative importance alter the microbial diversity and its biological function (11).

Environmental filtering and interactions among species are regarded as determinis-
tic selection processes (9, 12), whereas stochastic selection processes include random
colonization, demographic coincidences, and ecological drift (13). The microbial com-
munity is formed as a net result of the upstream assembly processes due to the hydro-
logical conditions in each of the subsystems within the aquatic network (14). In these
networks, shifts in community compositions are not so much marked by the presence
or absence of species but by changes in relative abundances (15). The community’s
structure and thus the connection of the aquatic network are additionally shaped by
seasonal hydrological fluctuations (16, 17). Thus, spatiotemporal studies are particularly
important for a more detailed understanding of the functioning of freshwater network
ecosystems. The main reason for the functioning of such network ecosystems is prob-
ably the existence of the core microbiome (15, 18, 19).

Plitvice Lakes represents a complex and biodiverse freshwater network ecosystem
of lakes and waterfalls, as well as rivers and streams, providing the lake basin with
water. Between the lakes are tufa barriers that form natural lake outlet habitats (20). In
this complex environment (Fig. 1), we investigated the role of the spatial-temporal
processes in the microbial community’s assembley and their response to different envi-
ronmental conditions alongside the catchment area. Bacterial and fungal communities
were examined throughout three different seasons during a period of 2 years. Our pri-
mary hypothesis was that there is a difference between microbial communities and
assembley processes in tributaries, interlake streams, and the main outflow, the Korana
River.

Considering the positions of streams in the network ecosystem, we expected the
occurrence of the so-called mass effect downstream of the entire system. Similarly, the
various microbial communities from forested tributaries were expected to undergo sig-
nificant changes as they entered the lakes. These changes were expected to be due to
species sorting, longer water residence time (WTR) in lakes, and different environmen-
tal conditions in the lakes. Finally, in order to better understand the functioning of the
entire freshwater network ecosystem, the core microbiome was determined, which
included taxa present in all stream types throughout all seasons.

RESULTS
Environmental variables. All the physical and chemical parameters obtained at 25

sampling locations within the network ecosystem through different seasons are either
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shown in Fig. S1 or listed in Table S1. Water temperatures measured within tributaries
were more stable and varied from 2°C (winter 2021) to 12°C (summer 2020) compared
to interlake streams, which varied from 2°C (winter 2021) to 22°C (spring 2019; Fig. S1).
The lowest measured temperature in the Korana River was 3°C (winter 2021), and the
highest was 17°C (summer 2019). The lowest measured O2 concentration in tributaries
was 4.8 mg/liter (summer 2019), and the highest was 12.9 mg/liter (winter 2021;
Fig. S1). Similarly, in interlake streams and the Korana River, the lowest measured O2

concentrations were 6.9 and 4.7 mg/liter (summer 2019), and the highest were 12.6
(winter 2020) and 13.3 mg/liter (winter 2021). Measured dissolved organic (DOC) con-
centrations within all areas from spring 2019 to 2020 varied between 0.8 and 3.3 mg/li-
ter (Fig. S1). The measured DOC concentration in summer 2020 in the Korana River was

FIG 1 Locations of sampling points at streams in Plitvice Lakes catchment area. The map was generated using the software QGIS 3.24.
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6.9 mg/liter. The DOC concentrations peaked in winter 2021 in all streams, where they
were up to 17.3 mg/liter in tributaries, 18.9 mg/liter in interlake streams, and 15.5 mg/
liter in the Korana River, respectively. Generally, the lowest Ca21 concentrations were
measured in spring 2019 (Fig. S1). Highest Ca21 concentrations in tributaries were
measured in winter 2020 (89.4 mg/liter) and in interlake streams in winter 2021
(69.4 mg/liter). NO2

3 concentrations were very low and varied between 0.6 mg/liter (in
tributaries in winter 2020) and 6.8 mg/liter (in tributaries in winter 2021). One higher
NO2

3 concentration was measured within interlake streams in spring 2019 (14.9 mg/li-
ter). The rainfall amounts differed in the same periods of the different years (Table S1).
Spring samples were taken during the same period in May. However, it was rainy in
May 2019, with a rainfall of 421.2 mm, while in May 2020, the rainfall was 161.5 mm.
The summer samples in 2019 were taken in early September during dry season, with a
rainfall of 52.3 mm, while the summer samples in 2020 were taken in the mid-
September 2020, when rainfall already reached 217.8 mm. Winter samples were taken
in February, which was a dry season in 2020 with a rainfall amount of 44.8 mm, while
in 2021, it snowed during the same period, and the rainfall amount was 90.4 mm.

Based on Pearson correlation coefficient temperature showed a negative correlation
with DOC (R2 = 20.39, P , 0.05), O2 (R2 = 20.38, P , 0.05), and Ca21 (R2 = 20.45,
P , 0.05), while DOC and O2 (R2 = 0.40, P , 0.05) showed a positive correlation. Based
on the principal component analysis (PCA) results, examined separately by season, the
samples from spring and summer are divided on account of sampling year, while the
samples from winter showed no clustering based on sampling year (Fig. 2). In the spring,
samples from interlake streams were not separate from samples from tributaries, and in
the summer and winter, little separation of samples from interlake streams and tributa-
ries was evident. In general, interlake stream samples clustered together more than trib-
utaries, which were scattered. The Korana River samples did not separate from the
groups from the same years in the spring and were clustered with the interlake streams
samples in the summer and the tributary samples in the winter.

Microbial composition of freshwater network ecosystem. a-Diversity of prokary-
otic communities reached higher values in spring and winter in samples from tributa-
ries than in samples from interlake stream or the Korana River, while values in summer
were relatively the same for all stream types (Fig. S2A). Tukey’s honestly significant dif-
ference (HSD) test showed significant differences between tributaries and interlake
streams and the Korana River in spring (P, 0.05), whereas samples from interlake sam-
ples and the Korana River were not significantly different from each other in the same
season (Table S2). For the winter samples, Tukey’s HSD test showed significant differen-
ces between all stream types, while no significant differences were detected for the
summer samples (Table S2).

For the fungal communities, higher values for a-diversity were observed in the trib-
utary samples in winter, while the values in spring and summer were similar to those
observed in the interlake streams and Korana River samples (Fig. S2B). Tukey’s HSD test
showed significant differences only among tributaries and interlake streams in winter
(P, 0.05; Table S2).

The taxonomic composition revealed, altogether, 54 prokaryotic (Fig. S3) and 12
different fungal phyla (Fig. S4). The most abundant bacterial phyla in all stream types
were Actinobacteriota, Bacteroidota, Cyanobacteria, Patescibacteria, Proteobacteria,
and Verrucomicrobiota. Archaea were overall rare. Among fungal phyla, Ascomycota,
Basidiomycota, and Chytridiomycota were relatively most abundant.

Bacterial amplicon sequence variants (ASVs) affiliated with Actinobacteriota, Bacteroidota,
Cyanobacteria, and Verrucomicrobiota systematically increased in relative abundance from
tributaries toward interlake streams (Fig. S3). Within tributaries, alongside the above-men-
tioned most abundant phyla, Bdellovibrionota appeared in higher relative abundances
through all seasons. Higher relative abundances of Cyanobacteria in spring samples,
Firmicutes and Planctomycetota in summer 2020, and Campylobacterota in winter 2021
were observed. In interlake streams, the relative abundances of Bacteroidota were lower
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FIG 2 Principal component analysis (PCA) ordination on the environmental variables during the
investigated period divided by sampling seasons. Different colors represent stream types.
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in summer, while those of Cyanobacteria were higher. The Korana River samples showed
similar bacterial community composition to interlake streams and followed the changes
throughout the seasons (Fig. S3).

The fungal phylum Chytridiomycota dominated in the winter throughout almost all
stream types, while Ascomycota- and Basidiomycota-related ASVs appeared in higher abun-
dance in summer samples in all stream types (Fig. S4). In spring seasons, Chytridiomycota
dominated in tributaries, while in spring 2020, Ascomycota and Basidiomycota dominated
in interlake streams and the Korana River.

Spatial-temporal shifts of microbial communities across the freshwater net-
work ecosystem. Multivariate analysis revealed differences among microbial commun-
ities based primarily on the stream types, when all samples were examined across different
sampling seasons. Clustering was also observed within the prokaryotic community in
summer and winter between samples of the same stream type based on sampling year,
while there was no difference between samples from different years in spring (Fig. 3A;
Table S3). Prokaryotic communities of the Korana River clustered with the interlake stream
communities. Within the fungal community, clustering between samples of the same
stream type based on sampling year was most pronounced in winter, while in spring
and summer, the influence of sampling year was significant but minor (Fig. 3B; Table S3).
Fungal communities of the Korana River clustered with the communities of the tributa-
ries in spring and winter, while in summer they clustered with the communities of inter-
lake streams.

Main drivers of microbial community composition across the freshwater net-
work ecosystem. To explore biogeographic differences of microbial communities along
the longitudinal gradient, the community similarity was plotted as a function of geo-
graphic distance between sampling points (Fig. 4). The geographic distance between
farthest sampling points was 12 km. Generally, microbial community similarity between

FIG 3 Principal coordinate analysis (PCoA) of bacterial (A) and fungal (B) communities’ b-diversity based on Bray-Curtis dissimilarity divided by sampling
season. The influence of different stream type and sampling season on the sample clustering was tested by permutational multivariate analysis of variance
(PERMANOVA). Different colors represent stream types, and different shapes represent sampling years.
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samples decreased with increasing geographic distance (prokaryotic community slope,
20.00023; fungal community slope, 20.00021). Linear regression of the DDR showed a
higher decrease in community similarity within the prokaryotic communities with
increasing geographic distance (Fig. 4A), while the same observation was noticed for
the fungal communities with slightly smaller values (Fig. 4B).

In order to discern the main drivers of the microbial distribution of the downstream
flow within the freshwater ecosystem network depicted by the PCoA plots, the measured

FIG 4 Pairwise Bray-Curtis community similarity between samples with respect to geographic distance (m). (A) Bacterial community. (B) Fungal community.
For the evolution with distance, pairwise community similarity was evaluated exclusively between samples of the longest tributaries: Bijela Rijeka with
interlake streams and Korana River. Blue lines illustrate linear models computed for the subset of samples considered, and red lines represent the overall
linear regression when including all the samples.
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environmental variables were fitted on the separated ordinations (Fig. 3). Both prokary-
otic and fungal community compositions were influenced by temperature, DOC, O2,
Ca21, NO2

3 , or rainfall. NO
2
3 influenced both communities of tributaries samples in spring.

Tributary prokaryotic communities in summer were influenced by rainfall in 2019 and
Ca21 in 2020. In winter, temperature and Ca21 influenced tributary prokaryotic commun-
ities in 2020, while rainfall amounts and DOC influenced tributary communities in 2021.
Interlake stream prokaryotic communities were influenced by O2 in summer 2019, DOC in
summer 2020, and O2 in winter 2021. Tributary fungal communities were influenced by
NO2

3 and Ca21 and rainfall in summer, by temperature and NO2
3 in winter 2020, and by

rainfall and DOC in winter 2021. Fungal communities in interlake streams were influenced
by temperature in summer 2020 and by O2 concentrations in winter 2021. The results
were confirmed with permutational multivariate analysis of variance (PERMANOVA)
(Table S3).

Relative influence and quantitative analysis of assembly processes between
different seasons. Partitioning the phylogenetic distance between prokaryotic ASVs
using the null model, we found bNTI to be below22 in spring and summer and below
22 in winter in some cases and above 22 in others, suggesting that stochastic assem-
bly effected prokaryotic communities in winter (Fig. 5A). Homogeneous selection con-
tributed to a large extent to the assembly of prokaryotic communities in all seasons
(Fig. 5B). The highest contributions of homogeneous selection were found for prokary-
otic communities in spring. Dispersal limitations also influenced prokaryotic commu-
nity assembly in all seasons, with the greatest influence on prokaryotic communities in
winter. Variable selection influenced prokaryotic communities more strongly in winter
than in spring and summer. When we partitioned the phylogenetic distance between
fungal ASVs using the null model, we also found that most bNTI ranged from 22 to
12 from site to site, suggesting that deterministic assembly had little influence on fun-
gal community structuring (Fig. 5C). The processes that influenced fungal communities
were mainly undominated. Homogeneous selection contributed to the assembly of
fungal communities in spring, whereas variable selection influenced fungal commun-
ities in winter (Fig. 5D).

Core microbiome of the freshwater network ecosystem. An analysis of the overlap
between prokaryotic (Fig. S5A) and fungal (Fig. S5B) communities in the different sampling
seasons showed that the majority of the taxa were unique to the tributaries. A considerable
number of ASVs were shared by all three stream types or two stream types in all seasons. A
minor number of ASVs was unique to interlake streams, while the Korana River had a maxi-
mum of 11 unique ASVs. The abundance-occupancy distributions of both bacterial (Fig. 6A)
and fungal (Fig. 7A) communities showed the highest occupancy among samples of ASVs
shared in all samples. Although the majority of ASVs were unique for tributaries, they were
relatively rare. ASVs shared in all three stream types were also relatively most abundant in
all samples and defined as core microbiome of this specific freshwater network ecosystem.
The core microbiome covered 90% of the interlake stream and the Korana River and 70%
of the tributary prokaryotic community (Fig. 6B). The most abundant ASVs were affiliated
with the phyla Proteobacteria, Bacteroidota, and Actinobacteria. By exploring deeper taxo-
nomic levels within the core microbiome, 195 different families have been discovered. In
tributaries, bacteria from the Comamonadaceae family were most dominant, and bacteria
from the Flavobacteriaceae and Sphingomonadaceae family were present in greater relative
abundance than others. Downstream, i.e., in interlake streams and the Korana River,
bacteria from the family Sporichthyaceae were dominant. Bacteria from the families
Clade III, Comamonadaceae, Microbacteriaceae, and Rubritaleaceae were present in
greater relative abundance (Fig. S6). In the fungal community, the core microbiome
comprised 80% to –85% of interlake and Korana River communities and about 50% of
tributary communities (Fig. 7B). The core microbiome of the fungal community was
comprised of phyla Ascomycota, Basidiomycota, Chytridiomycota, Monoblepharomycota,
and Rozellomycota. Among the ASVs unique for tributaries, Proteobacteria- and
Bacteroidota-related ASVs in prokaryotic communities and Chytridiomycota-related ASVs
in fungal communities prevailed. To better identify the uniqueness of tributaries, the 30
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most abundant and rare families were investigated. The families Chitinophagaceae,
Leptolyngbyaceae, Saprospiraceae, and Spirosomaceae were the most abundant, while
Erysipelatoclostridiaceae, Pelotomaculaceae, and Vibrionaceae stood out among the
rare taxa (Fig. S7). Although less numerous, ASVs shared in two stream types in bacterial
communities were more abundant than unique ones and made 25% of bacterial and fun-
gal communities of tributaries, while in interlake streams and the Korana River, ASVs made
up less than 5% of bacterial and less than 20% of fungal communities.

DISCUSSION

In this study, we were primarily interested in determining changes in bacterial and
fungal communities along the interconnected lotic systems during different seasons.
Environmental parameters of the entire system were also determined during six sam-
pling seasons.

FIG 5 Community assembly processes for prokaryotic and fungal communities. Boxplots illustrating variation in b-nearest
taxonomic index (bNTI) for prokaryotic (A) and fungal (C) communities from different seasons. The percentage of turnover
in prokaryotic (B) and fungal (D) community assembly through different seasons governed primarily by various
deterministic, including homogeneous and variable selection, and stochastic processes, including dispersal limitations
and homogenizing dispersal, as well as the fraction that was not dominated by any single process (“Undominated”).
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In general, environmental parameters in samples from interlake streams showed
overall uniformity, whereas the tributary samples were more scattered (Fig. 2).
Accordingly, we expected differences in microbial communities among stream types,
as previously shown in similarly studied aquatic network ecosystems (6, 21). Both bac-
terial and fungal communities (Fig. 3) showed differences in community composition
between tributaries and downstream sites (interlake streams and the Korana River).
Further confirmation of the different microbial communities in the tributaries and
downstream can be provided by examining the biogeographic patterns of the microor-
ganisms (Fig. 4). Indeed, when we examined the longest water flow in the Plitvice
Lakes freshwater network ecosystem, it became clear that both bacterial and fungal
communities differed with increasing geographic distance, that is, both microbial

FIG 6 (A) Abundance-occupancy distributions were used to identify core members of the freshwater network ecosystem for bacteria. Taxa exclusive to
stream types are indicated in blue (tributaries) or red (interlake streams), taxa shared between two stream types are indicated in yellow, and taxa shared
across all systems are indicated in black. (B) Relative abundance of core microbiome taxa, grouped by stream type and color-coded by phylum. ASV,
amplicon sequence variant.
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communities showed strong distance decay (21). The diversity of microbial commun-
ities was already evident at the level of phylum taxonomy, such that the strong domi-
nance of phyla Proteobacteria and Bacteroidota in the tributaries was replaced by the
sudden increase in the relative abundance of Actinobacteriota downstream in the net-
work (22). Similarly, the dominance of Chytridiomycota was visible in the lower reaches,
proving that rivers are dispersal pathways for terrestrial fungi (23–25), where fungi
enter tributaries and flow downstream.

Based on environmental parameters, spring samples differed between sampling
years but not between stream types (Fig. 2), while PCoA analysis indicated that there
was a difference between microbial communities by stream type rather than sampling
year (Fig. 3). Deterministically determined prokaryotic communities are mostly formed

FIG 7 (A) Abundance-occupancy distributions were used to identify core members of the freshwater network ecosystem for fungi. Taxa exclusive to
stream types are indicated in blue (tributaries) or red (interlake streams), taxa shared between two stream types are indicated in yellow, and taxa shared
across all systems are indicated in black. (B) Relative abundance of core microbiome taxa, grouped by stream type and color-coded by phylum.
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by the mass effect in spring (4). Namely, homogeneous selection influences commu-
nity assembly when environmental conditions are relatively predictable (26). Under a
low pressure of environmental changes (Table S3), bacterial communities that enter
shallow tributaries from surrounding land, with water flow due to the strong mass
effect, lose their abundance and diversity (6, 27) (Fig. S2). The only abiotic factor that
affected bacterial community composition was the elevated NO2

3 concentrations in
tributaries (Fig. 3), which reach higher levels in karst aquifer systems during the wet season
(28). For this very reason, we can conclude that species sorting and environmental selec-
tion had little effect on bacterial community formation. Fungal community assembly was
largely stochastically influenced due to the undominated fraction (Fig. 5C and D). When
we consider that most fungal ASVs were unclassified, this information is not surprising.
Nonetheless, the small fraction of detected processes was dominated by variable selection,
which causes high compositional turnover with large variations in environmental factors
(26). Fungal communities were therefore more affected by environmental changes in
spring (Table S3) but still mostly formatted by mass effect.

As might be expected, larger changes in environmental conditions occurred in the
summer between the relatively sheltered, forested tributaries and the lower reaches of
the system, which are subject to greater seasonal fluctuations (Fig. 2). The tributaries were
obviously still strongly influenced by the surrounding soil, and the mass effect also shaped
the entire community composition. However, depending on the environmental condi-
tions during the summer, the influences of species sorting and environmental selection
were stronger, especially in the lower reaches (4). Bacterial community assembly composi-
tion was still influenced by deterministic processes. Environmental factors had changed in
terms of seasonality, but there have been no great leaps, so that the community composi-
tion was still influenced by homogeneous selection (26). Fungal community assembly
was, again, largely stochastically influenced due to the undominated fraction (Fig. 5D).

In winter, samples from interlake streams were uniform according to environmental
factors, whereas samples from tributaries were scattered (Fig. 2). A major impact on tribu-
taries was a large jump in the concentration of DOC, which was elevated in 2021 due to
snow (29). In winter, bacterial community assembly was dominated by deterministic proc-
esses, i.e., homogeneous selection. Nevertheless, the influence of stochastic processes
was stronger here compared to other seasons (Fig. 5B). In winter, the movement of micro-
organisms to a new location is more limited; therefore, they showed a stronger dispersal
limitation (8). The lesser influence of environmental factors (Table S3) and the differences
in a- and b-diversity confirmed the greater impact of mass effect and more stochastic
influence on bacterial community formation. The fungal communities were again not
conditioned by any process (Fig. 5D), and homogeneous selection stood out from the
detected processes. Changes in environmental parameters were not surprising, and
therefore, communities were formed by homogeneous selection, but the parameters still
had an effect on community changes (Table S3).

Overall, the Plitvice Lakes’ freshwater network ecosystem was characterized by rela-
tively stable microbial communities with small seasonal changes due to communities
present in all stream types, described as the core microbiome. Although the majority
of bacterial ASVs were unique to the tributaries, they were rare and present in a smaller
relative abundance (Fig. 6A), and the most significant part of the prokaryotic commun-
ities in tributaries was the core microbiome, also present in more than 90% of other
stream types (Fig. 6B). Proteobacteria, already recognized earlier as transitional ele-
ments in a network ecosystem from streams to lakes (30), represented the most abun-
dant phylum in the core microbiome. The phylum Proteobacteria was dominated by
the chemotrophic Comamonadaceae, which are commonly found in groundwater and
karst waters (reference 31 and references therein), primarily because of their role in uti-
lizing various carbon sources (32). Other commonly occurring phyla were Bacteroidota
and Verrucomicrobiota, which, together with Proteobacteria, represent the most profilic
phyla in the bacterial communities of freshwater ecosystems (33). The most abundant fam-
ilies within the aforementioned phyla, Flavobacteriaceae (Bacteroidota) and Rubritaleaceae
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(Verrucomicrobiota), were bacteria normally associated with phytoplankton blooms and
the degradation of polymeric matter (34). Flavobacteriace were more abundant in upstream
samples because they are capable of degrading all organic matter present in the environ-
ment and are therefore important for biodegradation processes in subsurface karst envi-
ronments (35). Actinobacteriota has already been associated with karst ecosystems (36),
so it is not surprising that they are ubiquitous in Plitvice Lake’s network. Although they
were present in low abundance in the tributaries, they experienced a sudden growth
downstream, confirming their competitiveness (37). The most dominant family within the
phylum Actinobacteriota, Sporichthyaceae, possesses phototrophic properties and is able
to survive in oligotrophic environments (38). As photoheterotrophic bacteria, they use
biodegradable DOC as a carbon source and produce their own DOC in combination with
solar energy, which is why they dominated in downstream parts (38). Some unexpected
phyla were present in the core microbiome, such as Patescibacteria, which are originally
found in groundwater and aquifers, nutrient-poor habitats, where they make up as much
as 20% of the microbial community (39, 40). Their high abundance in tributaries was not
surprising as it is known that microbial communities are discharged with karst water to
the surface (41). Still, their presence in lakes indicates their competitiveness and ecologi-
cal roles in oxygen-rich environments (42). As for the core microbiome of the fungal
community, a smaller percentage was present in all stream types (Fig. 7B) with a pre-
dominance of phylum Chytridiomycota, commonly found in aquatic habitats (43, 44)
with various functionality from litter decomposition (45) to algae parasitism, when they
potentially force cell death and cell wall disruption for organic matter release to decom-
pose it directly (46). Representatives of the phyla Ascomycota and Basidiomycota were
present in higher abundances in tributary and Korana River samples, probably due to
their involvement in lichen symbioses (47). Also, the higher abundance of Ascomycota is
associated with their important role in ecosystem succession (48). Dominance among
taxa unique for tributaries in bacterial community was led by widespread forest soil bac-
teria from families Chitinophagaceae and Saprospiraceae (49) and Leptolyngbyaceae,
which among other functions have the function of nitrogen fixation (50). Among rare
taxa, bacteria from families associated with aromatic decomposition can be found, for
instance Pelotomaculaceae (51). Taxa unique for tributaries and more diverse taxa shared
in two stream types, constituted larger part of the fungal community (Fig. 7A). Various
phyla, like Mortierellomycota and Neocallimastigomycota, showed a higher influence of
soil and sediment on tributaries (44), same as Olpidiomycota, species that are typically in-
ternal parasites of algae, fungi, rotifers, and plant roots (52).

Conclusions. In summary, our study revealed the environmental and microbial differ-
ences between different stream types and sampling seasons within the freshwater net-
work ecosystem. We have confirmed the stronger impact of soil on shallow tributaries,
and we have shown that interlake streams show the condition of the lakes. Microbial
communities in freshwater network ecosystems differed among stream types. In spring
and winter, the mass effect had a greater influence on microbial community formation,
while in summer, it was species sorting and environmental selection. Prokaryotic commu-
nity assembly was influenced by deterministic processes throughout the system and in all
seasons, while a lesser influence of stochastic processes was evident in winter. Fungal
community assembly was dominated by stochastic processes. Despite minor changes in
the communities through the seasons, we have shown that the microbial community of
the Plitvice Lakes is very stable by determining the core microbiome. Still, due to the
increasing anthropogenic influence and inevitable climate changes, it requires more pro-
found research and monitoring.

MATERIALS ANDMETHODS
Study area. The Plitvice Lakes National Park occupies 29.630,8 ha within the area of the Dinaric karst

in west continental Croatia (Fig. 1). Less than 1% of this area is surface water. The aquatic ecosystem of
the Plitvice Lakes consists of 16 cascading lakes, formed by the continuous biodynamic growth process
of the tufa barriers that cut through this former river valley and enabled the formation of cascades.

Water samples were collected from all streams in the surface catchment area of Plitvice Lakes at 25
different locations (Fig. 1). The area of interest included three different stream types: tributaries (samples
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T1 to T18), interlake streams (samples IS19 to IS24), and the Korana River (sample K25). Tributaries
included a total of 18 sampling locations, including several down the two leading water suppliers, the
Bijela River, along its tributaries (Vukmirovi�ca and Ljeskovac streams), and the Crna River. Tributaries also
included locations along Sušanj and Rje�cica streams, which flow into the two largest lakes in the system,
Proš�cansko and Kozjak Lakes, as well as the more remote Koreni�cka stream in Drakuli�c Rijeka and Rijeka
Koreni�cka. At last, three locations along the Plitvice stream and its affluent Sartuk stream were sampled.
Together, they flow into the Korana River via the 76-m-high waterfall.

Interlake streams are the streams interconnecting the 16 lakes into a unique system. A total of six sam-
pling locations were sampled at interlake streams: Labudova�cke barriers, the exit barriers of Gradinsko
Lake, a canal on Kozja�cki bridges, and the entrance barrier in Novakovi�ca Brod Lake. Finally, a sample from
the Korana River was taken as the central outflow of the entire Plitvice Lakes water system. Notably, the
most distant tributaries are only 20 km separated from each other, and the geographic distance between
the tributary of the longest flow, Bijela River, and the outflow of lakes, Korana River, is only 12 km.

At each sampling point, a total of 2 liters of water was collected in sterile polycarbonate (PC) bottles.
Sampling was conducted during spring and summer in 2019 and 2020 and during winter in 2020 and
2021. The samplings in spring and winter were carried out in the same period both years; however, sam-
plings in summer were done at the end of August 2019 and September 2020, respectively. The water
samples were filtered onto a 0.22-mm-pore size PC filters (Whatman Nuclepore Track-Etch membrane; di-
ameter, 47 mm) with a peristaltic pump. The filters were immediately stored at 220°C until DNA extrac-
tion, while the filtrates were preserved at 4°C for physicochemical analysis.

Physicochemical analysis. A Multisensor probe (EXO3, YSI, USA) was used to measure dissolved oxy-
gen (O2), temperature, and pH in situ. Concentrations of the cations (Ca21, Mg21, and Na1) and anions (Cl2,
SO22

4 , NO2
3 ) in filtered water samples were measured on a Dionex ICS-6000 DC (Thermo Fisher Scientific,

Waltham, MA, USA). DOC and dissolved inorganic carbon (DIC) were analyzed using the HACH QBD1200 an-
alyzer in filtered water samples. For DOC analysis, DIC was first removed (i.e., converted to CO2 and out-
gassed) by the addition of H3PO4. All analyses were performed in the Hydrochemical Laboratory of the
Croatian Geological Survey.

DNA extraction, amplification, and sequencing. Total genomic DNA from filters was extracted with
the DNeasy PowerWater kit (Qiagen, Inc., Valencia, CA, USA) following the manufacturer’s protocol. The
hypervariable V4 region of the prokaryotic 16S rRNA gene was amplified by PCR using primer pair 515F
Parada (59-GTG YCA GCM GCC GCG GTA A-39) (53) and 806R Apprill (59-GGA CTA CNV GGG TWT CTA AT-
39) (54). The transcribed intergenic spacer 2 (ITS2) region of the fungal rRNA gene was amplified by PCR
using primer pair ITS3-Mix1-Mix2 (TCCTCCGCTTAyTgATAtGc), a modified ITS3 Mix2 forward primer from
Tedersoo48 named ITS3-mkmix2 CAWCGATGAAGAACGCAG, and a reverse primer ITS4 (equimolar mix of
cwmix1 TCCTCCGCTTAyTgATAtGc and cwmix2 TCCTCCGCTTAtTrATAtGc) (44). As described in detail in ref-
erence 55, all samples were amplified, barcoded, purified, and prepared for sequencing on an Illumina
MiSeq System (v3 chemistry, 2 � 300 bp) at the Joint Microbiome Facility of the Medical University of
Vienna and the University of Vienna.

Individual amplicon pools were extracted from the raw sequencing data using the FASTQ workflow
in BaseSpace (Illumina) with default parameters, allowing one mismatch for the 6-nucleotide (nt) library
indexes. The input data were filtered for PhiX contamination with BBDuk (BBTools) (56). Further demulti-
plexing of each amplicon pool library into single amplicon libraries was performed with the python
package demultiplex (Laros JFJ, github.com/jfjlaros/demultiplex), allowing one mismatch for barcodes
and two mismatches for linkers and primer sequences, respectively.

ASVs were inferred using the DADA2 R package version 1.14.1 (57) with R version 3.6.1 (58) applying
the recommended workflow (59) in pooled mode using all amplicon libraries per sequencing run. 16S
rRNA region V4/V3-4 amplicon FASTQ reads were trimmed at 150/220 nt with allowed expected error 2.
rRNA region ITS2 amplicon FASTQ reads were trimmed at 230/230 nt with allowed expected errors 4
and 6. Taxonomy was assigned to ASVs based on SILVA database SSU Ref NR 99 release 138.1 (https://
www.ncbi.nlm.nih.gov/pubmed/23193283) and UNITE all eukaryotes general FASTA version 8.2 (60)
using SINA version 1.6.1 (https://www.ncbi.nlm.nih.gov/pubmed/22556368).

The sequencing of V4 16S rRNA resulted in 1,187,393 reads, and the ITS sequencing resulted in a
total of 359,819 reads. After filtering, the remaining 1,047,022 reads of the V4 16S rRNA gene clustered
and affiliated with 7,915 prokaryotic ASVs and 316,582 reads of ITS2 fungal rRNA gene clustered and
affiliated with 1,547 fungal ASVs were further analyzed. Due to a low number of reads, 7 samples were
excluded from of the prokaryotic data set (sample T4_spring 2019, T2_summer 2019, T5_winter 2020,
T18_ spring 2020, samples T14_summer 2020, and T16_summer2020, and T14_winter 2021), and further
analysis was conducted on a total of 139 samples. A total of three samples (sample T4_spring 2019,
IS19_summer 2019, and T14_winter 2021) were removed from the fungal data set because of a low
number of reads. The analysis was conducted on 143 samples. In the prokaryotic data set, the lowest
number of reads was determined within tributaries in spring 2020 (1,165 reads), and the highest was in
interlake streams in summer 2019 (17,803 reads). The lowest number of reads within fungal data set was
determined in tributaries in spring 2020 (105 reads), and the highest number was in interlake streams in
winter 2021 (9,732 reads).

Statistical analysis. Statistical analyses were performed in the R environment (version 4.1.1) (58) using
the packages phyloseq (61), vegan (62), dplyr (63), and ggplot2 (64). The b-diversity of environmental pa-
rameters was calculated by performing a PCA on a distance matrix of Z-score-normalized data using vegan.

Prior to statistical analysis, ASVs classified as eukaryotes, mitochondria, or chloroplasts in the 16S
rRNA gene amplicon data set were removed. In addition, unassigned ASVs at the phylum level, single-
tons, and doubletons were removed from both data sets.
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For estimation of a-diversity, rarefaction was computed on the data set by subsampling libraries to the
smallest library size. a-Diversity was estimated as richness according to Chao1 (65), evenness was estimated
according to reference 66, and diversity was estimated according to the Shannon index (67). The analysis
of variance (ANOVA) test and Tukey’s HSD post hoc test were used to test for differences in microbial com-
munities’ a-diversity among stream types. Taxonomic abundance was examined by removing unassigned
taxa and by forming an “others” group of all the taxa with relative abundance less than 1%. Visualization of
the distance decay relationship (DDR) relied on community similarity calculated using a Bray-Curtis index
after normalization of the data set through cumulative sum scaling with the metagenomeSeq package
(68). Geographic distance was measured using a “Vincenty” (ellipsoid) great circle distance to take into
account Earth curvature, relying on packages enmSdm (69) and geosphere (v1.5.10) (70). The DDR was cal-
culated between the samples belonging to the tributary with the longest flow, the Bijela River, all interlake
stream samples, and the Korana River, the main outflow. Abundance-occupancy analysis was used to
detect core taxa of entire freshwater network ecosystem (71). Each taxon’s mean relative abundance was
calculated across the data set, log-transformed, and plotted against the proportion of discrete samples in
which it occurred (with occupancy of 1 to be found in all samples). Taxa found in all sampling points were
considered core taxa. Shared and unique ASVs of prokaryotic and fungal communities were depicted in a
Venn diagram using the package ggVennDiagram (72). To capture the difference between prokaryotic and
fungal b-diversities on a spatiotemporal scale between different stream types, sampling season, and sam-
pling year, a PERMANOVA test was carried out on distance matrices based on Bray-Curtis dissimilarity and
visualized via principal coordinate analysis (PCoA). The function envfit of the package vegan was applied to
the results of PCoA to visualize the correlations with environmental factors.

A biodiversity ecological null model was used to evaluate processes driving microbial community com-
position (11, 73). Based on the rarified abundance ASV tables and amplicon phylogenetic trees, we calcu-
lated the b-nearest taxon index (bNTI) of prokaryotic and fungal communities. In order to test whether
there was a significant difference between molecular and phylogenetic turnover between the observed
microbial assemblages, the b-mean nearest taxon index (bMNTD) was calculated. Further, the bNTI was
calculated as the difference between the observed bMNTD and the null distribution. Deterministic proc-
esses (variable or homogeneous selection) dominated when bNTI is greater than 2 or less than22. Values
within the range of 2 . NTI . 22 indicate the dominance of stochastic processes (homogenizing disper-
sal or dispersal limitation) or random drift. On the basis of the abundance of microbial communities, we
calculated the Raup-Crick (RC) b-diversity to distinguish stochastic processes. Assemblies were structured
by dispersal limitation if RC . 10.95, homogenizing dispersal if RC , 20.95, or random processes acting
alone (ecological drift) if RC falls between20.95 and10.95.

Data availability. Raw sequence reads were deposited in the EBI-EMBL ENA database, project
PRJEB57627.
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