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ABSTRACT
Predicting the annual frequency of tropical storms is of interest
because it can provide basic information towards improved prepara-
tion against these storms. Sea surface temperatures (SSTs) averaged
over the hurricane season canpredict annual tropical cyclone activity
well. But predictions need to be made before the hurricane season
when the predictors are not yet observed. Several climate models
issue forecasts of the SSTs, which can be used instead. Such models
use the forecasts of SSTs as surrogates for the true SSTs. We develop
a Bayesian negative binomial regression model, which makes a dis-
tinction between the true SSTs and their forecasts, both of which
are included in the model. For prediction, the true SSTs may be
regarded as unobserved predictors and sampled from their poste-
rior predictive distribution. We also have a small fraction of missing
data for the SST forecasts from the climate models. Thus, we pro-
pose amodel that can simultaneously handlemissing predictors and
variable selection uncertainty. If themain goal is prediction, an inter-
esting question is should we include predictors in themodel that are
missingat the timeofprediction?Weattempt toanswer this question
and demonstrate that our model can provide gains in prediction.
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1. Introduction

Prediction of tropical cyclone (TC) activity for theNorthAtlantic region started in the early
1980s [5,6], while the very first attempt for prediction of TC activity around the world was
taken byNeville Nicholls in the late 1970s [13]. Since then, the prediction of North Atlantic
tropical storms has received more andmore attention and previous studies have built fore-
cast systems which give retrospective forecasts for the hurricane season that reaches its
peak during August to October [2,6,24]. Although it is difficult to give accurate forecasts
of TC activity 9–10 months prior to a particular season [18], considerable progress has
been made for shorter lead times [2,17,19,22].
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In this paper, we focus on developing models for the annual frequency of tropical
storms, which is one of the measures of the severity of a hurricane season. Knowing in
advance, whether it will be an active season or not can help in improved preparedness.
The existing literature [20,23] has shown that SSTs averaged over the peak hurricane sea-
son are good predictors of tropical storm activity (aggregated over the hurricane season
for a given year). For example, warmer temperature in the tropical Atlantic Ocean during
August–October is expected to be favorable for the formation of tropical storms. How-
ever, observed SSTs are available after the hurricane season and, thus, cannot be directly
used for prediction. Instead, forecasts of SSTs are available from multiple climate mod-
els, also known as general circulation models (GCMs). We focus on forecasts of Atlantic
sea surface temperatures (SSTAtl) and tropical mean sea surface temperatures (SSTTrop)
by five GCMs (GFDLB01, GFDLA06, GFDL, NASA, CMC2) from the North American
Multi-Model Ensemble Project (NMME; Kirtman et al. [7]). The NMME [7] represents
a multi-agency supported effort for intraseasonal to interannual prediction experiment.
A number of research groups in North America have been providing outputs from their
hindcasts and real-time forecasts since 2011. The GCMs we use provide a set of monthly
forecasts from 1982 to the present. Predictions are available with a lead time from 9 to
12 months; multiple members are available for each GCM, and here we consider their
ensemble average as representative of a given model.

The response variable is the total number of tropical storms that occur during August
to October of each year, and the predictors are SSTs (true or forecasts) averaged over the
same period (August to October of that year). To be clear, we have data aggregated for
each year and not for each month. The predictors (SSTs) are time varying and capture
the dependency across years; thus, time series models are typically not used in the climate
science literature for this setting. Based on exploratory data analysis, we found the residuals
satisfy the independence assumption reasonably well, so we do not consider time series
models in this work. Some plots for model diagnostics are included in the Supplemental
Material. Each of the five climate models issues a new forecast of SSTs every month, so our
predictors change every month, and in this paper, we focus on monthly forecasts issued
in June, July, and August. The SST forecasts change every month; however, they are all
forecasts of the same quantity: the average true SST during August to October of a given
year.

Because the structure of the data is somewhat complicated, we provide a schematic rep-
resentation in Table 1. In Table 1, Year, TS, and SST denote the calendar year, the count
of tropical storms in the year during August to October, and the average true SST during
August to October of the year, respectively. The averages are obtained from monthly SST
data. The SST forecasts from five climate models are denoted by SSTF1, . . . , SSTF4, SSTF5,
and in this work, we focus on the forecasts issued in June, July, and August. During the
period 1958–1981, only TS and SST (true) are available and denoted with a checkmark
(�). The climate models did not issue forecasts during that period and are unavailable
and denoted with a cross-mark (✗). During the period 1982–2018, TS and SST (true) are
available as before, and most of the SST forecasts are available. However, a few SST fore-
casts are missing in that period because some climate models did not issue forecasts in
all years, which are denoted by cross-marks. In reality, there are two kinds of SSTs that
are used as predictors (Atl and Trop), but we did not show that information in Table 1 for
simplicity.
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Table 1. Schematic presentation of the data.

True Forecasts Issued in June Forecasts Issued in July Forecasts Issued in August

Year TS SST SSTF1 ··· SSTF4 SSTF5 SSTF1 ··· SSTF4 SSTF5 SSTF1 ··· SSTF4 SSTF5

1958 � � ✗ ··· ✗ ✗ ✗ ··· ✗ ✗ ✗ ··· ✗ ✗
1959 � � ✗ ··· ✗ ✗ ✗ ··· ✗ ✗ ✗ ··· ✗ ✗
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
1981 � � ✗ ··· ✗ ✗ ✗ ··· ✗ ✗ ✗ ··· ✗ ✗
1982 � � � ··· � � � ··· � � � ··· � �
1983 � � � ··· � � � ··· � � � ··· � �
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
2011 � � � ··· � ✗ � ··· � ✗ � ··· � ✗
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
2014 � � � ··· ✗ � � ··· � � � ··· � �
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
2018 � � � ··· � � � ··· � � � ··· � �

To accommodate the missing data, we propose a two-level Bayesian regression model.
The top level models the frequency of tropical storms as the response variable with
the predicted and observed SSTs as covariates. The second level models the covariates
via a sequence of regression models. Of the two levels, the top level which relates the
response variable to the covariates is of more interest because our focus is on predic-
tion of the frequency of tropical storms. Previous studies (e.g. Villarini et al. [21]) have
shown that all climate models do not have equally good predictive power. This motivates
us to use a variable selection prior in the top level of the model, that can automati-
cally discriminate covariates, and retain covariates that are supported more strongly by
the data. Mitra and Dunson [11] have developed such a model for linear and binary
regression models. In this work, we extend their approach to a negative binomial regres-
sion model for count data. It is possible to use variable selection priors in both the
top and lower level regression models, but based on the results in Mitra and Dun-
son [11], the gain from such an approach appears to be small compared to the increased
computational burden. Thus, we specify variable selection priors only for the top level.
Based on simulations and the North Atlantic TC data, we illustrate that this model
can provide improved predictive performance compared to some existing models in the
literature.

The organization of this paper is as follows. In Section 2, we provide a brief review of
variable selection in a Bayesian framework. In Section 3, we provide a detailed description
of the model development, prior specification, and posterior computation. In Section 4,
we conduct two simulation studies. The simulation studies examine the predictive perfor-
mance of our Bayesian model in comparison to a hierarchical model [21] under different
scenarios. Through these simulation studies, we also try to answer the following important
question: if a predictor is unavailable/missing for prediction, should we use a fully Bayesian
procedure that includes that predictor or should we use a reduced Bayesianmodel that dis-
cards this predictor? In Section 5, we present results from applying the different methods
to data from North Atlantic tropical storms. In Section 6, we discuss some directions for
future work.
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2. Review of Bayesian approach to variable selection

In this section, we provide a brief introduction to Bayesian model selection and Bayesian
model averaging. For a more detailed review, see Clyde and George [1]. In a Bayesian
framework, models are treated as additional unknown parameters and they are assigned a
prior probability distribution.

In the context of variable selection in regression models, different models repre-
sent different subsets of variables (covariates). Suppose there are p variables. Let γ =
(γ1, γ2, . . . , γp)′ represent a particular subset of these p variables, where γj = 1 if the vari-
able is included in the model and 0 otherwise. For example, a choice of γ = (1, 0, . . . , 0)′
would represent a model with the first covariate only. Each model is encoded by γ , and let
the probability distribution for the observables W be p(W | κγ , γ ) where κγ is a model
specific parameter.

In the Bayesian approach, we assign a prior distribution p(κγ | γ ) to the parameters for
each model and a prior probability, p(γ ) to each model. This prior formulation leads to
the following joint distribution:

p(W, κγ , γ ) = p(W | κγ , γ )p(κγ | γ )p(γ ). (1)

Suppose our goal is to predict a new observation W f , which is assumed to be generated
from the same process that generated the observed dataW. Then the posterior predictive
distribution ofW f under model γ is obtained as

p(W f | γ ,W) =
∫

p(W f , κγ | γ ,W) dκγ =
∫

p(W f | κγ , γ ,W)p(κγ | γ ,W) dκγ

=
∫

p(W f | κγ , γ )p(κγ | γ ,W) dκγ . (2)

The last equality in (2) holds because of the assumption of independence betweenW and
W f , given the model and model specific parameters.

After marginalizing out parameters κγ , conditional on the observed data W, we have
the posterior probability for model γ as

p(γ | W) = p(W | γ )p(γ )∑
γ p(W | γ ) d(γ ) , (3)

where

p(W | γ ) =
∫

p(W | κγ , γ )p(κγ | γ ) dκγ (4)

is called the marginal likelihood of model γ . To measure the importance of a covariate
based on all models, the posterior marginal inclusion probability for the jth covariate is
defined as follows:

p(γ j = 1 | W) =
∑

γ∈�:γ j=1

p(γ | W). (5)

Under Bayesian model averaging, the posterior predictive distribution ofW f is given by

p(W f | W) =
∑
γ∈�

p(W f | γ ,W)p(γ | W), (6)
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which is a mixture of the conditional predictive distributions under each model, with
mixture weights given by the posterior probabilities of models.

Themarginal likelihood in (4) is typically not available in closed form, except for a small
class of models with certain prior structures, like linear regression models with conjugate
priors. When it is available in closed form, posterior computation is greatly simplified. In
most cases, including our negative binomial regressionmodel, the posterior distribution is
not available in closed formand these quantities cannot be computed analytically.However,
we can use aMarkov chainMonte Carlo (MCMC) algorithm to sample approximately from
the posterior predictive distribution and estimate quantities of interest such as the posterior
inclusion probability of a covariate.

3. Bayesian negative binomial regressionmodel withmissing covariates

We first introduce some notation. Let Y denote the n dimensional vector containing the
count of the tropical storms from the the National Oceanic and Atmospheric Adminis-
tration’s (NOAA) National Hurricane Center’s best-track database (HURDAT2) [8]. Let
X = (x0, x1, . . . , xp) denote the n × (p + 1) designmatrix, whose first column is a column
of ones, corresponding to the intercept term. The remaining columns correspond to SSTAtl
and SSTTrop from the climate models, as well as the true SSTAtl and SSTTrop from the Met
Office Hadley Centre [15].

Let M = (m1, . . . ,mp) be the n × p matrix of indicators for the p covariates [9]
denoting whether it is available or missing. Here mij = 1 denotes that xij is observed
and mij = 0 denotes that xij is missing. Let the observed predictor values be denoted
by Xobs = {xij, i = 1, . . . , n, j = 1, . . . , p : mij = 1} and the missing predictor values by
Xmis = {xij, i = 1, . . . , n, j = 1, . . . , p : mij = 0}. Here we assume that the covariates have
been standardized using the observed values to have mean 0 and standard deviation 1 for
the observed part of each covariate. Such standardization converts covariates to the same
scale and leads to ease in prior specification for the regression coefficients.

3.1. Negative binomial regressionmodel

The top level regression model relates the frequency of tropical storms to SSTs as pre-
dictors. Commonly used distributions for modeling count data are Poisson or negative
binomial distributions, both of which have support over the set of non negative integers
{0, 1, 2, . . . }. While using a Poisson model could be a reasonable approach for our data, we
choose the negative binomial distribution because Bayesian posterior computation ismuch
more amenable for a negative binomial regression model with variable selection priors,
using the Pólya Gamma data augmentation approach [14]. Zhou et al. [25] have devel-
oped algorithms for overdispersed count data based on Pólya Gamma data augmentation.
Neelon [12] has extended the model of Pillow and Scott [14] to the zero-inflated case for
spatial and time series data. However, instead of overdispersion our focus in this work is
mainly on Bayesianmodel averaging via variable selection priors in the presence ofmissing
covariates. Note that even though we use a negative binomial model for our data, we put a
prior on the dispersion parameter. So if the data does not exhibit overdispersion, as in our
case, the results are very similar to that under a Poisson regression model. As suggested
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by one reviewer, we have included results for an approximate Poisson regression model for
the tropical storm data set in the Supplemental Materials.

Let Xi denote the (p + 1)× 1 vector of predictors for the ith observation, and let
the corresponding response variable be Yi. Let β be a (p + 1) dimensional vector of
regression coefficients. Then the top level negative binomial regression model is given as
follows:

p(Yi | Xi,β , η) = �(Yi + η)

�(η)Yi!
(1 − πi)

ηπi
Yi , i = 1, 2, . . . n, (7)

where πi = eμi/(1 + eμi), μi = XT
i β , and η > 0 is the dispersion parameter.

We assume a Gaussian prior for the intercept β0 and a spike and slab prior [3] for all
other regression coefficients:

β0 ∼ N (0, λ0)

βj ∼ (1 − ρ) δ0 + ρN
(
0, λj

)
, j = 1, 2, . . . , p,

(8)

where δ0 is a degenerate distribution at zero. This implies that the prior for βj is a mixed
distribution. With probability ρ, βj comes from a Gaussian distribution, and with prob-
ability (1 − ρ), βj is exactly 0. Setting βj = 0, allows the corresponding covariate xj to
be dropped from the model and lead to variable selection. If we let γj be an indica-
tor variable for including the jth predictor xj, such that γj = 1 if xj is included in the
model, and 0 otherwise, then {γj = 0} ≡ {βj = 0}. We set λ0 = 100 to have a reason-
ably diffuse prior for the intercept term. We standardize the covariates and set λj = 1,
as large values of λj in a variable selection prior can lead to favoring the null model,
without any covariates. We choose ρ = 0.5 which leads to a discrete uniform prior on
the space of models γ , giving each model a prior probability of 1/2p. The dispersion
parameter η controls the deviation of the negative binomial distribution from the Pois-
son distribution, where smaller values of η lead to larger variance compared to the Poisson
distribution. If the mean remains fixed and η → ∞, the negative binomial distribution
converges to the Poisson distribution. We assume that η has a uniform prior on the
interval (0, 1000).

3.2. Sequence of linear regressionmodels for covariates

Since the covariates may not be fully observed, we specify a joint distribution for the
predictors in the second level of the model. We adopt the method developed by Mitra
and Dunson [11], where a joint distribution is specified using a series of univariate
models:

p (Xi) = p (xi1)
p∏

j=2
p
(
xij | xi1, . . . , xi(j−1)

)
. (9)
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Specifically, we assume, for i = 1, 2, . . . , n,

xi1 ∼ N
(
θ10,

1
ψ1

)
,

xi2 | xi1 ∼ N
(
θ20 + xi1θ21,

1
ψ2

)
,

...

xip | xi1, . . . , xi(p−1) ∼ N
(
θp0 + xi1θp1 + . . . ,+xi(p−1)θp(p−1),

1
ψp

)
.

(10)

We put conjugate prior distributions on all regression coefficients and intercepts, i.e.

θj0 ∼ N
(
0,
λj0

ψj

)
θjk ∼ N

(
0,
λjk

ψj

)
, j = 1, . . . , p, k = 1, . . . , j − 1.

(11)

We set λj0 = 100 for the intercept terms. We set λjk = 1 for other regression coeffi-
cients to have the same prior variance on the standardized scale. For the residual precision
parameters we specify the following prior:

ψj ∼ Gamma (c, d) , j = 1, . . . , p, (12)

where we set the shape and rate parameters as c = 1 and d = 1
5 , respectively. This choice

of hyperparameters offers reasonably diffuse priors, when the covariates are standardized.

3.3. Posterior computation

For the aforementioned model and prior specification, the posterior distribution does not
have a closed form. In such cases, a natural option is to use MCMC sampling, where a
Markov chain is constructed so that its stationary distribution is the posterior distribution.
Gibbs sampling, when possible, makes computation relatively straightforward as tuning is
not needed. Gibbs sampling is not immediately applicable to the above posterior distri-
bution, as the full conditional distributions are not available in closed form for a negative
binomial regression model.

The Pólya Gamma data augmentation approach of Pillow and Scott [14] greatly simpli-
fies posterior computation for the negative binomial model with a Gaussian prior on the
regression coefficients. We extend their approach to spike and slab priors for regression
coefficients, where spike refers to the degenerate distribution at 0, and slab refers to a nor-
mal distribution. We give a brief description of this data augmentation method to show
why it simplifies posterior computation.

Following Pillow and Scott [14], the conditional posterior distribution of β can be
expressed as

p (β | η,X,Y) ∝ p (β)
n∏

i=1

(eμi)Yi

(1 + eμi)η+Yi
(13)
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∝ p (β)
n∏

i=1
e
(Yi−η)μi

2

∫ ∞

0
e−

wiμ2i
2 p (wi | η + Yi, 0) dwi, (14)

where the last line follows from an integral identity via which the terms in the negative
binomial likelihood can be expressed as an integral with respect to the density of a Pólya
Gamma random variable wi ∼ PG(η + Yi, 0). Thus conditional on wi, the contribution
from the likelihood terms starts to resemble a likelihood for linear regression with normal
errors.With somemore algebra, Pillow and Scott [14] have shown that the conditional pos-
terior distribution ofβ simplifies to a normal distribution, under a normal prior. Exploiting
this data augmentation framework, we derive full conditional distributions for spike and
slab priors, in closed form.

For our two-level Bayesian model, the posterior distribution of interest is p(η,w,β ,
Xmis, θ ,ψ | Y ,Xobs). Full conditionals are available for all components except η. Thus sam-
ples can be drawn from the above posterior distribution approximately, using a Gibbs
sampler with a Metropolis Hastings (MH) step for drawing η [16]. For the MH step we
use a normal proposal for η centered at the current value, with support over (0, 1000). We
outline the full conditionals for the remaining components in Appendix 1.

4. Simulation study

We perform a simulation study to investigate the performance of the Bayesian model in
comparison to the existing hierarchical model of Villarini et al. [21]. We first review the
different methods that were considered in that paper.

4.1. Review of Villarini et al. [21]

Villarini et al. [21] noted that not all climatemodels (GCMs) have similar predictive power.
They considered various kinds of weighting schemes to combine the forecasts of SSTs from
different climate models. They first used a Poisson regression to model the count of trop-
ical storms based on the true/observed Atlantic sea surface temperatures (SSTAtl) and the
tropical mean sea surface temperatures (SSTTrop), respectively. Maximum likelihood esti-
mation was used and suppose the MLE of the 3 × 1 vector β is denoted as β̂O, where O
in the suffix denotes that this regression coefficient was estimated based on the ‘observed’
SSTs.

In terms of forecasts, the true SSTs during the upcoming tropical storm season are not
available, because they depend on a future event. But forecasts of these two covariates are
available from six climate models. The simplest method is to take an average over the fore-
casts by the six climate models, and plug those averaged predictors in a Poisson regression
model with regression parameter β̂O. There is a weighted average version of this Poisson
regressionmodel which weights the forecasts from different climate models, based on how
well they predict the real SSTs.

The final model considered by Villarini et al. [21] is a mixture of six Poisson regression
models, with mixture components corresponding to the six climate models. The weight
for each climate model is taken as 1/RMSE, where RMSE is the root mean squared error in
predicting the response variable for that climate model. Weights are normalized over the
six climatemodels to sum to 1. For prediction, the Poissonmean parameter of each climate



2022 X. LI ET AL.

model is taken as exp(XT
GCMβ̂O), whereXGCM is theGCM specific forecast of SSTs. Among

the different weighting schemes, no method was always the best, but this mixture model,
called the hierarchical model, seemed to have the best performance overall.

The hierarchical model has a similar flavor to Bayesian model averaging, since predic-
tions are made using a mixture of models and model probabilities are related to accuracy
in prediction. Since the mixture weights and parameters are known, sampling from this
model can be done by independentMonte Carlo sampling. However, it has twomain draw-
backs. It uses the observed SSTs for estimation (β̂O) but uses the forecasts of these SSTs for
prediction. The Poisson mean parameter exp(XT

GCMβ̂O) used for each mixture compo-
nent can lead to a mismatch and affect predictions, if the forecasts of SSTs are not good
predictors of the real SSTs. The second drawback is that the predictive distribution for the
hierarchical model assumes that the true value of β is known and equal to the MLE, β̂O.
This can underestimate uncertainty. Since the hierarchical model ignores the uncertainty
in the estimation of parameters, the predictive distribution under it boils down to amixture
of Poisson regressionmodels, with completely knownmixture weights and knownmixture
specific parameters (Poisson means). As a result, independent Monte Carlo sampling can
be used to draw samples from the predictive distribution and prediction sets can be formed
based on those samples.

4.2. Data generation

For the North Atlantic tropical storms, we have data on the frequency of storms (response
variable) and observed SSTs from 1958–2018, from the HURDAT2 database [8]. However,
the forecasts of SSTs from six GCMs from the North AmericanMulti Model Ensemble [7],
are available from 1982-2018. This means the hierarchical model which uses the observed
SSTs can use roughly twice the number of observations compared to the Bayesian mod-
els developed in this work. Thus, we design a simulation study which maintains a similar
structure, to enable a fair comparison of different procedures.

We generate data sets of 150 observations. For each of the simulated data sets, we
generate the covariates from a multivariate normal distribution with mean vector μ and
covariance matrix �:

X ∼ MVN

⎛⎜⎜⎜⎜⎝μ =

⎛⎜⎜⎝
μ1
μ2
. . .

μp

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
. . .

0

⎞⎟⎟⎠ , � =

⎛⎜⎜⎜⎜⎝
σ 2
1 σ12 . . . σ1p

σ12 σ 2
2

...
...

. . . σ(p−1)p
σ1p . . . σ(p−1)p σ 2

p

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ,

where p = 12, σi2 = 1, for i = 1, . . . , 12, and the off-diagonal elements of � are set as
σ12 = 0.7, σ13 = 0.9, σ14 = 0.7, σ23 = 0.6, σ24 = 0.7, σ34 = 0.7, and σij = 0.5 elsewhere.

This structure tries to mimic the real data to a certain extent, but in a somewhat more
simplified setting. The real data in Section 5 also has p = 12 covariates, which includes
SST forecasts from 5 GCMs and the true SSTs. Since one of the six GCMs is known to
have consistently poor predictive performance [21], we focus on the 5 remaining GCMs
in this work. Here the first two covariates are assumed to play the role of the real/observed
SSTs, (SSTAtl and SSTTrop), and the next two covariates resemble the forecasts of the same
quantities from the strongest climate model in the real data.
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In our application, there is no overdispersion so a Poisson regressionmodel seemsmost
reasonable for generating the counts in the simulation study.Wedeveloped a negative bino-
mial regression model mainly for computational convenience. But the added flexibility to
account for overdispersion could be useful in other applications.

We generate an outcome, Yi, using a Poisson regression model with mean exp (XT
i β),

and consider the following two scenarios:

(1) Scenario 1: β = (1.8, 0.4,−0.2, 0.35,−0.25, 0, . . . , 0)
(2) Scenario 2: β = (1.8, 0.5,−0.2, 0, . . . , 0)

Scenario 1 assumes that the response variable is generated using the pair of true SSTs and
a pair of strong SST forecasts. Scenario 2 assumes that the response variable is generated
solely by the true SSTs. While Scenario 2 seems more plausible, Scenario 1 is closer to
what we find in the real data. One possible explanation is that while it is known that a
difference in SSTs in the tropical Atlantic and global tropics is a driving force for formation
of storms, there are many other factors that are not accounted for by the model in Scenario
2. The GCM forecasts themselves come from climate models that try to model the physical
processes that affect SSTs. So it is possible that the forecasts are systematically capturing
other factors that are also related to the formation of storms.

For each simulated data set, we have 150 observations. We assume that the first two
predictors x1 and x2 that represent the real SSTs, are only accessible to the hierarchical
model for the first 50 observations. The other predictors x3 − x12 are not accessible to any
method, for these first 50 observations, to indicate the fact that the climate models did not
issue forecasts for the initial period in our real data set. We split the next 100 observations
into two equal halves. The middle 50 observations of the entire 150, are accessible to all
methods (Bayesian and hierarchical) and used for estimation. The final 50 observations
are used for prediction to compare methods. For prediction, we treat x1 and x2 as missing,
to represent that the true SSTs will not be available when making forecasts. We use the
same prior hyperparameters that were described in the preceding section. We conduct the
Bayesian analysis using the package R2jags in R.

4.3. Missing covariates for prediction

If our main goal is prediction and some of the covariates are missing/unobserved at the
time of prediction, one can envision using two approaches for dealing with the missing
covariates in a Bayesian framework:

(1) Method 1: Retain all covariates in the model; sample the unobserved covariates
from their predictive distribution; and marginalize over them using Monte Carlo
integration.

(2) Method 2: Drop all covariates that are unavailable for prediction and consider poste-
rior computation with a reduced model.

We generate 100 data sets under Scenarios 1 and 2. Each data set is analyzed using the (i)
hierarchical model, (ii) a Bayesian model without missing covariates (best case scenario),
(iii)Method 1, and (iv)Method 2. For the Bayesianmethods, we run theMCMC algorithm
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for fivemillion iterations and discard the first 20,000 samples as burn in. Samples are drawn
from the hierarchical model using independent Monte Carlo sampling, with same sample
size of five million.

4.4. Results and analysis

The results under Scenarios 1 and 2, averaged over 100 data sets, are presented in Tables 2
and 3. All results in these Tables are related to the predictive distribution of the response
variable. Because the posterior distribution can be skewed, the median of the predictive
distribution is used as a robust estimate for point estimation. Its accuracy in predicting the
response variable is evaluated using correlation coefficients (between the true response
variable and its point estimate), RMSE, and mean absolute error (MAE). For assessing
uncertainty, we construct two kinds of prediction sets. Prediction sets with approximately
90% posterior probability are constructed with end points as 5th and 95th percentiles of
the predictive distribution. These are referred to as Equal-tailed sets. We also construct
prediction sets using HPD (highest posterior density) regions, which could give smaller
sets. Since smaller sets with good coverage are desirable, we look at the cardinality of the
90% prediction sets for the different methods, and denote it as size in Tables 2 and 3. For
this particular application, frequentist coverage is of interest, so we also assess that.

Based on the results reported in Tables 2 and 3, the RMSE and MAE of the Bayesian
methods tend to be less than that of the hierarchical method. The Bayesian methods also
have reasonably good frequentist coverage with smaller size than the hierarchical method.
The difference between Methods 1 and 2 is negligible in terms of point estimates, with
very similar RMSE andMAE. Method 1 which retains all variables tends to produce larger

Table 2. Simulation Scenario 1: Results related to the predictive distribution of the response variable,
under Scenario 1, when the first 4 covariates (representing real and GCM SSTs) are included in the true
Poisson regressionmodel. Method 1 retains all covariates; Method 2 discards the covariates withmissing
values. Results are averaged over 100 simulated data sets.

Coverage Size

Method Cor.Pearson Cor.Spearman RMSE MAE Equal-tailed HPD Equal-tailed HPD

Hierarchical 0.52 0.49 3.76 2.81 0.95 0.94 17.33 14.64
No missing 0.74 0.70 3.00 2.27 0.93 0.91 10.27 9.65
Method 1 0.69 0.66 3.24 2.44 0.94 0.92 11.18 10.42
Method 2 0.70 0.67 3.18 2.40 0.91 0.90 10.22 9.48

Table 3. Simulation Scenario 2: Results related to the predictive distribution of the response variable,
under Scenario 2,when only the first 2 covariates (representing real SSTs) are included in the true Poisson
regressionmodel. Method 1 retains all covariates; Method 2 discards the covariates with missing values.
Results are averaged over 100 simulated data sets.

Coverage Size

Method Cor.Pearson Cor.Spearman RMSE MAE Equal-tailed HPD Equal-tailed HPD

Hierarchical 0.31 0.29 3.46 2.66 0.94 0.93 14.00 12.65
No missing 0.66 0.61 2.74 2.11 0.94 0.92 9.88 9.28
Method 1 0.56 0.52 3.04 2.33 0.93 0.91 10.83 10.11
Method 2 0.56 0.53 3.03 2.33 0.92 0.89 9.92 9.31
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Figure 1. Scenario 1: Notched box plots showing RMSE/MAE of eachmethod; results are shown for 100
data sets.

Figure 2. Scenario 2: Notched box plots showing RMSE/MAE of eachmethod; results are shown for 100
data sets.

sets than Method 2, which discards predictors with missing values during prediction. All
methods have frequentist coverage close to 90%.

To get an idea of the variability of the results across different data sets, notched box
plots [10] are shown in Figures 1 and 2. These are similar to traditional box plots with
additional information provided by the notches around the medians, for each box. The
notches provide an informal way to test whether the true (population) medians are equal
or not. If the notches of two box plots do not overlap, it indicates the true medians are
different. The notches for the hierarchical model do not overlap with notches of any of
the Bayesian methods, suggesting that the Bayesian methods have substantially improved
RMSE andMAE under both scenarios. As expected, the Bayesianmethod without missing
data has the smallest RMSE and MAE.

To have a better understanding of Methods 1 and 2, we examine their estimates of
posterior inclusion probabilities and regression coefficients, under Scenarios 1 and 2,
reported in Tables 4–5 and Tables 6–7, respectively. The posterior inclusion probabili-
ties are the same under Method 1 and the case with no missing observations, because
they have identical posteriors. In Scenario 1, covariates 1–4 are included in the true
model. Method 2 discards covariates 1–2, and thus covariates 3–4, especially 3 seems to
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Table 4. Scenario 1: Estimates of posterior inclusion probabil-
ities of 12 covariates; covariates 1–4 were included in the true
model; values> 0.75 are highlighted.

Predictors Method 1 Method 2 No Missing

1 0.67 0.67
2 0.52 0.52
3 0.70 1.00 0.70
4 0.67 0.84 0.67
5 0.10 0.12 0.10
6 0.10 0.11 0.10
7 0.10 0.11 0.10
8 0.10 0.10 0.10
9 0.09 0.10 0.09
10 0.12 0.13 0.12
11 0.12 0.12 0.12
12 0.12 0.11 0.12

Table 5. Scenario 1: True and estimated values of regression coefficients β .

Method 1 (Retains covariates 1 and 2) Method 2 (Discards covariates 1 and 2)

Predictors True value Mean Mean

Intercept 1.80 1.80 1.81
1 0.40 0.32 –
2 −0.20 −0.14 –
3 0.35 0.32 0.57
4 −0.25 −0.20 −0.25
5 0.00 0.00 0.00
6 0.00 0.00 0.00
7 0.00 0.00 −0.01
8 0.00 0.00 0.00
9 0.00 0.00 0.00
10 0.00 0.00 0.00
11 0.00 0.00 0.00
12 0.00 0.00 −0.04

be doing double duty to compensate for missing covariate 1, as evident from Tables 4–5.
The regression coefficient for covariate 3 seems to compensate for both 1 and 3. A similar
phenomenon can be seen in Tables 6–7 under Scenario 2. In Scenario 2 covariates 1–2 are
included in the true model. Here covariate 3 (strongly positively correlated with covari-
ate 1) seems to compensate for missing covariate 1. This partly explains why discarding
covariates withmissing values during prediction, tends to do equally well as retaining those
covariates.

A natural question is how sensitive the results are to the choice of prior hyperparam-
eters. Thus, in addition to the priors specified in 3.1 and 3.2, we consider the choice of
λj = 100, λjk = 100, and a gamma prior with shape parameter 2 and inverse scale (rate)
parameter 1/10 on ψj. The results are given in Appendix 2. As summarized in Tables A1
and A2, there is a negligible difference in the point estimates; however there is some
difference in the prediction sets which tend to get larger, due to the priors being more
diffuse in the present setting. Overall, the posterior does not seem very sensitive to these
choices.
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Table 6. Scenario 2: Estimates of posterior inclusion probabili-
ties of 12 covariates; covariates 1 and 2 were included in the true
model; values> 0.75 are highlighted.

Predictors Method 1 Method 2 No Missing

1 0.89 0.89
2 0.48 0.48
3 0.27 0.97 0.27
4 0.14 0.15 0.14
5 0.09 0.10 0.09
6 0.10 0.13 0.10
7 0.11 0.11 0.11
8 0.11 0.13 0.11
9 0.10 0.11 0.10
10 0.12 0.13 0.12
11 0.11 0.12 0.11
12 0.12 0.14 0.12

Table 7. Scenario 2: True and estimated values of regression coefficients β .

Method 1 (Retains covariates 1 and 2) Method 2 (Discards covariates 1 and 2)

Predictors True value Mean Mean

Intercept 1.80 1.80 1.82
1 0.50 0.39 –
2 −0.25 −0.12 –
3 0.00 0.03 0.32
4 0.00 0.00 −0.01
5 0.00 0.00 0.01
6 0.00 0.00 0.00
7 0.00 0.00 0.01
8 0.00 0.00 0.00
9 0.00 0.00 0.01
10 0.00 0.00 0.00
11 0.00 0.00 0.00
12 0.00 0.00 0.00

5. Illustration of themethods with the north atlantic tropical storms data set

Wehave data on the frequency of tropical storms, tropical Atlantic and tropical mean SSTs,
for the period 1958–2018. TC activity occurs during August to October and SSTs are aver-
aged over this period to serve as predictors in our model. We consider forecasts of SSTs
for 1982–2018, from five climate prediction systems which are part of the NMME. The
Bayesian models use data from 1982–2018, for all variables, as the climate model forecasts
do not exist prior to 1982. The non Bayesian hierarchical model, is set up in such a way,
that it uses data from 1958–2018 for estimating regression coefficients.

Data from 1982–2010 were used as a testbed when the climate prediction systems were
developed. Thus, we focus on the later period 2011–2018 for prediction. Forecasts of SSTs
are issued every month, from 9 to 2 months before the hurricane season. Here we focus
on June, July, and August as initialization months, as the forecasts of SSTs before June can
be rather inaccurate. Given that the size of the data set is not large, we use leave-one-out
predictions for each of the years during 2011–2018. During the period 2011–2018, there
are two years with missing forecasts for two (NASA and CMC2) of the five climate models
used in the analyses. We choose the ordering of covariates, in our second level sequence
of regression models, such that the normality and independence assumptions of errors are
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Table 8. Estimates of marginal posterior inclusion
probabilities of 12 covariates for June and July and 13
covariates for August. Values> 0.75 are highlighted.

Predictor June July August

GFDLA06Atl 0.64 0.85 0.28
GFDLA06Trop 0.16 0.20 0.20
GFDLAtl 0.12 0.10 0.12
GFDLTrop 0.14 0.16 0.26
GFDLB01Atl 0.34 0.35 0.33
GFDLB01Trop 0.17 0.19 0.21
NASAAtl 0.27 0.16 0.16
NASATrop 0.27 0.17 0.20
CMC2Atl 0.09 0.09 0.11
CMC2Trop 0.19 0.13 0.19
OBSAtl 0.24 0.16 0.16
OBSTrop 0.50 0.69 0.66
GFDLA06AtlJuly – – 0.79

Table 9. Results for June.

Coverage Size

Method Cor.Pearson Cor.Spearman RMSE MAE Equal-tailed HPD Equal-tailed HPD

Hierarchical 0.44 0.40 3.14 2.38 0.88 0.88 12.50 12.00
Method 1 0.45 0.34 2.78 2.00 1.00 1.00 13.75 13.13
Method 2 0.37 0.27 2.92 2.25 1.00 1.00 13.50 13.13

Table 10. Results for July.

Coverage Size

Method Cor.Pearson Cor.Spearman RMSE MAE Equal-tailed HPD Equal-tailed HPD

Hierarchical 0.69 0.72 2.98 2.38 1.00 1.00 12.50 12.13
Method 1 0.76 0.82 1.87 1.25 1.00 1.00 14.13 13.38
Method 2 0.71 0.70 2.00 1.50 1.00 1.00 13.50 13.13

Table 11. Results for August.

Coverage Size

Method Cor.Pearson Cor.Spearman RMSE MAE Equal-tailed HPD Equal-tailed HPD

Hierarchical 0.65 0.68 2.92 2.50 1.00 1.00 12.00 11.38
Method 1 0.87 0.93 1.77 1.38 1.00 1.00 15.25 13.88
Method 1 (added) 0.85 0.97 1.50 1.25 1.00 1.00 15.00 13.88
Method 2 0.63 0.69 2.29 1.75 1.00 1.00 15.13 13.75
Method 2 (added) 0.78 0.73 1.80 1.25 1.00 1.00 14.75 13.50

reasonable. The names of the response variables and covariates used in the analyses are
provided in Appendix 3.

For the Bayesian methods, the MCMC sampling algorithm is run for five million itera-
tions after discarding the first 20,000 samples as burn in. The hierarchical model is run for
five million iterations. The same prior hyperparameters used in the simulation studies are
applied to this data set. Analysis is done for eachmonth separately. Note that the covariates
(GCM SSTs) change across months because forecasts of true SSTs are issued every month
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by the climate prediction systems. However, the true SSTs and the count of tropical storms
during a hurricane season, for a given year, do not change acrossmonths. In other words, in
each monthly analysis, the same response variable (annual count of tropical storms during
a hurricane season) is being predicted, but a new set of covariates (GCM SSTs) is used for
each month. Thus, if a covariate is deemed to be important in a given month, say July, it is
retained in the Bayesian model for the next month, August, because important covariates
from earlier months may improve predictions.

Table 8 shows themarginal posterior inclusion probability for each covariate, bymonth,
which can be used to determine whether a covariate is important or not. Under a discrete
uniform prior for the model space, the prior inclusion probability of each covariate is 0.5.
For testing γj = 1 (jth covariate is included) versus γj = 0 (jth covariate is excluded), the
Bayes factor p(γj=1|Y , Xobs)/p(γj=0|Y , Xobs)

p(γj=1)/p(γj=0) can be used. A value of the Bayes factor greater
than 3 provides positive evidence against γj = 0. The Bayes factor is larger than 3 if the
corresponding marginal posterior inclusion probability is larger than 0.75. Thus we use
0.75 as the threshold for retaining a covariate in the model for the next month.

It is well known that under high collinearity among covariates, marginal inclusion
probabilities of correlated covariates can sometimes be misleadingly low, even though the
covariates are strongly associatedwith the response variable [4]. So, there is a danger of con-
cluding the covariates are not needed, when in fact they are all associated with the response
variable. Ghosh and Ghattas [4] noted that such an erroneous conclusion can usually be
avoided by also considering the Bayes factor BF(HA:H0), where H0 corresponds to the
model which only contains the intercept and HA is the complement of H0. All covariates
are correlated in our data, and the marginal posterior inclusion probabilities for most of
the variables are lower than 0.75, so we also calculate the Bayes factor BF(HA:H0) for each
month. The Bayes factors are 30.403 for June, 60.806 for July, and 40.537 for August. Since
the Bayes factor for July is substantially larger than June and August, it seems reasonable to
not add any variables from June to July, but add important variables from July to August.
We add the GFDLA06Atl from July to August as it has a marginal posterior inclusion prob-
ability of 0.85. With this added variable, the Bayes factor BF(HA:H0) for August increases
to 60.798. The results with this additional covariate for August are denoted by ‘(added)’ in
Table 11.

For comparison, both approaches for handling missing covariates are presented:
Method 1 retains all covariates andMethod 2 discards covariates withmissing/unobserved
values in the year of prediction. The results summarized in Tables 9–11 show that, over-
all, the Bayesian methods (1 and 2) give improved predictive performance compared to
the hierarchical model [21]. Adding the GFDLA06atl covariate from July to the model
in August (‘(added)’ in Table 11) leads to some improvement in RMSE and MAE. The
(average) size of the prediction set tends to be larger than the hierarchical method.

A visual representation of these results is provided in Figure 3. Based on Figure 3,
all methods have the largest prediction errors in the years 2012 and 2018. In these two
years, the point estimates corresponding to the Bayesianmethods with the ‘added’ variable
approach, improve from June to July and retain the improvement in August. The hierar-
chical model tends to underestimate the uncertainty compared to the Bayesian methods.
For example, in 2012, the upper limit of the 90% prediction set for the hierarchical model,
is lower than the true count of tropical storm in June, and it coincides with the true count
in July and August.
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Figure 3. Top panel: Plots showing the observed and predicted (based on medians) counts of tropi-
cal storms over 2011–2018. Bottom panel: Plots showing the observed counts of tropical storms over
2011–2018, and endpoints of associated 90% prediction (HPD) sets.

6. Discussion and future work

In this paper, we have proposed a Bayesian negative binomial regression model that can
incorporate missing covariates and variable selection uncertainty. This model was primar-
ily developed to propose a fully Bayesian alternative to the hierarchical model of Villarini
et al. [21]. Based on simulations and the North Atlantic tropical storm data set, we have
shown that the Bayesian model can lead to better predictive performance.

We alsomade an attempt to answer an interesting question, whether we should retain or
discard predictors which are missing at the time of prediction. In the set up of our model,
we found both methods (retaining or discarding) perform similarly in terms of prediction
using point estimates. However, the method that retained all predictors had larger predic-
tion sets with somewhat higher frequentist coverage. Based on our results, predictions with
a reduced model can work fairly well and is somewhat less computationally demanding.
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For example, the approximate running times needed to fit the model and predict for a sin-
gle year for the real data, are 2.6 hours, 1.6 hours, and 1 second, for Methods 1 and 2, and
the hierarchical model, respectively, on the ARGON cluster at The University of Iowa.

In this work, we have implicitly assumed that the missing data are missing at random
(MAR), that is the distribution of the missing data mechanism does not depend on the
values of the missing data. We think this is a reasonable assumption about the missing
pattern in our data. We have also assumed that the parameters governing the distribution
of the missing data mechanism are independent of the parameters in the observed data
likelihood. This leads to an ignorable missing data mechanism for Bayesian inference and
inference can be done based on the observed data likelihood and prior distributions.

Although the Bayesian methods are more time consuming, running an algorithm for
2–3 hours, once per month (when forecasts of SSTs are issued) does not seem daunting.
Nevertheless, in the future, we will explore alternative methods that are faster, and try to
strike a balance between the hierarchical model and the Bayesian methods in terms of
speed and accuracy. In this paper, our focus has been on predicting the count of tropi-
cal storms, but several other response variables are also available, such as the number of
hurricanes, and variables that measure the duration and intensity of the storms [21]. One
direction of future research is to model the response variables in a multivariate regres-
sion model framework, that also incorporates variable selection uncertainty and missing
covariates.
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Appendices

Appendix 1. Full Conditionals
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λjk

))−1

p
(
ψj | −) = Gamma

⎛⎝ψj;
n + j
2

+ c,
1
2

⎛⎝ n∑
i=1

⎛⎝xij − θj0 −
j−1∑
h=1

xihθjh

⎞⎠2

+
j−1∑
k=0

θ2jk

λjk
+ 2d

⎞⎠⎞⎠ (A5)

Appendix 2. Sensitivity to Prior Hyperparameters

Table A1. Simulation Scenario 1 Under λj = 100, λjk = 100, and a Gamma (2, 1/10) prior forψj :
Results related to the predictive distribution of the response variable, under Scenario 1, when the first 4
covariates (representing real and GCM SSTs) are included in the true Poisson regression model. Method
1 retains all covariates; Method 2 discards the covariates with missing values. Results are averaged over
100 simulated data sets.

Coverage Size

Method Cor.Pearson Cor.Spearman RMSE MAE Equal-tailed HPD Equal-tailed HPD

Hierarchical 0.52 0.49 3.76 2.81 0.95 0.94 17.33 14.63
No missing 0.73 0.69 3.03 2.29 0.93 0.91 10.38 9.78
Method 1 0.69 0.65 3.21 2.40 0.94 0.92 11.36 10.66
Method 2 0.71 0.68 3.11 2.33 0.92 0.91 10.35 9.68

Table A2. Simulation Scenario 2 Under λj = 100, λjk = 100, and a Gamma (2, 1/10) prior for
ψj : Results related to the predictive distribution of the response variable, under Scenario 2, when the
first 2 covariates (representing real SSTs) are included in the true Poisson regression model. Method 1
retains all covariates; Method 2 discards the covariates with missing values. Results are averaged over
100 simulated data sets.

Method Cor.Pearson Cor.Spearman RMSE MAE Coverage Size

Method Cor.Pearson Cor.Spearman RMSE MAE Equal-tailed HPD Equal-tailed HPD

Hierarchical 0.31 0.29 3.46 2.66 0.94 0.93 14.00 12.65
No missing 0.65 0.60 2.78 2.14 0.94 0.93 10.11 9.78
Method 1 0.56 0.52 3.04 2.33 0.93 0.91 10.98 10.38
Method 2 0.55 0.52 3.02 2.32 0.92 0.89 10.13 9.82

Appendix 3. TheModels Used in the Tropical Storm Example

In this section, we provide the list of models used in the analysis of the tropical storm data set. The
covariates for the second level linear regression models were chosen after careful examination of
the residual plots, to check the assumptions of normality and independence of residual errors. The
conditional regression models for the response variable and each missing predictor, for Method 1,
are summarized in Tables A3–A5, for June, July, and August. The same models were also used for
Method 2, except in June, when themodel forCMCAtl had the predictorsGFDLATrop andGFDLTrop.
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Table A3. Models for June.

Response

TS OBSAtl OBSTrop NASAAtl NASATrop CMCAtl CMCTrop
intercept intercept intercept intercept intercept intercept intercept

GFDLAAtl GFDLAAtl GFDLAAtl GFDLAAtl GFDLAAtl
GFDLBAtl GFDLBAtl GFDLBAtl GFDLBAtl
GFDLAtl GFDLAtl GFDLAtl GFDLAtl GFDLAtl
GFDLATrop GFDLATrop GFDLATrop GFDLATrop
GFDLBTrop GFDLBTrop GFDLBTrop GFDLBTrop
GFDLTrop GFDLTrop GFDLTrop GFDLTrop GFDLTrop GFDLTrop
OBSAtl OBSAtl OBSAtl OBSAtl OBSAtl OBSAtl
OBSTrop OBSTrop OBSTrop OBSTrop OBSTrop
NASAAtl NASAAtl NASAAtl NASAAtl
NASATrop NASATrop NASATrop
CMC2Atl CMC2Atl
CMC2Trop

Table A4. Models for July.

Response

TS OBSAtl OBSTrop CMC2Atl CMC2Trop

intercept intercept intercept intercept intercept
GFDLAAtl GFDLAAtl GFDLAAtl GFDLAAtl
GFDLBAtl GFDLBAtl GFDLBAtl GFDLBAtl
GFDLAtl GFDLAtl GFDLAtl GFDLAtl
NASAAtl NASAAtl NASAAtl NASAAtl
GFDLATrop GFDLATrop GFDLATrop GFDLATrop
GFDLBTrop GFDLBTrop GFDLBTrop GFDLBTrop
GFDLTrop GFDLTrop GFDLTrop GFDLTrop GFDLTrop
NASATrop NASATrop NASATrop NASATrop
OBSAtl OBSAtl OBSAtl
OBSTrop OBSTrop OBSTrop
CMC2Atl CMC2Atl
CMC2Trop

Table A5. Models for August.

Response

TS OBSAtl OBSTrop CMC2Atl CMC2Trop

intercept intercept intercept intercept intercept
GFDLAAtl GFDLAAtl GFDLAAtl GFDLAAtl
GFDLBAtl GFDLBAtl GFDLBAtl GFDLBAtl
GFDLAtl GFDLAtl GFDLAtl GFDLAtl
NASAAtl NASAAtl NASAAtl NASAAtl NASAAtl
GFDLATrop GFDLATrop GFDLATrop NASAAtl
GFDLBTrop GFDLBTrop GFDLBTrop GFDLBTrop
GFDLTrop GFDLTrop GFDLTrop GFDLTrop GFDLTrop
NASATrop NASATrop NASATrop NASATrop
OBSAtl OBSAtl OBSAtl OBSAtl
OBSTrop OBSTrop OBSTrop
CMC2Atl CMC2Atl
CMC2Trop
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