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ABSTRACT
Selecting the number of change points in segmented line regres-
sion is an important problem in trend analysis, and there have been
various approaches proposed in the literature. We first study the
empirical properties of several model selection procedures and pro-
pose a new method based on two Schwarz type criteria, a classical
Bayes Information Criterion (BIC) and the one with a harsher penalty
thanBIC (BIC3). Theproposed rule is designed touse the formerwhen
effect sizes are small and the latter when the effect sizes are large
and employs the partial R2 to determine the weight between BIC
and BIC3. The proposed method is computationally much more effi-
cient than the permutation test procedure that has been the default
method of Joinpoint software developed for cancer trend analysis,
and its satisfactory performance is observed in our simulation study.
Simulations indicate that the proposed method performs well in
keeping the probability of correct selection at least as large as that of
BIC3, whose performance is comparable to that of the permutation
test procedure, and improves BIC3 when it performs worse than BIC.
Theproposedmethod is applied to theU.S. prostate cancer incidence
and mortality rates.
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1. Introduction

An important question in trend analysis is to determine if there are changes in the trend,
their locations, and the direction and magnitude of the trend changes. To identify changes
in cancer incidence and mortality trends, Kim et al. [11] considered a piecewise linear
regression model to describe continuous changes in cancer trends and proposed the per-
mutation procedurewhere the permutation tests were sequentially conducted to determine
the number of changes in the trend, that is, the number of segments or change-points.
Another model selection procedure widely used in practice is the approach based on
information criteria. Akaike Information Criterion (AIC) of Akaike [1] and Bayes (or
Bayesian) Information Criterion (BIC) proposed by Schwarz [24] are the two classical
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information-based selection criteria, and various types of modifications have been pro-
posed in the literature. In the context of change-point problems, Liu et al. [18], Pan and
Chen [23], Zhang and Siegmund [39] and Lee and Chen [16] proposed modified Schwarz
type criteria and studied their empirical and asymptotic properties. For further details on
selecting the number of change-points, see Haccou and Meelis [9] and Bai and Perron [2]
for hypothesis testing approaches, and Yao [38], Tiwari et al. [29], Wu [37], Lu et al. [19],
Hannart and Naveau [10], Ciuperca [5], and Ninomiya [22] for various approaches based
on information-based criteria.

The model selection method proposed in Kim et al. [11] and related inference pro-
cedures are implemented in Joinpoint software, developed by a team at the U.S. National
Cancer Institute (NCI) and first released in 1998. The permutation test procedure has been
the default model selectionmethod of Joinpoint software and various BIC type procedures
have been implemented in later versions to determine the number of change-points, called
joinpoints in Kim et al. [11]. The permutation test procedure has been successfully applied
in cancer trend analysis, where our goal is often to find a most parsimonious model, but
its main drawback was the intensive computation needed in a series of resampling tests,
especially for long series data. Various BIC type methods have been introduced as more
efficient model selection procedures, but detailed comparisons of these model selection
procedures in the context of segmented regression have not been available in the literature.
More importantly, a need to develop an automated procedure to internally determine a
selection method has arisen to assist users for more efficient model selection.

Figure 1 shows prostate cancer incidence and mortality rates during the period of
1975–2016 for males in the United States. The incidence rates are obtained from the
Surveillance, Epidemiology, andEndResults (SEER) population-based cancer registry pro-
gram of the U.S. NCI, and Figure 1 shows the delay-adjusted incidence rates based on
the nine SEER registries that cover approximately 9.4% of the U.S. population [36]. The
U.S. mortality rates presented in Figure 1 are from the U.S. National Center for Health
Statistics. In 2012, the U.S. Preventive Services Task Force concluded that, although there
are potential benefits of screening for prostate cancer, these benefits do not outweigh the
expected harms enough to recommend routine screening (D recommendation) [8,21].
Probably as a result of this recommendation, the proportion of men getting a Prostate Spe-
cific Antigen (PSA) test fell in 2013 from the 2010 proportion [31]. There was an intense
interest in the impact of this fall in PSA testing on prostate cancer incidence andmortality,
and the data in Figure 1 show signs that changes are occurring, but objective criteria are
needed.

As to be shown in the simulation study and the example section, the numbers of the seg-
ments estimated by various methods are not all equal and the performance of eachmethod
depends on data characteristics. Motivated by such findings, our aim in this paper is to
study the empirical properties of several model selection procedures in joinpoint regres-
sion, the segmented line regression model with continuity constraints, and propose a new
procedure that combines two Schwarz type criteria, BIC and BIC3, based on the character-
istics of data. The proposed data-driven selection procedure will be computationally less
intensive than the permutation procedure, while its performance (in terms of correctly
determining the number of change-points in simulation examples) is competitive as BIC3
that performs similarly as the permutation procedure and it improves BIC3 when the per-
formance of BIC3 is not satisfactory. More specifically, for the cases where the procedures
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Figure 1. Prostate incidence (SEER 9 delay-adjusted) and US mortality rates: 1975–2016.

have practically reasonable power, the new procedure will be shown to perform well in
terms of the probability of correct selection while it controls the over-fitting probability as
the permutation procedure does.

In Section 2, we introduce the joinpoint regressionmodel and summarize several model
selection methods that have been available in Joinpoint software, the permutation test
procedure, BIC, BIC3, and a modified BIC. Section 3 summarizes the simulation study
to compare the performance of these model selection methods and considers a measure
that can guide a data-driven choice of a model selection method. In Section 4, we pro-
pose a weighted BIC that combines BIC and BIC3 based on the data characteristics and
present the results from further simulation studies. Section 5 includes examples, followed
by concluding remarks in Section 6.

2. Model and selection procedures

Consider the n pairs of observations, (x1, y1), . . . , (xn, yn), and the joinpoint regression
model such that for i = 1, . . . , n,

yi = β0 + β1xi + δ1(xi − τ1)
+ + · · · + δκ(xi − τκ)+ + εi,

where a+ = max(a, 0), the τ ’s are unknown joinpoints, κ is the unknown number of join-
points, and the εi are independent and identically distributed errors with mean zero and
variance σ 2. Typically in trend analysis, the xi are the equally spaced time points.

Kim et al. [11] used the least-squares method to fit the model with a given number of
joinpoints, say k, first byminimizing

∑n
i=1(yi − β0 − β1xi − δ1(xi − t1)+ − · · · − δk(xi −

tk))2 at given t = (t1, . . . , tk)′ and then by searching for the minimum sum of squared
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errors over all possible locations of joinpoints t, and proposed the permutation test proce-
dure (Perm) to select the number of joinpoints. Themodel fitting and inference procedures
were implemented in Joinpoint software that has beenwidely used for trend analyses and is
available at theU. S. NCIwebsite [35]. The defaultmethod of Joinpoint to estimate the join-
points at given k, τk = (τ1, . . . , τk)′, is the grid search originally proposed by Lerman [17],
and Joinpoint software provides the confidence intervals of the model parameters and
relevant p-values using both parametric and resampling approaches ([13,14]). The per-
mutation test procedure that has been the default model selection method of Joinpoint
software starts with testing the null hypothesis that there are JPmin joinpoints against the
alternative hypothesis that there are JPmax joinpoints for pre-determined values of JPmin
and JPmax. Then, it conducts the test of JPmin joinpoints versus JPmax − 1 joinpoints if the
null hypothesis is not rejected and proceeds to the test of JPmin + 1 joinpoints versus JPmax
joinpoints otherwise. The procedure repeatedly conducts the test of k0 joinpoints against
k1 joinpoints, where k1 > k0, until we reach to the test of k joinpoints versus k+ 1 join-
points for some k, (JPmin ≤ k < JPmax). The P-value of each test in this multiple testing
procedure is estimated by using the permutation distribution of the F-type statistics under
the null hypothesis because classical asymptotic theory is not applicable. Also, the signifi-
cance level of the test where the null hypothesis states k0 joinpoints is set atα/(JPmax − k0),
which would control the over-fitting probability under α. See Kim et al. [11,15] for further
details.

Bayes or Bayesian Information Criterion (BIC) and amodified version of BIC have been
considered/implemented in later versions of Joinpoint software. The BIC is first proposed
by Schwarz [24] as a large sample version of Bayes procedure, and its basic idea is to choose
the model that maximizes log(Mj) − kj

2 log n, whereMj is the maximized likelihood func-
tion and kj is the dimension for the jthmodel. Under the normal distribution and using that
the number of unknown parameters for the joinpoint regression model with k joinpoints
is 2k + 3, the following BIC can be considered as a classical form of the BIC:

BIC(k) = log
(
RSSk
n

)
+ 2k

n
log n,

where RSSk denotes the residual sum of squares for the model fit with k joinpoints, and
the model that minimizes BIC(k) will be selected. Kim et al. [15] applied BIC in the con-
text of joinpoint regression and their simulation study indicated that BIC is more liberal
(i.e. choose a model with more joinpoints) than the permutation test procedure with an
overall significance level of 0.05. As discussed in Ding et al. [7] and presented in Shao [26]
for a variable selection in linear models, BIC is known to select the model consistently
when the true model belongs to a set of candidate models and is often recommended as
a model selection method in a parametric framework. Zhang and Siegmund [39], how-
ever, noted that ‘the classical BIC does not work well’ in change-point problems where
‘the likelihood functions do not satisfy the required regularity conditions’ and proposed
a modified BIC to detect multiple changes in means of a sequence of random variables.
They noted that the penalty term of their criterion derived by approximating the Bayes
factor reflects one dimension for each mean change and between one and two dimen-
sions for each change-point based on the change-point locations. The penalty term of their
modified BIC for a model with k change-points is ‘maximized when the change-points are
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equally spaced and minimized when the change-points are as close as possible’. Pan and
Chen [23] also indicated that the locations of change-points play a role in assessing the
model complexity and proposed a modification of the traditional BIC that incorporates
the spacing between the change-points. They considered that ‘the model is unnecessarily
complex’ when the change-points are clustered, which is due to some of the parameters
becoming redundant and incorporated an additional penalty corresponding to the loca-
tions of change-points. For multi-phase regression, Liu et al. [18] proposed a modified
information criterion (MIC) with a penalty much harsher than that of the traditional BIC
and the logarithm of the mean squared error as the first term, and proved its consistency
under mild assumptions on non-Gaussian errors.

Motivated by such findings mentioned above, a modified BIC (MBIC) was derived for
the selection of a joinpoint regressionmodel following the similar arguments of Zhang and
Siegmund [39] and implemented in Joinpoint software. The MBIC reflects the adjustment
corresponding to the locations of the joinpoints, and its detail can be found at the U.S.
NCI Joinpoint Help site [34]. Kim and Kim [12] studied the asymptotic properties of these
Schwarz type model selection criteria in selecting the number of change-points in seg-
mented line regression with normally distributed errors. When the neighboring segments
are not constrained to be continuous at the change-point (i.e. the number of parameters
is 3k+ 3 for the model with k change-points) Kim and Kim [12] proved that the num-
ber of change-points estimated by BIC4, defined by BIC4(k) = log(RSSkn ) + 4k

n log n, is a
consistent estimator of the true number of change-points. For the situation where the seg-
ments are assumed to be continuous at the change-point (i.e. the number of parameters is
2k+ 3 for the model with k change-points) they provided empirical evidence that BIC3,
defined by BIC3(k) = log(RSSkn ) + 3k

n log n, performs similarly as MIC of Liu et al. [18]
and is expected to work as a consistent model selection rule. Based on such empirical
properties and that the penalty term of MBIC is asymptotically equivalent to (respectively,
smaller than) 3k

n log n for k greater than or equal to (respectively, smaller) the true number
of joinpoints under some conditions on the spacings of the x’s, BIC3 is also considered in
this paper.

3. Comparison of model selection procedures

Simulation studies were conducted to compare the performance of the model selection
procedures reviewed in Section 2, and the results are summarized in this section. Table 1
summarizes the performance of Perm, BIC, BIC3, and MBIC for various cases. The sim-
ulations were conducted for κ = 1, . . . , 5 with various values of τκ = (τ1, . . . , τκ)′, δκ =
(δ1, . . . , δκ)′ and σ , and the following common setting was used: β0 = 1, β1 = 0.01, n =
30, and x = 1, 2, . . . , 30. This moderate size of the sample, n = 30, was used considering
the number of time points often observed in cancer trend analysis, and the parameter set-
tings are also chosen based on examples in cancer incidence and mortality trend changes.
In the simulation study, data are generated with the ε independent and identically dis-
tributed according to the normal distribution with mean zero and variance σ 2, and the
model selection was conducted with JPmin set as 0 and JPmax set as 5. The number of simu-
lations was 1600, and the number of permutations for the permutation procedure was 319,
which was chosen according to the suggestion of Boos and Zhang [3].
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Table 1. Probability of Correct Selection.

Case (τ1, . . . , τκ ) (δ1, . . . , δκ ) σ Perm MBIC BIC BIC3 WBIC 	∗ min |δi|/σ
κ = 1

1-1-i-a 5 −0.02 0.03 0.379 0.089 0.643 0.456 0.644 8.248 0.67
1-1-i-b 0.01 0.973 0.997 0.863 0.973 0.967 74.231 2

1-2-i-a 10 −0.02 0.03 0.969 0.911 0.864 0.963 0.950 40.593 0.67
1-2-i-b 0.01 0.976 1 0.836 0.963 0.947 365.339 2

1-3-i-a 15 −0.02 0.03 0.976 0.992 0.841 0.966 0.934 62.43 0.67
1-3-i-b 0.01 0.971 1 0.81 0.956 0.939 561.869 2

1-4-i-a 25 −0.02 0.03 0.638 0.259 0.785 0.709 0.837 13.398 0.67
1-4-i-b 0.01 0.974 1 0.849 0.968 0.961 120.578 2

κ = 2

2-1-i-a (10, 20) (0.02, 0.03) 0.03 0.619 0.202 0.744 0.717 0.788 18.471 0.67
2-1-i-b 0.01 0.975 1 0.782 0.95 0.933 166.241 2

2-1-ii-a (−0.02, 0.03) 0.03 0.823 0.338 0.822 0.882 0.884 18.471 0.67
2-1-ii-b 0.01 0.979 0.999 0.791 0.949 0.935 166.241 2

2-2-i-a (5,10) (0.02, 0.03) 0.03 0.057 0.002 0.22 0.083 0.130 2.29 0.67
2-2-i-b 0.01 0.748 0.314 0.81 0.844 0.863 20.606 2

2-2-ii-a (−0.02, 0.03) 0.03 0.082 0.014 0.286 0.113 0.171 2.29 0.67
2-2-ii-b 0.01 0.818 0.477 0.833 0.899 0.905 20.606 2

2-3-i-a (20, 25) (0.02, 0.03) 0.03 0.098 0.009 0.318 0.151 0.207 5.151 0.67
2-3-i-b 0.01 0.954 0.8 0.836 0.951 0.947 46.364 2

2-3-ii-a (−0.02, 0.03) 0.03 0.326 0.006 0.524 0.263 0.384 5.151 0.67
2-3-ii-b 0.01 0.975 0.984 0.824 0.957 0.957 46.364 2

2-4-i-a (10, 15) (0.02, 0.03) 0.03 0.112 0.006 0.351 0.173 0.285 6.31 0.67
2-4-i-b 0.01 0.958 0.807 0.801 0.954 0.944 56.786 2

2-4-ii-a (−0.02, 0.03) 0.03 0.305 0.059 0.558 0.378 0.495 6.31 0.67
2-4-ii-b 0.01 0.973 0.99 0.806 0.957 0.952 56.786 2

κ = 3

3-1-i-a (7, 15, 23) (−0.02,−0.03, 0.04) 0.03 0.211 0.023 0.505 0.287 0.392 7.467 0.67
3-1-i-b 0.01 0.966 0.979 0.76 0.941 0.932 67.2 2

3-1-ii-a (−0.03, 0.04,−0.02) 0.03 0.471 0.043 0.706 0.566 0.567 7.881 0.67
3-1-ii-b 0.01 0.964 0.999 0.741 0.939 0.924 70.933 2

3-2-i-a (10, 20, 23) (−0.02,−0.03, 0.04) 0.03 0.121 0.001 0.313 0.122 0.194 3.922 0.67
3-2-i-b 0.01 0.968 0.893 0.813 0.955 0.944 35.297 2

3-2-ii-a (−0.03, 0.04−0.02) 0.03 0.092 0.003 0.269 0.121 0.129 0.98 0.67
3-2-ii-b 0.01 0.744 0.334 0.76 0.853 0.831 8.824 2

3-3-i-a (7, 10, 20) (−0.02,−0.03, 0.04) 0.03 0.034 0.003 0.199 0.064 0.085 1.772 0.67
3-3-i-b 0.01 0.366 0.071 0.654 0.569 0.574 15.952 2

3-3-ii-a (−0.03, 0.04,−0.02) 0.03 0.156 0 0.371 0.139 0.190 3.988 0.67
3-3-ii-b 0.01 0.957 0.851 0.809 0.951 0.943 35.891 2

κ = 4

4-1-i-a (6, 12, (−0.05, 0.02, 0.03 0.068 0.001 0.263 0.094 0.111 3.97 0.67
4-1-i-b 18, 24) 0.03, 0.04) 0.01 0.946 0.74 0.801 0.946 0.936 35.734 2

4-1-ii-a (−0.02, 0.05, 0.03 0.201 0.001 0.451 0.2 0.230 3.97 0.67
4-1-ii-b -0.04, 0.03) 0.01 0.948 0.84 0.798 0.941 0.933 35.734 2

4-2-i-a (7, 14, (−0.05, 0.02, 0.03 0.033 0.001 0.188 0.051 0.061 3.526 0.67
4-2-i-b 21, 28) 0.03, 0.04) 0.01 0.935 0.768 0.813 0.943 0.933 31.733 2

4-2-ii-a (−0.02, 0.05, 0.03 0.084 0.001 0.237 0.089 0.100 1.983 0.67
4-2-ii-b −0.04, 0.03) 0.01 0.817 0.454 0.797 0.881 0.874 17.85 2

4-3-i-a (3, 10, (−0.05, 0.02, 0.03 0.126 0.001 0.331 0.108 0.131 6.128 0.67
4-3-i-b 17, 24) 0.03, 0.04) 0.01 0.956 0.7 0.779 0.948 0.937 55.152 2

4-3-ii-a (−0.02, 0.05, 0.03 0.067 0.001 0.216 0.086 0.094 0.98 0.67
4-3-ii-b −0.04, 0.03) 0.01 0.432 0.103 0.656 0.564 0.559 8.824 2
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Table 1 lists the probability of correct selection (PCS) by each selection method under
given parameter settings, and the case number ‘k-l-m-a’ indicates the case with ‘k’ join-
points, the joinpoint location setting of ‘l’, the δ setting of ‘m’, and the σ setting of ‘a’.
More cases were considered in our simulation study, but to save a space, Table 1 does not
include the cases whose results imply similar findings as those included in Table 1 as well as
those with κ = 5 where over-fitting is not allowed. The table also includes the values of	∗
and min |δi|/σ , which are the measures of effect sizes, i.e. sizes of slope changes adjusted
for the variability in data, and whose details will be provided below. The full result available
upon request includes 195 cases for κ = 1, 2, 3, 4, and 5 and 159 cases for κ = 1, 2, 3 and
4, and it indicates the followings:

(a) BIC performs better than other procedures when the effect size, measured by |δi|/σ
and/or 	∗, is small, while Perm, BIC3, and MBIC work better to correctly detect
changes of relatively larger effect sizes. When the effect size is large enough to have
the PCS by BIC larger than 0.8 among the 159 cases, the PCS values of Perm and BIC3
are greater than those of BIC in general.

(b) MBIC is most conservative with a tendency to choose a smaller model and works best
when the effect size is very large. In the 16 cases where MBIC has the highest PCS, the
performance of BIC3 and/or Perm is usually satisfactory enough with its PCS larger
than 0.94.

(c) BIC3 is most comparable to Perm, with the median difference of their PCS values
being 0.008 over the 159 differences, PCS(BIC3)-PCS(Perm). When either Perm has
the highest PCS (15 such cases) or PCS(Perm)> 0.7 and PCS(Perm)>PCS(BIC3) (30
such cases), the difference between their PCS values, i.e. PCS(BIC3)-PCS(Perm), is in
the range of -0.043 and -0.003.

(d) The performances of the selection procedures, in terms of PCS, depend on the loca-
tions of the joinpoints, and MBIC seems to depend more heavily, compared to other
selection methods, which is expected from the penalty term of MBIC that reflects the
locations of the joinpoints.

(e) Although not reported in Table 1, BIC showed a tendency to overestimate the number
of joinpoints when the effect size is relatively large, and BIC produced the highest PCS
in most cases with κ = 5, which can be explained by that the over-estimation was not
possible with the maximum number of joinpoints set at 5.

Thus, it would be ideal to use BIC when effect sizes are small and use Perm/BIC3 when
effect sizes are large, but the estimation of effect size depends on the model, i.e. the num-
ber of joinpoints. Our goal in this paper is to develop an automated and computationally
efficient procedure to internally choose one of these selection methods or combine these
methods based on the characteristics of data. Because Perm is computationally intensive
and the performance of MBIC does not seem to be consistent in our simulation studies,
our focus of the study to propose a data-driven selection procedure would be on BIC and
BIC3.

In order to study further details of BIC and BIC3, we note that the probability of correct
selection depends on the effect size, and the following measure of effect size, 	(k), is con-
sidered as a minimum effect size of the model with k joinpoints. This measure is motivated
by the measure on which the power of the test to detect a slope change of δ from a simple
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linear regression model depends. More specifically, consider the test of the null hypothe-
sis that there is no change in the regression mean function, H0 : E(y) = Xβ , against the
alternative hypothesis that there is one joinpoint at known τ ,Ha : E(y) = Xβ + δz, where

y = (y1, . . . , yn)′, β = (β0,β1)
′, z = ((x1 − τ)+, . . . , (xn − τ)+)′, andX =

( 1 x1
...
...

1 xn

)
. And,

consider the F-type statistic,

F = RSS0 − RSSa
RSSa/(n − 3)

,

where RSS0 andRSSa are the residual sums of squares underH0 andHa, respectively.Under
Ha, we see that RSSa/(n − 3) converges to σ 2 and E[RSS0] − E[RSSa] = σ 2 + δ2z′(I −
X(X′X)−1X′)z (See Seber and Lee [25, P 229]) which motivated the use of

	 = δ2z′(I − X(X′X)−1X′)z
σ 2

as an effect size. Now, we consider a sample measure of 	 over the two segments of a
joinpoint regression fit and propose the minimum of those values as the observed effect
size. Suppose that a model with k joinpoints is selected by BIC (or BIC3) for which the
parameters are estimated as τ̂1, . . . , τ̂k, β̂0, β̂1, δ̂1, . . . , δ̂k. For the observations in the i-th
and (i + 1)-st segments, that is, those observations whose x values are in (τ̂i−1, τ̂i+1] where

τ̂0 = min xi − 1 and τ̂k+1 = max xi, call such x’s as xj1+1, . . . , xj2 and let X0 =
( 1 xj1+1

...
...

1 xj2

)
,

zi =
⎛
⎝ (xj1+1−τ̂i)

+

...
(xj2−τ̂i)

+

⎞
⎠, andH0 = X0(X′

0X0)
−1X′

0. Let 	i,i+1 = δ̂2i z
′
i(I − H0)zi/σ̃ 2, where σ̃ 2

is the mean squared error estimated for κ = JPmax and define

	(k) = min
i=1,...,k

	i,i+1.

If k∗ is the true number of joinpoints and 	∗ is the value of 	(k∗) with the true parame-
ter values given for the model with k∗ joinpoints, then the rule to use BIC when 	∗ ≤ 10
and BIC3 when 	∗ > 20 was observed to perform satisfactorily in our simulation study.
This observation is based on the 159 simulation cases with κ = 1, 2, 3 or 4, a part of which
is summarized in Table 1, and the cut-off values of 10 and 20, which can be adjusted to
numbers between 10 and 20, are based on the empirical data shown in Figure 2. Figure 2
presents the PCS values of BIC and BIC3 for the 131 cases where	∗ < 40. For the remain-
ing 28 cases with	∗ ≥ 40, their PCS values by BIC3 were all higher than those of BIC and
so these cases are not included in Figure 2 for a clearer comparison of the results when
	∗ < 40. Note that Figure 2 also includes smoothed curves of the PCS values for each
selectionmethod, BIC and BIC3, which can be helpful in visualizing how the PCS depends
on 	∗. Although 	∗ provides a useful guideline to choose between BIC and BIC3, 	∗ is
not known in practice and the accuracy of its estimation will play an important role in cor-
rectly selecting the model. In the next section, we propose a weighted BIC which combines
BIC and BIC3 based on a measure similar to 	i,i+1 and also include a brief discussion of
the model selection method based on the estimated 	∗.
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Figure 2. Probability of correct selection (PCS) by BIC and BIC3 for 131 cases with the number of
joinpoints, κ = 1, 2, 3, and 4.

4. Weighted BIC

4.1. Definition

In this section, we consider the partial R2 in fitting a model with one joinpoint over the
i-th and (i + 1)-st segments:

R2i,i+1 = {y′
i(I − H0)zi}2

(y′
i(I − H0)yi)(z

′
i(I − H0)zi)

where yi is the vector of the y-values in the i-th and (i + 1)-st segments and H0 and zi
are introduced earlier to define 	i,i+1. We note that R2i,i+1 and 	i,i+1 are related in the
following way:

R2i,i+1 ≈ 1
1 + ni−3

	i,i+1

,

where ni denotes the number of observations in the i-th and (i + 1)-st segments, and
thus R2i,i+1 tends to be large for a situation with a large effect size. Differently from 	i,i+1
(and thus 	(k)) that does not have any specific range, however, 0 ≤ R2

i,i+1 ≤ 1, and this
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motivates us to consider the following weighted BIC (WBIC):

WBIC(k) = log
(
RSSk
n

)
+ (

2 + R2max(k)
) k log n

n
,

where R2max(k) = maxi=1,...,k R2i,i+1. For WBIC, more weight will be given to BIC3 when
effect sizes are larger, while WBIC will be close to BIC when effect sizes are small.

Remark 4.1: The weight used inWBIC, R2max(k), incorporates the locations of joinpoints.
Compared to the penalty term in Equation (5) of Zhang and Siegmund [39], this weight
function depends on the locations of joinpoints in a muchmore complex way, and also the
spacings of the independent variable x as well as the sizes of slope changes play a role in
determining the value of the weight. The larger the effect size, which depends on the sizes
of slope changes and segment lengths, is, the heavier weight is assigned. The weight being
between 0 and 1, it is similar to the modified BIC of Zhang and Siegmund [39] in that the
penalty term of WBIC reflects between one and two dimensions for each joinpoint.

Remark 4.2: When the weighted least squares fitting to handle heteroscedastic errors is
implemented with the appropriately chosen weight matrix W, R2i,i+1 needs to be revised
accordingly: X0, zi, and yi need to be updated withW1/2X0,W1/2zi, andW1/2yi.

4.2. Performance comparison

Further simulations have been conducted to assess the performance of WBIC. The simu-
lations to examine the performance of WBIC were conducted with 5,000 replications and
the results for these cases are summarized in Tables 2 and 3. The PCS values of BIC and
BIC3 used to construct Tables 2 and 3 are obtained with 5,000 replications as well, and they
were very close to those reported in Table 1 based on the 1,600 replications. Considering
that our goal in trend analysis is often to find a most parsimonious model and ‘Perm,’ the
default selection method of Joinpoint software, and BIC3 perform comparably in selecting
a parsimonious model, we investigate the performance of WBIC by comparing the PCS of
WBIC and BIC3. More specifically, our goal is to see whether (i) WBIC performs as well as
BIC3 when BIC3 works better than BIC and (ii) WBIC improves BIC3 when BIC performs
better than BIC3.

The number of cases where PCS(WBIC) > PCS(BIC3) − ζ (i.e.WBIC performs at least
as well as BIC3 allowing a small margin of error of ζ = 0, 0.01, 0.03) is reported accord-
ing to the value range of PCS(BIC3) in Table 2 and for the cases where PCS(BIC3) >

PCS(BIC) in Table 3-(i). Table 3 also reports the number of cases where PCS(WBIC) >
PCS(BIC)+PCS(BIC3)

2 given PCS(BIC3) ≤ PCS(BIC) (i.e. WBIC improves BIC3 when
BIC3 performs worse than BIC). When n = 30, based on 195 and 159 cases as before, the
numbers under the column heading of ‘κ �= 5’ represent the cases for κ = 1, 2, 3, and 4, not
considering the extreme case with κ = 5 where over-fitting is not allowed with JPmax = 5.
Also, the corresponding percentages are reported in parentheses. When BIC3 is perform-
ing well, either with PCS(BIC3) ≥ 0.7 in Table 2 or PCS(BIC3) > PCS(BIC) in Table 3-(i),
the results indicate that WBIC performs well in maintaining the power of BIC3. For the
goal of improving BIC3 when BIC3 performs worse than BIC, it was observed in Table 3-
(iii) that WBIC improves BIC3 by picking up cases where BIC selects the correct model,
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Table 2. Number/Proportion of cases where PCS(WBIC) > PCS(BIC3) − ζ .

PCS(WBIC) > PCS(BIC3) − ζ given

n ζ PCS(BIC3) < 0.4 0.4 ≤ PCS(BIC3) < 0.7 PCS(BIC3) ≥ 0.7 Total

All κa κ �= 5 All κ κ �= 5 All κ κ �= 5 All κ κ �= 5
30 0 111 94 15 12 25 17 151 123

(94.1%) (100%) (100%) (100%) (40.3%) (32.1%) (77.4%) (77.4%)
0.01 118 94 15 12 54 45 187 151

(100%) (100%) (100%) (100%) (87.1%) (84.9%) (95.9%) (95.0%)
0.03 118 94 15 12 61 52 194 158

(100%) (100%) (100%) (100%) (98.4%) (98.1%) (99.5%) (99.4%)
Total 118 94 15 12 62 53 195 159

All κb κ �= 2 All κ κ �= 2 All κ κ �= 2 All κ κ �= 2
15 0 93 20 12 5 11 6 116 31

(100%) (100%) (100%) (100%) (52.4%) (54.5%) (92.1%) (86.1%)
0.01 93 20 12 5 18 8 123 33

(100%) (100%) (100%) (100%) (85.7%) (72.7%) (97.6%) (91.7%)
0.03 93 20 12 5 21 11 126 36

(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)
Total 93 20 12 5 21 11 126 36

a κ = 1, 2, 3, 4, 5
b κ = 1, 2

Table 3. (i) Number/Proportion of cases where WBIC performs at least as well as BIC3 when BIC3 works
better than BIC and (ii), (iii) Number/Proportion of cases where WBIC improves BIC3 when BIC works
better than BIC3.

PCS (WBIC)

(i)> PCS (BIC3) − ζ (ii)> PCS (BIC3) − ζ (iii)> PCS(BIC)+PCS(BIC3)
2

given given given

n PCS(BIC3) > PCS(BIC) PCS(BIC3) ≤ PCS(BIC) PCS(BIC3) ≤ PCS(BIC)

ζ All κa κ �= 5 All κ κ �= 5 All κ κ �= 5

30 0 13 13 141 110
(26.5%) (26.5%) (96.6%) (100%)

0.01 41 41 146 110 20 20
(83.7%) (83.7%) (100%) (100%) (13.7%) (18.2%)

0.03 48 48 146 110
(98.0%) (98.0%) (100%) (100%)

Total 49 49 146 110 146 110

ζ All κb κ �= 2 All κ κ �= 2 All κ κ �= 2

15 0 4 4 116 27
(44.4%) (44.4%) (99.1%) (100%)

0.01 6 6 117 27 29 27
(66.7%) (66.7%) (100%) (100%) (24.8%) (100%)

0.03 9 9 117 27
(100%) (100%) (100%) (100%)

Total 9 9 117 27 117 27
a κ = 1, 2, 3, 4, 5
b κ = 1, 2

in addition to be more powerful than BIC3 as shown in Table 3-(ii). In summary, WBIC
improves BIC3 in almost all cases with relatively small effect sizes and maintains its power
close to that of BIC3 when effect sizes are relatively large. Note that the PCS values ofWBIC
used in Tables 2 and 3 are also reported in Table 1.
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Figure 3. Probability of correct selection by BIC, BIC3, and WBIC for 159 cases with n = 30 and κ =
1, 2, 3, 4.

Further details of BIC, BIC3, and WBIC are illustrated in Figures 3–5, where the prob-
abilities of correct selection, over-fitting, and under-fitting are summarized via box-plots
according to the range of PCS(BIC3). Figures 3–5 indicate that WBIC performs at least
as well as BIC3 with its median PCS values being close to or higher than those of BIC3,
the median under-fitting probabilities being smaller than those of BIC3, and the median
over-fitting probabilities being smaller than those of BIC. Especially when the effect sizes
are practically large enough to have the PCS of BIC3 being greater than or equal to 0.7 (i.e.
(c) in Figures 3–5), WBIC achieves our aim of maintaining the power of BIC3 and keep-
ing the over and under-fitting probabilities low. Also, when we compared the performance
of WBIC to that of the permutation test, which is the default selection method of Join-
point software, PCS(WBIC)≥PCS(Perm) in 122 cases while PCS(WBIC)<PCS(Perm) in
37 cases among the 159 cases presented in Figures 3–5. Except for two cases with very small
effect sizes, PCS(WBIC) was at least 0.88 for the 35 cases where PCS(WBIC)<PCS(Perm).

Motivated by that SEER 21 data available in the SEER database of the U.S. NCI [36]
summarize data during the relatively short period of 2000-2016, we have also conducted
simulations to assess the performance of the proposed procedure with short series data,
whose results are summarized in the lower parts of Tables 2 and 3. There were 126 cases
where 36 caseswith different parameter settingswere considered under the truemodelwith
one joinpoint and 90 cases were generated under the true model with two joinpoints. For
these results, the maximum number of joinpoints was set as 2, and thus only the numbers
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Figure 4. Over-fitting probabilities of BIC, BIC3, and WBIC for 159 cases with n = 30 and κ = 1, 2, 3, 4.

under κ �= 2, which are the cases with the true model of one joinpoint, reflect situations
where over-fitting could occur. Although there are only 36 cases with one joinpoint and
n = 15, similar findings as in the case with n = 30 are found.

Remark 4.3: We have considered other types of weighted BIC using R2
min(j) =

mini=1,...,j R2i,i+1, and examined the performances of theweighted BICwhose penalty terms
are (2 + R2min(k))

k log n
n and (2k +∑k

j=1 R
2
min(j))

log n
n . For both types of weighted BIC, we

observed in our simulations not reported here that their performances are much worse
than the WBIC introduced above in maintaining the power of BIC3 for the cases with
medium and large effect sizes although they perform better in improving BIC3 when effect
sizes are relatively small. Considering that the permutation method with the over-fitting
probability controlled to be under 0.05 has been known to performwell to select a parsimo-
nious model in cancer trend analysis and also that BIC3 and the permutation test perform
comparably, we only presentedWBIC given above, but other types of weighted BIC can be
considered depending on one’s goal.

Remark 4.4: Although not reported in this paper, we have considered another type of
data-dependent model selection procedure, called DDS at the NCI Joinpoint website [32],
whose idea is to estimate 	∗ discussed in Section 3. The DDS method uses BIC or BIC3
for the model selection when the sample selectionmeasures indicate a higher likelihood of
	∗ being relatively smaller or larger, respectively. In our simulation study, the performance
of DDS was sometimes better than that of WBIC, but due to its main drawback that its
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Figure 5. Under-fitting probabilities of BIC, BIC3, andWBIC for 159 cases with n = 30 and κ = 1, 2, 3, 4.

implementation, i.e. the determination of the cut-off values, is rather ad-hoc, this paper
focuses only on WBIC.

4.3. Large sample properties

Simulation results summarized in Section 4.2 indicate that the WBIC maintains its power
when BIC3 performs good (i.e. when effect sizes are relatively large) and improves BIC3
when BIC outperforms BIC3 (i.e. when effect sizes are relatively small). Recall that the
simulation study of Kim and Kim [12] indicated the consistency of κ̂ estimated by BIC3,
while the consistency of BIC4 has been theoretically proved for the segmented regres-
sion model without continuity constraint. In this section, we report a simulation study
where we investigate how the performances of these selection methods, BIC, BIC3, and
WBIC, change as the number of observations, n, increases, which is expected to provide
insights on the consistency of WBIC. For this study, we consider the parameter settings
used in the first two cases for each of the κ values in Table 1: Cases 1-1-i, 2-1-i, 3-1-i,
and 4-1-i with σ = 0.03 and 0.01. Then, we estimated P(κ̂ = k) for k = 0, 1, . . . , 5 and
n = 30, 50, and 100, where the locations of joinpoints were adjusted so that the pro-
portions of the segment lengths stay constant. That is, we set τ = n ∗ 5/30 for κ = 1,
(τ1, τ2) = (n ∗ 10/30, n ∗ 20/30) for κ = 2, (τ1, τ2, τ3) = (n ∗ 7/30, n ∗ 15/30, n ∗ 23/30)
for κ = 3, and (τ1, τ2, τ3, τ4) = (n ∗ 6/30, n ∗ 12/30, n ∗ 18/30, n ∗ 24/30) for κ = 4. The
slope parameter of each segment stayed the same as in Table 1. For each of these cases,
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Table 4. Probability of Under-Fitting, Correct Selection, and Over-Fitting.

n = 30 n = 50 n = 100

Case σ prob BIC BIC3 WBIC BIC BIC3 WBIC BIC BIC3 WBIC

κ = 1

1-1-i-a 0.03 PUFa 0.262 0.528 0.328 0.000 0.005 0.000 0.000 0.000 0.000
PCSb 0.636 0.458 0.644 0.919 0.983 0.977 0.961 0.995 0.986
POFc 0.102 0.073 0.028 0.081 0.012 0.023 0.039 0.005 0.014

1-1-i-b 0.01 PUF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PCS 0.858 0.974 0.967 0.910 0.988 0.979 0.955 0.994 0.988
POF 0.142 0.026 0.033 0.090 0.012 0.021 0.045 0.006 0.012

κ = 2

2-1-i-a 0.03 PUF 0.075 0.238 0.161 0.000 0.000 0.000 0.000 0.000 0.000
PCS 0.746 0.727 0.788 0.862 0.977 0.959 0.935 0.993 0.991
POF 0.179 0.036 0.051 0.138 0.023 0.041 0.065 0.007 0.009

2-1-i-b 0.01 PUF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PCS 0.770 0.942 0.933 0.846 0.973 0.970 0.914 0.989 0.988
POF 0.230 0.058 0.067 0.154 0.027 0.030 0.086 0.011 0.012

κ = 3

3-1-i-a 0.03 PUF 0.372 0.668 0.583 0.005 0.032 0.024 0.000 0.000 0.000
PCS 0.506 0.311 0.392 0.839 0.940 0.937 0.914 0.991 0.990
POF 0.123 0.021 0.025 0.156 0.028 0.039 0.086 0.009 0.010

3-1-i-b 0.01 PUF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PCS 0.752 0.935 0.932 0.827 0.971 0.969 0.908 0.989 0.989
POF 0.248 0.065 0.067 0.173 0.029 0.031 0.092 0.011 0.011

κ = 4

4-1-i-a 0.03 PUF 0.679 0.897 0.883 0.087 0.280 0.249 0.000 0.000 0.000
PCS 0.260 0.098 0.111 0.767 0.695 0.721 0.899 0.986 0.985
POF 0.061 0.005 0.006 0.146 0.025 0.029 0.101 0.014 0.015

4-1-i-b 0.01 PUF 0.000 0.008 0.007 0.000 0.000 0.000 0.000 0.000 0.000
PCS 0.799 0.937 0.936 0.820 0.968 0.967 0.886 0.984 0.984
POF 0.201 0.055 0.057 0.180 0.032 0.033 0.114 0.016 0.016

a PUF: Probability of Under-Fitting, P(κ̂ < k∗) where κ̂ is the number of joinpoints estimated and k∗ is the true number of
joinpoints

b PCS: Probability of Correct Selection, P(κ̂ = k∗)
c POF: Probability of Over-Fitting, P(κ̂ > k∗)

Table 4 reports the probability of under-fitting (PUF), the probability of correct selec-
tion (PCS), and the probability of over-fitting (POF) observed for BIC, BIC3 and WBIC.
Note that PUF=P(κ̂ < k∗), PCS=P(κ̂ = k∗), and POF=P(κ̂ > k∗), where κ̂ is the estimated
number of joinpoints and the k∗ is the true number of joinpoints.

The following summarizes the results:

(a) As the effect size increases from σ = 0.03 to σ = 0.01, we observe that allowing the
maximum simulation margin of error of 0.014, (i) the PUF decreases for all of BIC,
BIC3 andWBIC regardless of n, (ii) the PCS of BIC increases only when n = 30 while
the PCS values of BIC3 and WBIC are the same/increasing for all of n = 30, 50 and
100, and (iii) the POF of BIC shows a larger increase from the case with σ = 0.03 to
that with σ = 0.01, compared to BIC3 andWBIC, for all of n = 30, 50 and 100, while
the POF changes of BIC3 and WBIC between σ = 0.03 and 0.01 are all within the
margin of error when n = 50 and 100.
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(b) As the number of observations n increases, (i) the PUF decreases for all of BIC, BIC3
and WBIC, (ii) the PCS increases for all of BIC, BIC3 and WBIC, and (iii) the POF
decreases for all of BIC, BIC3 and WBIC when σ = 0.01, and for the cases with σ =
0.03, the POF when n = 100 is the smallest in general.

(c) For large n, smaller POF values are observed for BIC3 and WBIC than for BIC. For
n=100, the ranges of the POFvalues are (0.045, 0.114), (0.005, 0.016) and (0.009, 0.016)
for BIC, BIC3 andWBIC, respectively. For n=50, the ranges are (0.081, 0.180), (0.012,
0.032), and (0.021, 0.041) for BIC, BIC3 andWBIC, respectively. That is, when n = 50
and 100, the POF values of BIC3 and WBIC are under 5% while the POF of BIC is as
large as 18%. It is also observed that the over-fitting tendency of BIC relative toWBIC,
in terms of POF(BIC)/POF(WBIC), gets worse as n increases in the majority cases of
Table 4.

In summary, as the number of observations increases, the under-fitting probability of
WBIC approaches zero and its probability of correct selection is very close to 1. The per-
formance of BIC3 is comparable to that of WBIC when n = 50 and 100, but WBIC shows
higher PCS in general when n = 30. BIC also shows a similar tendency, but its over-fitting
probability is much larger than those of BIC3 and WBIC even when n=100.

5. Examples

In this section, we apply the model selectionmethods discussed in the previous sections to
prostate cancer incidence and mortality rates for males in the United States. For the anal-
ysis, we used the delay-adjusted incidence rates during the period of 1975–2016 obtained
from the SEER 9 program of the U. S. National Cancer Institute [27] and U. S. mortality
rates collected by states and compiled by the National Center for Health Statistics [28].
Cancer incidence data is typically first released approximately two years after the end of
the year when the cases were diagnosed. Delay-adjusted rates make an adjustment in the
current incidence rates to account for anticipated future additions and deletions to the
case count (due to additional cases found or modifications to the data, e.g. a case originally
thought to be brain cancer is eventually identified as ovarian cancer that metastasized to
the brain) in each subsequent annual release. More accurate trend analysis can be con-
ducted with delay-adjusted rates [6,20] and more information can be found in Ref. [30].
To fit a joinpoint regression model, Joinpoint Version 4.7 is used with the default setting
that includes the annual grid search, the log-linear model with the weighted least squares
fitting using the standard errors provided by the SEER program, and 4499 permutations
for the permutation procedure. Note that 4499 is the default number of permutations in
Joinpoint software, which was recommended to achieve the desired level of accuracy for
the P-value estimation, but recall that the number of permutations used in our simulations
was 319, which was chosen tomanage a computational limitation in simulations while pre-
serving the accuracy of the simulation results. Themaximum number of joinpoints, JPmax,
is set at 7 considering that the length of the data is relatively long over the forty two year
period.

We report the model selection results for the prostate cancer incidence and mortality
rates in Table 5. For the prostate cancer incidence rates for all races combined, all of the
Perm, BIC3, andWBIC methods selected the model with six joinpoint, while BIC selected
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Table 5. Final model (κ̂) selected.

Data Perm BIC BIC3 MBIC WBIC

Prostate Incidencea 6 7 6 4 6
(All races) P6 vs 7 = 0.130b

τ̂ 6 = (1988, 1992, 1995, 2000, 2010, 2014)
τ̂ 7 = (1985, 1989, 1992, 1995, 2000, 2010, 2014)

Prostate Mortalityc 4 5 4 3 4
(All races) P4 vs 5 = 0.018

τ̂ 4 = (1987, 1990, 1993, 2013)
τ̂ 5 = (1987, 1991, 1994, 1998, 2013)

a SEER 9 delay-adjusted incidence rates, 1975–2016
b Pk0 vs k1 is the P-value of the permutation test of H0 : k0 joinpoints versus Ha : k1 joinpoints under JPmax = 7.
c U.S. mortality, 1975-2016

the one with seven joinpoints and MBIC selected the one with four joinpoints. Figure 6(a)
shows the six joinpoint model fit selected by most of the selection methods along with
the annual percent change (APC) for each segment. Note that the APC for the segment
with a slope of β in the log-linear model is defined as 100(Exp(β) − 1). For the incidence
data, the permutation test produced the p-value of 0.130 in testing the null model with
six joinpoints versus the alternative model with seven joinpoints under JPmax = 7, which
supports the six joinpoint model chosen by Perm, BIC3, and WBIC.

Figure 6(b) shows the prostate cancer mortality rates for all races combined during
1975–2016 with the fit made for the four joinpoint model. For this data, four joinpoint
model is selected by Perm, BIC3, andWBIC,while themodel with five joinpoints is selected
by BIC and the one with three joinpoints by MBIC. In this case, the p-value of the per-
mutation test of the null model with four joinpoints versus the alternative model with
five joinpoints was 0.018 under JPmax = 7, which is much smaller than 0.130 of the inci-
dence case but not small enough to lead to a significant result when multiple testings are
conducted.

As indicated by the simulation study, the MBIC is shown to be extremely conserva-
tive, and it did not pick up the change in the incidence rates during the last three years,
while MBIC detected a change in mortality at 2013 when its decreasing trend stopped and
progressed to a plateau. Also, BIC is shown to be the most liberal, as indicated in the sim-
ulation study, and the additional joinpoints estimated by BIC are at 1985 for the incidence
trend and at 1998 for the mortality trend, which certainly make for better fits but may
just be adding noise as analysts try to relate changes in trends to modifications in how
prostate cancer is diagnosed or treated. Althoughmost of themethods, exceptMBIC in the
incidence rate analysis, identified changes from their decreasing trends during the recent
several years, the last segment APCs are not statistically significant which might be due to
very short lengths of the last segment, three years for incidence and four years formortality,
and the generally low power to determine whether short segment APCs are significantly
different from zero.

As noted in the introduction, these trend changes in prostate cancer incidence andmor-
tality rates observed during the recent years have received great attention in the cancer
surveillance community, especially related to a recommendation by the U. S. Preventive
Services Task Force against the use of the PSA screening and the subsequent drop in test-
ing rates [21]. It seems illogical that the joinpoint for incidence could occur one year after
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Figure 6. Prostate cancer incidence andmortality rates.(a) SEER 9delay-adjusted incidence: 1975–2016.
(b) US mortality: 1975–2016.

the joinpoint for mortality (2014 and 2013, respectively), when changes in screening rates
should logically impact cancer incidence before mortality. However, it must be kept in
mind that these joinpoints are measured with error, especially the rather gradual changes
in slope for mortality. The 95% resampling confidence intervals for these joinpoints pro-
duced by Joinpoint software ((2013, 2014) for the sixth joinpoint in the incidence rates
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and (2012, 2014) for the fourth joinpoints in the morality rates; Kim et al. [13]) indicate
that they are not different when considering their variability. Given the controversies sur-
rounding the value of the PSA screening, there is considerable interest in interpretation of
these trends and it is critically important that a single objective method be applied to char-
acterize the trends. The U. S. Preventive Services Task Force recommendations changed
again in 2018 [8], this time to a C recommendation indicating that ‘For men aged 55 to 69
years, the decision to undergo periodic prostate-specific antigen (PSA)-based screening
for prostate cancer should be an individual one. Before deciding whether to be screened,
men should have an opportunity to discuss the potential benefits and harms of screening
with their clinician and to incorporate their values and preferences in the decision.’ Such
changes will certainly further complicate future analyses of trends.

6. Discussion

In this paper, we have studied the empirical properties of several model selection meth-
ods to determine the number of joinpoints in a joinpoint regression model, and proposed
a data-driven selection method, the weighted BIC, which is computationally much more
efficient than the permutation procedure and is shown to maintain the probability of cor-
rect selection while keeping the over-fitting probability close to that of the permutation
procedure. Each selection method has its own strengths as well as weaknesses as we have
discussed in the previous sections, and we recommend one to use the proposed method,
WBIC, as an automated selection procedure considering his/her goal. As summarized in
the Joinpoint help site [33],

‘our overall recommendations are to use the permutation test if one prefers the method that
has the longest track record in trend analysis and generally produces parsimonious results,
use BIC3 if one would like to produce results similar to the permutation test procedure but
computation time is an issue, useWBIC if one prefers a method that on average performs best
across a wide range of situations. While Perm, BIC, and BIC3 might perform better in some
specific situations, WBIC is most flexible in adapting to different situations.’

Based on its conceptual justification and its adaptable performance under a number
of different conditions, there is consideration of making WBIC the default method in the
Joinpoint software.

As indicated in the Introduction, our aim in this paper was to propose an automated
model selection procedure and to provide empirical evidence for its satisfactory perfor-
mance in cancer trend analysis with a moderate size of observations. Also, it was noted in
the Introduction that theoretical and conceptual work previously conducted on the perfor-
mance of BIC type selection measures in change-point problems suggested modifications
of traditional BIC type measures, and our simulation study in this paper supports such
findings in the context of joinpoint regression. In terms of large sample properties, our
simulation study in Section 4.3 indicated the consistency of the model selected by the pro-
posed method, WBIC. More rigorous study on the consistency of the model selected by
WBIC requires further work.

Another related research project is to compare the performances of BIC type selection
measures discussed in this paper with those of fully Bayesian procedures as in Tiwari et
al. [29]. Tiwari et al. proposed to use the Bayes factor and ‘Bayesian’ version of BIC to
select the model and also to obtain the posterior distribution of the model parameters.
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They used Markov chain Monte Carlo simulations to compute the posterior distributions
of themodel parameters aswell as competingmodels, and also compared the performances
of their Bayesian approaches with the permutation test procedure discussed in this paper.
Although MBIC discussed in Zhang and Siegmund [39] and this paper is based on the
Bayes factor, its main use was for the model selection, and fully Bayesian approaches such
as those of Tiwari et al. [29] can be used to obtain posterior probabilities of the model
parameters.

And the performance measure that we used in this paper is the probability of correct
selection, which is an importantmeasure to identify a consistent selectionmethod that will
justify subsequent inferences in segmented line regression. Another frequently used accu-
racymeasure is the prediction accuracy, and such a study could provide useful information
for projection. In Chen et al. [4], various models and methods have been investigated
in predicting cancer mortality rates, and it has been observed that the joinpoint regres-
sion model selected by a relatively conservative method performs better. Thus, it would be
another interesting research topic to investigate how and why a better performance in the
prediction is achieved by a relatively conservative model selection.
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