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Transducing compressive forces into cellular outputs in
cancer and beyond
Céline Schmitter1,2,3 , Mickaël Di-Luoffo1,2, Julie Guillermet-Guibert1,2

In living organisms, cells sense mechanical forces (shearing,
tensile, and compressive) and respond to those physical cues
through a process called mechanotransduction. This process
includes the simultaneous activation of biochemical signaling
pathways. Recent studies mostly on human cells revealed that
compressive forces selectively modulate a wide range of cell
behavior, both in compressed and in neighboring less com-
pressed cells. Besides participating in tissue homeostasis such as
bone healing, compression is also involved in pathologies, in-
cluding intervertebral disc degeneration or solid cancers. In this
review, we will summarize the current scattered knowledge of
compression-induced cell signaling pathways and their subse-
quent cellular outputs, both in physiological and pathological
conditions, such as solid cancers.
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Introduction

Shear, tension, and compression are ubiquitous mechanical forces
exerting physiological responses on cells. Shearing force corre-
sponds to the application of a force that is parallel to cell surface;
the force applied to cells is perpendicular and directed away from
cell surface for tensile force, and perpendicular and directed to-
ward cell surface for compressive force (Fig 1A). Mechanical forces
are sensed by mechanosensors that activate biochemical effectors
in signaling pathways (see Glossary). This process is called
mechanotransduction (Di-Luoffo et al, 2021). Among them, signaling
pathways and cellular responses induced by compressive forces
are so far the least understood mechanism. We know that shearing
and tensile forces lead to different mechanotransduction signaling,
especially leading in the activation of different PI3K classes of
enzymes and PI3K isoforms (reviewed in Di-Luoffo et al [2021]).
Similarly, this difference in term of signal activation patterns is
found between stretching and compressive forces applied on cells
(Haudenschild et al, 2009; Takemoto et al, 2015; Nordgaard et al,
2022). This differential pathway activation has physiological

implications: healthy cells such as osteoblast precursors and
periodontal ligament fibroblasts produce and secrete different
proteins depending on which mechanical stress they undergo
(He et al, 2004; Zhong et al, 2013; Takemoto et al, 2015). To better
understand the importance of mechanical forces in biological
processes, there is thus a need to discriminate the selective
contribution of compressive forces in activating biochemical
pathways. Biological processes in vivo are subjected simulta-
neously to all three types of mechanical forces; disentangling the
relative contribution of each physical force in cell processes is thus
a complex task. To model in vitro the application of compressive
forces to mammalian cells in 2D or in 3D, different methods
are available. The use of those methodological approaches is
expanding in the cell and tumor biology fields, described in detail
in Fig 1B–D. Here, we reviewed the cellular effects of mechanical
load (Fig 1B), variation in osmotic and interstitial fluid pressure
because of the accumulation of hydrophilic hyaluronic acid in
extracellular matrix (Fig 1C) and growth pressure in a confined
environment such as rigid matrix (Fig 1D and E), all situations that
mimic in vivo settings.

Sensing of compressive forces occurs at various locations in cells
(Fig 2A). Mechanotransduction happens in the plasma membrane
or in the actin cortical cortex. Nucleus deformation induces bio-
chemical pathways simultaneously or in a sequential manner.
Molecular or organelle crowding in cytoplasm participates in the
sensing of compressive forces (Guo et al, 2017). Next, compressive
forces induce different cellular outputs, ranging from proliferation
to cell death (Li et al, 2017; Boyle et al, 2020; Kang et al, 2020; Lin et al,
2021) (Fig 2A–C). The direct application of compressive forces
promotes or reduces cell proliferation, survival, and differentiation;
it promotes cytoskeleton remodeling, cell motility, and cell mi-
gration; it controls cell metabolism. All these cell processes par-
ticipate to tissue homeostasis. Compressive forces also act
indirectly via autocrine or paracrine signaling (Fig 2B and C).
Paracrine and autocrine action involves the regulation of secreted
cytokines, chemokines (Schreivogel et al, 2019), matrix components
(Wright et al, 1997; He et al, 2004; Chowdhury et al, 2006; Fitzgerald
et al, 2008; Zhong et al, 2013; Liu & Lee, 2014; Takemoto et al, 2015;
Luo et al, 2022), metabolites (McCutchen et al, 2017), and the control
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of membrane receptor recycling (Baschieri et al, 2020), and cell/cell
adhesion (Park & Tschumperlin, 2009; Eisenhoffer et al, 2012;
Delarue et al, 2017; Massey et al, 2020; Di Meglio et al, 2022).

Physical compressive forces thus control various biological
processes but are also involved in pathologies in humans. In some
cases, excessive compression forces lead to pathologies. It is the

case of intervertebral disc degeneration (Pauly et al, 2001). During
solid cancer development, the tumor growth leads to generation of
compressive forces; this phenomenon modifies the tumor and
microenvironment cell behavior in return (Kim et al, 2017, 2019;
Morikura &Miyata, 2019). It is so far unclear whether normal, cancer,
and tumor microenvironment cells respond differently to

Figure 1. Experimental designs used to mimic in vitro compressive force generation in 2D and 3D cell cultures.
(A) Scheme representing how compression, tension, and shearing forces are applied to the cell membrane. Red arrows represent the direction of the corresponding
force applied to the cell. Several methods are used in vitro to reproduce compressive forces that are found in vivo. (B) The compressive force applied can be static (i.e.,
applied one time during a defined period) or cyclic (i.e., applied in cycles of compression) using the following methods: (B) compression induced by a piston filled with an
adjustable weight (static) or by a transmembrane pressure device using compressed gas to press a piston towards the cells (cyclic). Here, only 2D compression is shown;
however, compression of 3D multicellular structures can be achieved by those methods. (C) Compression induced by hyperosmotic shock. For example, addition of
polyethylene glycol-300 to cell media increases cell media osmolarity resulting in water efflux from cell to media to equilibrate osmolarity and thus causing cell
compression. (D) Confined growth of cells or ofmulticellular structures in rigidmatrix (>1 kPa)mimics the buildup of growth-induced compressive forces that aremostly
found during tumor development. Refinement of those approaches can be achieved by using gels that can relax and mimic the viscoelastic properties of extracellular
matrix. The rigid matrix can also be functionalized to mimic ECM composition and the concomitant biochemical activation through protein/protein interaction of confined
cells. (E) Confinement of cells in rigid capsules. They can grow as a mass inside the capsule or line the alginate capsule; the latter mimics the formation of simple
epithelium. The described experimental devices were used in the following references (Tse et al, 2012; Guo et al, 2017; Kalli & Stylianopoulos, 2018; Kim et al, 2019; Boyle
et al, 2020; Kang et al, 2020; Nia et al, 2020; Li et al, 2021b; Ge et al, 2021).
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compressive forces; we will review the recent data that concur to
demonstrate that this response is actively promoting cancer de-
velopment, progression, and resistance to treatment.

In summary, this review synthetizes by which cell signaling
pathways’ compression induces cellular phenotypes inmammalian
cells. We will also discuss the importance of compression in health
and disease with a particular focus on cancer.

Cellular outputs modulated by compression in
tissue homeostasis

Homeostatic control of cell numbers in tissues: compression in-
creases cell proliferation of some mesenchymal cells and de-
creases cell proliferation or extrudes cells in most epithelia.

Cell context determines whether compression promotes or re-
presses cell proliferation. Static (i.e., applied one time during a
defined period) or cyclic (i.e., applied in cycles of compression)
compressive forces (in 10 of kPa range) increase proliferation of
some mesenchymal cells in a direct manner. Compression in-
creases proliferation of rat bone marrow-derived mesenchymal
stem cells (rat BMSCs) and rat chondrocytes (Ren et al, 2011; Wang
et al, 2013; Boyle et al, 2020). Compression on chondrocytes triggers
Ca2+ signaling by activating mechanosensitive ion channels such as

Piezo-1 and Piezo-2, two distinct members of stretch-activated
channel (SAC) family (Coste et al, 2010; Han et al, 2012; Liu & Lee,
2014). Consequently, transmembrane proteins such as α5β1 integrin
are activated (Wright et al, 1997; Chowdhury et al, 2006; Raizman
et al, 2010; Liu & Lee, 2014). Proliferative signal is dependent on
RHOA and ROCK signaling, and BMP signaling and SRC-induced
MAPK/ERK pathway (Ren et al, 2011; Wang et al, 2013; Boyle et al,
2020). In response to compression, an interplay between several
pathways is occurring, as an inhibition of a single signal node is not
sufficient to fully block the compression-induced proliferation.

In most epithelial cells, it is well established that cell prolifer-
ation is triggered by increased mechanical tension (Uroz et al, 2018)
and inhibited by compression (Alessandri et al, 2013; Delarue et al,
2014; Dolega et al, 2017). MDCK-II cell epithelial monolayer growing
under confinement accumulates pressure that inhibits prolifera-
tion (Di Meglio et al, 2022). To maintain tissue homeostasis and
control cell number, overcrowding results in live cell extrusion in
the lumen. It requires sphingosine 1-phosphate G protein coupled
receptor signaling and RHO-kinase-dependent myosin contraction.
Compared with other types of cell extrusions, this selective process
is distinguished by a signaling through SACs (Piezo-1) (Eisenhoffer
et al, 2012). Besides, during epithelium growth, epithelial cells
spontaneously buckle (Trushko et al, 2020), and cell proliferation is
transiently reactivated within the fold. Whereas compressive force-

Figure 2. General overview of compression mechanotransduction in human cells.
(A) Direct compressive effect on the cell. Supposed mechanosensors and downstream modulations are displayed. This list is not exhaustive (Wright et al, 1997; Park &
Tschumperlin, 2009; Eisenhoffer et al, 2012; Liu & Lee, 2014; Chronopoulos et al, 2020; Lomakin et al, 2020; Massey et al, 2020; Park et al, 2020). (B) Compressive stress-
induced autocrine signaling. (C) Compressive stress-induced paracrine signaling.
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induced blockage of cell proliferation is dependent on GSK-3β
(glycogen synthase kinase 3β) and the β-catenin transcriptional
activator signaling pathways (Song et al, 2017; Di Meglio et al, 2022),
reactivation of proliferation within folds correlates with the local
reactivation of the mechano-sensing YAP/TAZ pathway through
curvature sensing (Di Meglio et al, 2022). Other mechanisms that
sense epithelium curvature were described and involve nuclear
mechanosensing (Luciano et al, 2021). However, activation of YAP/
TAZ remains the most well-described mechanosensing signaling
process after mechanical and especially tensile stress (Dasgupta &
McCollum, 2019; Cobbaut et al, 2020; Cai et al, 2021). YAP and TAZ
transcription coactivators are oncoproteins repressed through
their phosphorylation by the tumor suppressor LATS1/2 (large
tumor suppressor kinases 1 and 2) controlled by the kinases MST1/2
(macrophage stimulating 1 and 2), mammalian homologs of the
Hippo kinase (Dasgupta & McCollum, 2019; Cobbaut et al, 2020; Cai
et al, 2021).

Control of (stem) cell differentiation
Current research highlights a direct relationship between cellular
physical property and (stem) cell fate decision, potentially
contributing to organ homeostasis and development. Volumetric
compression alone induced by either osmotic, mechanical or
matrix rigidity controls stemness and intestinal organoid growth; it
activates pro-tumoral pathways such as Wnt-activating β-catenin
signaling (Li et al, 2021a).

In bone remodeling, compression forces promote cell differ-
entiation. Prolonged dynamic compression promotes the chon-
drogenic differentiation of human synovium-derived mesenchymal
stem cells in the presence of the transforming growth factor β3 (Ge
et al, 2021), describing a physiologically relevant mechanism of
stem cell-based cartilage repair and regeneration. Similarly, long-
term mechanical load potentiates the osteogenic differentiation of
human BMSCs in collagen microtissues (Song et al, 2017; Li et al,
2020). Compression promotes differentiation of mesenchymal cells
and their production of collagen matrix, a process that participates
in bone healing and remodeling (Wright et al, 1997; He et al, 2004;
Chowdhury et al, 2006; Fitzgerald et al, 2008; Zhong et al, 2013; Liu &
Lee, 2014; Takemoto et al, 2015).

Mechanistically, different signaling pathways such as the acti-
vation of PI3K/AKT or inhibition of MAPK/ERK signaling promote the
compression-induced osteogenic differentiation of BMSCs (Pelaez
et al, 2012; Song et al, 2017). In response to compression, the PI3K
pathway is activated and increases the β-catenin expression level
which is involved in osteogenic differentiation of BMSCs (Song et al,
2017). Compression also triggers cell differentiation through
paracrine regulations between cell types involved in bone re-
generation. Cyclic compressive forces, which mimic compression
found in bone healing, enhance production and secretion of BMP2
by human BMSCs that stop their migration. Furthermore, secreted
BMP2 is required for the expression of the RUNX2 osteogenic gene
(Schreivogel et al, 2019).

Finally, active response to compressive forces is needed for
cell differentiation in homeostatic conditions (Nordgaard et al,
2022). In skeletal muscle, the contraction of individual muscle
fibers activates p38 MAPK and JNK activation. Osmotic shock and
mechanical compression, but not stretching of skeletal muscle

cells, selectively activate upstream the ubiquitously expressed
but poorly described MAP3K splice form ZAKβ. ZAKβ is necessary
for the proper function of skeletal muscle fibers during con-
traction; its activation is required to prevent muscle pathology
(Nordgaard et al, 2022).

Promotion of cytoskeleton rearrangement, cell motility,
and migration
Compression induces cell signaling to promote cytoskeleton re-
organization, cell motility, and migration. In HEK293 cells, com-
pression promotes the activation of RHOA and ROCK signaling
critical for actin cytoskeleton remodeling and cell motility (Boyle
et al, 2020). Moreover, bronchial primary epithelial cells transition
from a nonmigratory to a migratory phenotype upon compression
(De Marzio et al, 2021). Fibrous matrix of collagens helps the cells to
migrate along the fibers (Hogrebe et al, 2017), production that is
favored by compression (Wright et al, 1997; He et al, 2004;
Chowdhury et al, 2006; Fitzgerald et al, 2008; Zhong et al, 2013; Liu &
Lee, 2014; Takemoto et al, 2015). Compression promotes key cellular
processes involved in migration such as formation of lamellipodia
and adhesion to extracellular matrix of human BMSCs cultured in
collagen matrices (Li et al, 2020; Lim Lam et al, 2021). This process
also plays a key role in the function of immune cells or platelet cells
that sense compression when they are colliding in blood vessels or
in tissues (Toyjanova et al, 2015). Cytoskeleton rearrangement is
also occurring as a protective mechanism to physiological high
compressive load. Microtubules can bear compressive loads, which
is consistent with models for cellular mechanics in which micro-
tubule compression helps to stabilize cell shape by balancing
tensional forces within a prestressed cytoskeleton (Wang et al,
1993); this cytoskeleton rearrangement is particularly relevant for
cardiomyocytes subjected to constant contractile compressive
stresses (Brangwynne et al, 2006).

Emerging evidence in control of metabolism
Compression modulates the cell metabolism that sustains cell
behaviors. Primary human chondrocytes exposed to compression
which mimics their natural mechanical load present up-regulation
or down-regulation of specific metabolic transcriptional signatures
(McCutchen et al, 2017). Nicotinamide metabolism, whose gene
signature is down-regulated by compression, is notably essential to
produce coenzymes used in glycolysis (McCutchen et al, 2017). The
metabolic measurements are, for the moment, too limited to
confirm those transcriptomic results. This is an important future
field of research as, interestingly, disassembly of actin cytoskeleton
network occurs during compression through RHO and ROCK sig-
naling (de Araujo et al, 2014) and could lead to a decrease in
glycolysis rate. Indeed, mechanically induced fragmented actin
promotes a decreased glycolysis (Park et al, 2020).

Emerging evidence in control of intercellular communication
A new field of research that could expand within the next years is
the study of how compressed cells affect their less compressed
or uncompressed neighbors through paracrine signaling (Fig 2C).
Orthodontic tooth movement generates both tensile and com-
pressive forces. Periodontal ligament stem cells (PDLSCs) are the
main mesenchymal stem cells in periodontal tissues (Jiang et al,
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2021). Depending on their location in the periodontal tissue,
PDLSCs will sense either tension or compression during or-
thodontic tooth movement (Wise & King, 2008). In vitro com-
pression activates autophagy in PDLCs prompting them to
secrete a conditioned medium able to inactivate the AKT sig-
naling of macrophages in a paracrine manner. This causes the
polarization of the macrophages into M1 macrophages which
next act on bone remodeling and root resorption (Jiang et al,
2021).

Cell compression in pathological conditions

Pathological context involving compression forces
Compressive forces are involved in a large number of pathologies.
Asthma is a pathology whose development is associated to sensing
of compressive forces. Through a paracrine signaling, the com-
pressed primary human bronchial epithelial cells produce and
secrete a vasoconstrictor mediator (Endothelin-1) which acts on the
primary human airway smooth muscle cells (HSAM cells) to
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increase their proliferation and their basal and histamine-induced
contractions. Thus, the HSAM cells are more prone to a future
bronchoconstriction leading to a deleterious positive feedback

loop for which each bronchoconstriction promotes the next one
(Lan et al, 2018). Surface glycoproteins such as MUC family members
whose level in the plasma membrane is changed in bronchial
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epithelium upon compression further participate in mechano-
sensing of compression (Park & Tschumperlin, 2009; Eisenhoffer
et al, 2012; Delarue et al, 2017; Massey et al, 2020).

Compression controls both establishment and progression of
osteoarthritis, which is a disease characterized by joint inflam-
mation. Thereby, mechanical load induces both human chon-
drocyte degeneration and cartilage vascular invasion, causing and
worsening the pathology, respectively. These effects might be
partially mediated by a compression-induced decrease in the
activation of TIMP3/TGF-β1 pathway in the compressed chon-
drocytes (Zhao et al, 2020).

A prolonged high cerebrospinal fluid pressure in the skull causes
intracranial hypertension. Compression of rat cortical neurons that
mimics this situation reveals thatmitochondrial dysfunction and ER
stress occur and cause cell death (Chen et al, 2019). Finding ways to
target these causes of neuronal cell death would enable to treat
patients suffering from intracranial hypertension.

Intervertebral disc degeneration induced by excessive
compression is caused by massive cell death
The study of the multistep processes leading to pathologies
highlights other cellular outputs induced by excessive compressive
forces. Intervertebral disc degeneration (IVDD) is a pathology
caused by an inappropriate mechanical load on the intervertebral
discs leading especially to low back pain (Kang et al, 2020). In-
tervertebral discs are formed of the peripheral annulus fibrosus,
the cartilage endplate, and the central gelatinous nucleus pulpous
(NP), which is the most important part for maintaining the ho-
meostasis of these three structures (Fig 3A). Indeed, NP is made of
cells producing NP matrix proteins (aggrecan and collagen II) that
enable the mechanical functioning of each disc (Han et al, 2017).

Because of an excessive compression, the production of NP
matrix proteins is reduced resulting in an impossibility of main-
taining the matrix homeostasis (Li et al, 2017). This impairment was
explained by the fact that under a mechanical load, the activation
of a wide range of signaling pathways in NP cells converge to the
control of cell survival/death balance through induction of either
autophagy, apoptosis, necroptosis or senescence (Ma et al, 2013; Li
et al, 2017, 2018, 2021b; Pang et al, 2017; Huang et al, 2020; Kang et al,
2020; Lin et al, 2021) (Fig 3B). Autophagy is a cellular process that
allows the orderly degradation and recycling of cellular compo-
nents, hence providing a self-promoted nutrient source benefiting
cell homeostasis and survival (Poillet-Perez & White, 2019). The
compression-induced signaling pathways and their interplays are a
matter of future work. It aims to define how to prevent or attenuate
the massive cell death of NP cells in patients suffering from IVDD.

Compression during cancer development—is it promoting or
restraining tumor initiation, progression or treatment response?
Unlike IVDD, cancer is not caused by compression, but compressive
forces increase during development of solid cancers causing dis-
ease progression through various cell modifications (Fig 4). Com-
pressive forces have for origin: (i) the rapid proliferation of cancer
cells in a confined environment and, (ii) the accumulation of a non-
tumoral environment such as an increase in extracellular matrix
content, a remodeling of matrix composition, and matrix swelling
with water uptake. Cancer and microenvironment cells sense

compressive forces in a solid tumor. In both cell compartments,
compression plays a dual role associated with the evolution of
tumors (summarized in Fig 4). Epithelial cells respond to com-
pression by arresting cell proliferation, promoting cell death or
extruding cells (in lumens for epithelial cancers), which are pro-
tective mechanisms in the early steps of cancer development (Fig
4A); however, cancer epithelial cells adapt to this context and later
compression leads to increase cancer cell proliferation, migration,
and survival (Fig 4B). Similarly, a compressed microenvironment
prevents cancer cell proliferation and tumor vascularization in
early steps (Fig 4A), but accelerates cell proliferation, migration,
survival to harsh environments in late stages (Fig 4C). Finally,
compressive force increase in the tumor is sensed by adjacent
tissues and favors tumor initiation (Fig 4D).

Early action of compression in primary tumors The thickening of
the non-tumoral environment around tumors because of inflam-
mation lead to a compression of the whole tumor (Stylianopoulos
et al, 2012; Jain et al, 2014; Northcott et al, 2018; Morikura & Miyata,
2019). In addition, in colon polyps, cancer-associated fibroblasts
encapsulate and actively compress epithelial cells. Spontaneous
cancer-associated fibroblasts actomyosin contractility is sensed by
cancer cells leading to the cytoplasmic relocalization of their YAP
proteins, preventing YAP/TAZ transcriptional effect, and reducing
epithelial cell growth (Barbazan et al, 2021 Preprint). Hippo pathway
containing transcriptional regulators YAP/TAZ can reprogram
cancer cells into cancer stem cells and incite tumor initiation,
progression, and metastasis. Furthermore, the Hippo pathway
crosstalks with morphogenetic signals, such as Wnt growth factors,
and is also regulated by RHO and G protein-coupled receptor, cAMP
(cyclic adenosine monophosphate), and PKA (protein kinase A)
pathways (Dasgupta & McCollum, 2019; Cobbaut et al, 2020; Cai et al,
2021). Class I PI3Ks are known to be upstream activators of YAP/TAZ
transcriptional pathway under tensile stress, positioning class I PI3Ks
proteins as potential regulators of an essential mechanotransduction
signaling (Chronopoulos et al, 2020; Di-Luoffo et al, 2021).

Compressive forces reduce cancer cell proliferation, especially in
the solid tumor center (Stylianopoulos et al, 2013; Nam et al, 2019;
Rizzuti et al, 2020). With this knowledge, we previously tested and
validated in vitro the hypothesis that the compression-induced
decreased proliferation of cancer cells reduces the efficiency of
chemotherapeutics known to target cycling cells (Rizzuti et al, 2020).
It is the case with the use of gemcitabine, reference treatment in
pancreatic cancer. Compressive forces modify the blood vessel
shape until collapsing its structure, and as a consequence, de-
creasing the tumor perfusion (Stylianopoulos et al, 2013). By de-
creasing the tumor perfusion, this would prevent molecular agents
to reach the cancer cells, further reducing the drug efficiency
(Stylianopoulos et al, 2012) (Fig 4A).

Tumor cell intrinsic adaptation to compression Whole tran-
scriptomics analysis reveals that signaling outputs induced by
compression converge to control the expression of genes involved
in glycolysis in glioblastoma cells (Calhoun et al, 2020). The fact that
glycolysis seems to be up-regulated in cancer upon compression is
opposite to what is described on chondrocytes (McCutchen et al,
2017). This process might enable cancer cell survival in compressed
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environments with low access to nutrients and oxygen (Kim et al,
2019), because of vessel collapse.

Studies converge to show that compression promotes cancer
cell motility and their migratory behavior (Pathak & Kumar, 2012).
Both the MAPK/ERK pathway, in brain cancer cell lines, and the
PI3K/AKT pathway, in pancreatic cancer cell lines, increase the
expression of the migration-related GDF15 (growth/differentiation
factor 15) gene which mediates cancer cell migration after their
compression (Kalli et al, 2019a, 2019b). In compressed pancreatic
cancer cell lines, up-regulation of p38 MAPK and JNK signaling
pathways and cytoskeleton remodelers (RAC1 and CDC42) were also
shown to promote migration (Kalli et al, 2022). Besides, the
compression-induced motility of tumoral cells also depends on the
cancer cell type studied. Brain neuroglioma cell lines migrate more
under compression than the more aggressive brain glioblastoma
cell lines even though both cell lines display an increased motility
in response to compression (Kalli et al, 2019b; Calhoun et al, 2020).
Molecular mechanism that explains this process possibly involves
the regulation of PI3K pathway, as PI3Kα is critical to control
metastatic behavior (Ippen et al, 2019; Thibault et al, 2021; Tehranian
et al, 2022). Compression also enhances the invasive phenotype of
cancer cells by specifically increasing the motility of peripheral
tumoral cells (Tse et al, 2012). The increased motility of peripheral
tumoral cells upon compressive forces was also found in a 3D
experiment for which mouse colon carcinoma cells were encap-
sulated and grown in alginate capsules (Alessandri et al, 2013).

Compression of cancer cells could further enhance their pro-
liferation when the forces are relaxed. When various epithelial
tumor spheroids are grown in softer hydrogels enabling a reduced
mechanical confinement in time compared with stiffer hydrogels,
increased cell growth occurs and activates SACs such as transient
receptor potential vanilloide 4 (TRPV4) that themselves activate the
PI3K/AKT axis. This would enable the cytoplasmic relocalization and
therefore inhibition of p27 (an inhibitor of cell cycle) resulting in a
cell cycle acceleration through a G1 to S phase transition (Nam et al,
2019). This adaptive behavior in response to compression is only
unleashed when tumor cells are relieved from their confinement.
Indeed, compression without confinement increases the prolifer-
ation of colon and glioblastoma cancer cells (Mary et al, 2022).

Interestingly, we and others identify that in the adaptive re-
sponse to compression of cancer cells, PI3K/AKT activation leads
either to cell proliferation, survival or to migration (Kalli et al, 2019a;
Nam et al, 2019; Di-Luoffo et al, 2023 Preprint), that is either pro-
tumoral or pro-migratory. Identifying ways to understand how to
block this adaptive response to compression could be a way to limit
cancer progression. As a proof of concept, we use a panel of breast
and pancreatic cancer cells where the PI3K pathway actively
controls cell survival and proliferation. We demonstrate that we can
further push the cell fate of cancer cells to trigger cell death under
compression if PI3Kα is inactivated by increasing autophagic flux
(Di-Luoffo et al, 2023 Preprint) data that are reminiscent to the
molecular processes described in IVDD (Li et al, 2021b). Increased
levels of autophagy in tumor cells promote growth of established
tumors and treatment resistance at the progressive stage (Bryant
et al, 2019). Combined control of PI3K and autophagy needs to be
tested as a novel way to control deleterious adaptive response of
cancer cells to compression (Fig 4B).

Tumor cell extrinsic adaptation to compression The microenvi-
ronment also adapts to compressive forces and is likely to con-
tribute to cancer progression. Compression controls gene
expression involved in glycolysis in breast cancer-associated fi-
broblasts (Kim et al, 2019; Calhoun et al, 2020), that might provide a
different metabolite supply to cancer cells; the impact on tumor
matrix remodeling is poorly investigated so far (Luo et al, 2022). A
recent study revealed that compression increases VEGFA gene
expression and protein level in breast cancer cells and associated
fibroblasts (Kim et al, 2017). Because VEGFA contributes to the
formation of new blood vessels (Claesson-Welsh & Welsh, 2013),
angiogenesismight be increased upon compression. Nowadays, the
impact of compressive forces on tumor vascularization and, con-
sequently, on drug delivery is not fully understood (Fig 4C).

Bystander action of compression induced by tumors in neigh-
boring normal cells Growth-induced compressive forces result in
an increased compression of the tumor interior that spreads to the
boundaries of the tumor (called radial compression) where con-
junctive stroma also sense compressive forces. Studies on colon
cancers revealed that a growing solid tumor exerts a mechanical
pressure on adjacent non-tumoral cells that induces a signaling
into cancer-initiating cells causing the formation of adjacent
tumoral foci through a pathway involving RET and the β-catenin
protein (Fernández-Sánchez et al, 2015; Nguyen Ho-Bouldoires et al,
2022) (Fig 4D).

Discussion and Future Directions

In homeostasis, compression modifies the signaling pathways and,
ultimately, the behaviors of the compressed cells and even indirectly,
the adjacent uncompressed cells. Depending on the context, com-
pression either induces or prevents cell proliferation, survival, dif-
ferentiation, and migration and changes the cell metabolism. These
behaviors occur during developmental processes (Xiong et al, 2020).

The impact of compressive forces during development is a vast
topic, beyond the field covered in this review and likely to expand.
Indeed, some studies show that the fate of stem cells depends on
the intensity of the mechanical load: in the presence of an adi-
pogenic medium, rat BMSCs subjected to a small-magnitude stress
undergo an osteogenic differentiation, whereas rat BMSCs sub-
jected to a large-magnitude stress undergo an adipogenic differ-
entiation (Song et al, 2017). Stemness is controlled by compression
in normal intestinal organoids (Li et al, 2021a). As stemness property
is relevant for cancer studies and is notably important in tumor and
metastatic dormancy, it is crucial to pursue this line of research in
both model organisms and cancer context.

Organ size is thought to be regulated in part by mechanical
forces. One hypothesis is that compressive forces increase as the
organ grows to reach a threshold inhibiting further organ growth.
Inhibition of cell proliferation by compression likely participates in
this termination of organ growth (Buchmann et al, 2014). The
compressive forces found in adult organs might also regulate cell
proliferation to maintain a constant organ size. Indeed, one study
suggests that compression might decrease proliferation of skeletal
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myoblast cells (Takemoto et al, 2015). How tumor overcomes this
physical limitation is a matter of importance.

Compression can drive pathologies (such as IVDD) or buildup
during pathology development (such as in cancer). Knowing the
selective biochemical signals that are triggered by compression
and that contribute to diseases could lead to the discovery of
efficient signal-targeted therapies. For example, the studies of IVDD
give insight on how to push cancer cells undergoing compression
towards cell death. Both the mitochondria-targeted antioxidant
MitoQ and the resveratrol molecule could positively impact IVDD
in vitro by stabilizing mitochondrial functions and increasing NP
matrix synthesis, respectively (Han et al, 2017; Kang et al, 2020). The
benefit or detriment of those strategies could be investigated in
cancer, where mitochondrial function plays a key role despite the
Warburg effect.

To reach the aim of developing therapies that consider the
influence of compression in cancer, several key outstanding
questions remain.

First, different mechanosensors of compressive forces were
identified: compression could change the conformation of ion
channels like Piezo-1 and Piezo-2 and activate as a consequence
transmembrane proteins like α5β1 integrin, MUC family. Recent
studies emphasized that intracellular, molecular, and organelle
crowding and nucleus deformation occur and could participate in
the starting point of the compression mechanotransduction (Guo
et al, 2017; Lomakin et al, 2020; Venturini et al, 2020). However, we
still need to identify the selective mechanosensors or the selective
mechanism of their activation by compression.

Furthermore, studies should now focus on confirming the
implicated pathways in vivo or in refined biomimetic devices. For
3D studies, attention should be paid to the geometry of the
produced tissue as it can impact the cell response to compression
(Berg et al, 2021). Besides, few in vivo compression methods have
been developed. By using magnets subcutaneously inserted close
to the mouse colon, Fernández-Sánchez et al deliver an in vivo
mechanical pressure, mimicking the one undergone by non-
tumoral tissues adjacent to a growing early colon tumor. This
study revealed that this compressive force could cause the for-
mation of new tumoral foci in the non-tumoral adjacent tissues
(Fernández-Sánchez et al, 2015). Another group, Nia et al used
modified cranial windows on mice to recapitulate compressive
forces caused by brain tumors (primary and metastatic tumors of
the cerebellar cortex and tumors of the cerebellum) (Nia et al,
2020). Combining this device with intravital imaging or other
assays could represent a powerful way to study the effect of
in vivo compression in cancer.

The signaling pathways induced in compressed cells lead to both
cancer and microenvironment cell adaptation by feedback loops
(Kalli et al, 2019a, 2019b; Kim et al, 2019; Calhoun et al, 2020). This
should be analyzed more comprehensively in various cancer cell
types to identify a selective factor critical for the adaptive response
to compressive forces. In this topic, we are interested in investi-
gating how PI3K signaling is a generic adaptive response of cancer
and microenvironment cells to compression (Di-Luoffo et al, 2021),
and in particular, on how autophagy response is a determinant of
cancer cell death upon compression and PI3K inhibition (Di-Luoffo
et al, 2023 Preprint).

In regenerative medicine, some studies attempt to use com-
pressive forces, or even to combine them with other constraints
exerting naturally (e.g., shearing forces), to obtain a model mim-
icking the human cartilage (Guo et al, 2016). One should be careful
to use modulation of compression to treat cancer. If therapies by
modifying extracellular matrix could alleviate the pressure within
the tumor, they could improve drug efficiency of chemotherapeutic
agents (Stylianopoulos et al, 2012; Rizzuti et al, 2020). However, once
unconfined, compressed cancer cellsmight bemore aggressive and
resist therapies. Fig 4 shows that compressed cancer cells evolve
and adapt. They ultimately increase their proliferative and invasive
phenotype and their capacity to survive and proliferate in harsh
environments (Stylianopoulos et al, 2013; Nam et al, 2019; Rizzuti
et al, 2020). This process might trigger selection of selective genetic
and epigenetic traits that need to be characterized. Those traits
might lead to both cancer progression and to cancer resistance to
targeted therapies.

One aspect of the compression-induced cell response that is
currently understudied is the relationship between genetic alterations
and cancer response to a compressive environment. Emerging evi-
dence on the studied panel of glioblastoma cells suggests that
compression-induced cell signaling and its cellular output might
depend on the cell aggressivity and their genetic background (Kalli
et al, 2019b; Calhoun et al, 2020). We are thus currently developing
novel approaches to study this association in an unbiased way.

In conclusion, understanding selective compression-induced ef-
fects in cancer is needed for the success of cancer mechanother-
apeutics, such as cancer treatment targeting matrix sensing or
morphogenetic programs (Sheridan, 2019). Estimating compressive
forces in patients is necessary to knowmore aboutmechanobiology in
cancers and tailor mechanotherapy to each patient. Alleviating or
increasing the tumor pressure for patient therapy is still a matter of
debate (Leite & Barbosa, 2019). However, as the compressive forces
activate selective oncogenic pathways (Di-Luoffo et al, 2023 Preprint),
compression could induce novel tumor vulnerabilities that can be
targeted by novel emerging mechanotherapies.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202201862.

Glossary

Mechanosensor: Protein-sensing mechanical stresses and trans-
mitting this mechanical signal in a biochemical signal such as
signaling pathways.
Mechanotransduction: Transformation of a mechanical stress into
chemical–biological signals.
BMP (bone morphogenetic protein): Group of growth factors in-
volved in development of tissues including bones. BMP2 is a
member of this family.
β-catenin: Member of the catenin protein family which is a subunit
of the cadherin protein complex, and which acts as an intracellular
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signal transducer. It plays amongst others an important role in the
canonical Wnt pathway.
CDC42 (cell division control protein 42 homolog): Member of the Rho
family (Ras homolog family) which is a member of the Ras su-
perfamily of small GTPases.
GPCR (G-protein-coupled receptors): Also called seven-
transmembrane receptors or heptahelical receptors, they are
proteins located in the cell membrane that bind extracellular
substances and transmit signals from these substances to intra-
cellular tripartite molecules called a heterotrimeric G protein
(guanine nucleotide-binding proteins).
GSK-3 (glycogen synthase kinase 3): Originally identified as a
regulator of glycogen metabolism, GSK-3 acts as a downstream
regulatory switch for numerous signaling pathways, including
cellular responses to WNT, growth factors, insulin, receptor tyrosine
kinases (RTK), Hedgehog pathways, and G-protein-coupled re-
ceptors (GPCR). Two isoenzymes encoded by two different genes
exist (GSK-3α and GSK-3β).
Hippo/YAP/TAZ pathway: Cell signaling pathway which negatively
regulates YAP (Yes-associated protein) and TAZ (transcriptional
coactivator with PDZ-binding motif). YAP and TAZ are both tran-
scription coactivators which bind to the TEAD transcription factors
(TEAD1–4) and notably promote cell proliferation and survival.
When active, the Hippo pathway causes YAP and TAZ nuclear export
or degradation. YAP and TAZ activities is also modulated by Hippo
pathway-independent mechanisms.
JNK (c-Jun N-terminal kinase): Group of kinases which are members
of the mitogen-activated protein kinase (MAPK) family.
MAPK/ERK pathway: Cell signaling pathway activated by growth
factors or cytokines. It involves the cascade activation of RAS
(GTPase), RAF [serine/threonine kinase, member of mitogen-
activated protein (MAP) kinase kinase kinase or MAP3K family],
MEK1/2, also called mitogen-activated protein kinase kinases 1
and 2 (kinases with serine/threonine kinase and tyrosine ki-
nase activities) and ERK1/2, also called extracellular signal-
regulated kinases 1 and 2 (serine/threonine kinases). ERK1/2
are members of the mitogen-activated protein kinase (MAPK)
family of protein.
p38 MAPK: Group of kinases which are members of the mitogen-
activated protein kinase (MAPK) family.
PI3K/AKT pathway: Cell signaling pathway in which PI3Ks (phos-
phoinositide 3-kinases) are activated by several signals (e.g.,
hormones, growth factors, extracellular matrix) and phosphorylate
phosphatidylinositol on 3- hydroxyl group positions of the inositol
ring to produce PIP3 [Phosphatidylinositol (3,4,5)-trisphosphate].
Through recruitment of various proteins at the PIP3, the AKT protein
is phosphorylated and thus activated to phosphorylate other
proteins at serine and threonine sites. This pathway also closely
controls actin cytoskeleton rearrangements through RHO and ROCK
activation.
RET (rearranged during transfection): Tyrosine kinase receptor
which is a subunit of a complex binding to growth factors of the
glial-derived neurotropic factor (GDNF) family.
RAC1 (Ras-related C3 botulinum toxin substrate 1): Member of the
Rho family (Ras homolog family), which is a member of the Ras
superfamily of small GTPases.

RHO (Ras homolog family member): Members of the Rho family (Ras
homolog family), which are part of the Ras superfamily of small
GTPases. RHOE and RHOA have antagonistics action in actin cy-
toskeleton regulation.
ROCK (RHO-associated protein kinase): Member of the AGC (PKA/
PKG/PKC) family of serine–threonine protein kinases.
RUNX2 (runt-related transcription factor 2): Transcription factor
associated with osteoblast differentiation.
SRC (proto-oncogene tyrosine-protein kinase Src): Family of non-
receptor tyrosine kinases able to activate, in particular, MAPK/ERK
signaling.
Stretched-activated channels (SACs): SACs are described to re-
spond to mechanical forces along the plane of the cell membrane
(membrane tension), but not to hydrostatic pressure perpendicular
to it.
TIMP3/TGF-β1 pathway: Cell signaling pathway in which TGF-β1
(transforming growth factor 1) binds to its cell membrane receptor,
leading to the phosphorylation, and thus activation of SMAD2 and
SMAD3, which in turn can induce the expression of TIMP3 (tissue
inhibitor of matrix metalloproteinase).
WNT: Wnt proteins belong to an evolutionarily conserved family of
secreted cysteine-rich glycoproteins. Wnts can activate β-catenin-
dependent canonical Wnt pathway and β-catenin-independent
noncanonical Wnt pathway. A key feature of the canonical Wnt
pathway is the regulated degradation of transcription coactivator
β-catenin by the β-catenin destruction complex which includes
glycogen synthase kinase 3α and 3β (GSK-3α and GSK-3β).
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