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Abstract

Modern data often take the form of a multiway array. However, most classification methods are 

designed for vectors, i.e., 1-way arrays. Distance weighted discrimination (DWD) is a popular 

high-dimensional classification method that has been extended to the multiway context, with 

dramatic improvements in performance when data have multiway structure. However, the previous 

implementation of multiway DWD was restricted to classification of matrices, and did not 

account for sparsity. In this paper, we develop a general framework for multiway classification 

which is applicable to any number of dimensions and any degree of sparsity. We conducted 

extensive simulation studies, showing that our model is robust to the degree of sparsity and 

improves classification accuracy when the data have multiway structure. For our motivating 

application, magnetic resonance spectroscopy (MRS) was used to measure the abundance of 

several metabolites across multiple neurological regions and across multiple time points in a 

mouse model of Friedreich’s ataxia, yielding a four-way data array. Our method reveals a robust 

and interpretable multi-region metabolomic signal that discriminates the groups of interest. We 

also successfully apply our method to gene expression time course data for multiple sclerosis 

treatment. An R implementation is available in the package MultiwayClassification at http://

github.com/lockEF/MultiwayClassification.
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1 Introduction

Development and wide deployment of advanced technologies have produced tools that 

generate massive amounts of data with complex structure. These data are often represented 

as a multiway array, which extends the two-way data matrix to higher dimensions. 

This paper concerns the task of classification from multiway data. As our motivating 

data application we consider magnetic resonance spectroscopy (MRS) data for a study 
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of Friedreich’s Ataxia in mice. The MRS data measures the concentration of several 

metabolites across multiple regions of the brain, and across multiple time points after a 

treatment, yielding a four-way data array: mice × metabolites × regions × time. We are 

interested in identifying signal that distinguishes the treatment groups using the totality of 

the MRS data.

A naive approach is to transform the multiway array to a vector, and then apply high-

dimensional classifiers designed for vector-valued data to the transformed vector. However, 

the effects of the same metabolite in different brain regions and at different time points 

on the classification are very likely correlated. Ignoring the dependence across different 

dimensions may result in inaccurate classifications and complicate interpretation. Thus, the 

multiway structure should be considered in the model. In addition, only some metabolites 

may be useful for distinguishing the classes, and these distinctions may only be present 

for some time points. Exclusion of uninformative features can improve classification 

performance and interpretation, and this motivates an approach that also accommodates 

a sparse structure. In what follows we briefly review existing high-dimensional classifiers 

(Section 1.1), sparse high-dimensional classifiers (Section 1.2), and classifiers for multiway 

data (Section 1.3); our methodological contributions are summarized in Section 1.4.

1.1 High-dimensional classification of vectors

Traditional approaches to classification like logistic regression and Fisher’s linear 

discriminant analysis (LDA) are prone to overfitting with a large number of features, 

and this has motivated several classification methods for high-dimensional vector-valued 

data. We can roughly divide these methods into two categories: non-linear classifiers such 

as k-nearest neighbor classification (Cover and Hart 1967) and random forests (Breiman 

2001), and linear classifiers such as penalized LDA (Witten and Tibshirani 2011), support 

vector machines (SVM) (Cortes and Vapnik 1995), and distance weighted discrimination 

(DWD) (Marron et al. 2007). Non-linear classifiers are flexible to use as they require 

minimal assumptions, but may not have straightforward interpretations. In contrast, linear 

classifiers use a weighted sum of the measured features. SVM and DWD are both commonly 

used in biomedical research. However, DWD tends to outperform SVM in scenarios with 

high-dimensional data and a lower sample size; here SVM suffers from the data piling 

problem, which means many cases will pile up at the discriminating margins as a symptom 

of overfitting (Marron et al. 2007).

1.2 High-dimensional classification of vectors with sparsity

In their original formulations, SVM, DWD, and other linear classification approaches use 

all available variables. However, in practice there may be only a few important variables 

affecting the outcome, especially in biomedical applications to disease classification with 

imaging or genomics data (Zou 2019). Thus, methods that use all variables for classification 

may include too many noise features and deteriorate the classification performance due 

to error accumulation (Fan and Fan 2008). Sparse methods, in which only a subset of 

variables are used for classification, can improve performance in this respect and also 

improve interpretation by identifying a small number of informative features. Zou (2019) 

gave a detailed review of high-dimensional classification methods that can account for 
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sparsity. Many sparse classifiers were derived based on high dimensional extensions of the 

classical discriminant analysis, such as linear programming discriminant (LPD) (Cai and Liu 

2011), penalized LDA (Witten and Tibshirani 2011), regularized optimal affine discriminant 

(ROAD) (Fan et al. 2012) and direct sparse discriminant analysis (DSDA) (Mai et al. 2012). 

Other methods have extended margin-based approaches like SVM and DWD. Hastie et al. 

(2009) gives a nice complete introduction of SVM from its geometric view to its statistical 

loss + penalty formulation. A class of methods extended SVM to enforce sparsity by using 

different loss functions or penalties, such as lasso penalized SVM (Bradley and Mangasarian 

1998), elastic-net penalized SVM (Wang et al. 2008) and SCAD penalized SVM (Zhang et 

al. 2006). For DWD, the objective function can also be represented as an analogous loss + 

penalty formulation (Liu et al. 2011). Wang and Zou (2016) proposed sparse DWD (SDWD) 

by adding lasso and elastic-net penalties on the model coefficients, which can improve 

performance and efficiency of DWD in high-dimensional classification.

1.3 High-dimensional classification of multiway arrays

There is a growing literature on multiway classification by extending classifiers of vectors 

to multiway arrays using factorization and dimension reduction techniques. Ye et al. 

(2004) and Bauckhage (2007) extended LDA and related approaches to multiway data. 

Tao et al. (2005) proposed a supervised tensor learning framework by performing a 

rank-1 decomposition on the coefficients to reduce dimension, in which the coefficients 

are factorized into a single set of weights for each dimension. Wimalawarne et al. (2016) 

investigated tensor-based classification where a logistic loss function and a penalty term 

with different continuous tensor norms for the coefficients are considered. Pan et al. (2018) 

developed a classification approach that allows for multiway data and covariate adjustment; 

their proposal, termed Covariate-Adjusted Tensor Classification in High Dimensions 

(CATCH), assumes a multiway structure in the residual covariance but not in the signals 

discriminating the classes. Lyu et al. (2017) proposed multiway versions of DWD and 

SVM under the assumption that the coefficient array is low-rank. Their implementation of 

multiway DWD was shown to dramatically improve performance over two-way classifiers 

when the data have multiway structure, and also tended to outperform analogous extensions 

of SVM across all applications and simulation scenarios. However, their method is restricted 

to use for three-way data and does not account for sparsity.

1.4 High-dimensional classification of multiway arrays with sparsity: present 
contributions

In this paper, we developed a general framework for multiway classification that is 

applicable to any number of dimensions and any degree of sparsity. Because of its strong 

performance relative to SVM in prior work, we focus on extensions of DWD. Our proposed 

approach builds a connection between the two approaches of multiway DWD and sparse 

DWD. The central assumption is that the signal discriminating the groups can be efficiently 

represented by meaningful patterns in each dimension, which we identify by imposing a 

low-rank structure on the coefficient array. Adding penalty terms to multiway DWD can 

enforce sparsity and give better performance even when the data are not sparse. The rest 

of the paper is organized as follows. In Section 2 we introduce our formal mathematical 

framework and notation. In Section 3 we briefly review the standard DWD, sparse DWD 
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and multiway DWD methods. In Section 4 we describe our proposed multiway sparse 

DWD method and algorithms for estimation. We show the multiway approach has improved 

performance and interpretation compared with existing methods through simulation studies 

(Section 5). We considered two data applications in Section 6, and these results showed that 

the multiway sparsity model is robust to data with any degree of sparsity and has competitive 

classification performance over other classification techniques. The article concludes with 

discussion and future directions in Section 7.

2 Notation and framework

Throughout this article bold lowercase characters (a) denote vectors, bold uppercase 

characters (A) denote matrices, and blackboard bold uppercase characters A  denote 

multiway arrays of the specified dimension (e.g., A:P1 × P2 × ⋯ × PK). Square brackets 

index entries within an array, e.g., A p1, p2, ⋯, pK . The operators ∥·∥1 and ∥·∥2 define the 

generalization of the L1 and L2 norms, respectively:

‖A‖1 = ∑
p1 = 1

P1
⋯ ∑

pK = 1

PK
A p1, p2, ⋯, pK , ‖A‖2

2 = ∑
p1 = 1

P1
⋯ ∑

pK = 1

PK
A p1, p2, ⋯, pK

2 .

The generalized inner product for two arrays A and B of the same dimension is

A ⋅ B = ∑
p1 = 1

P1
⋯ ∑

pK = 1

PK
A p1, …, pK B p1, …, pK ,

the generalized outer product for A:P1 × ⋯ × PK and B:Q1 × ⋯ × QL is 

A ∘ B:P1 × ⋯ × PK × Q1…QL where

A ∘ B p1, …, pK, q1, …, qL = A p1, …, pK B q1, …, qL .

For our context, X:N × P1 × ⋯ × PK gives data in the form of a K-way array for N subjects, 

where Pk is the size of the kth dimension for k = 1, …, K. Each subject belongs to one of two 

classes denoted by −1 and + 1; let yi ∈ {−1, 1} give the class label for each subject and y = 

[y1, …, yN]. Our goal is to predict the class labels y based on the multiway covariates X.

3 DWD and its extensions

3.1 Distance Weighted Discrimination (DWD)

Here we briefly describe the standard DWD for high-dimensional vector-valued xi for each 

subject, given by the rows of X: N × P. The goal of DWD and related methods is to find 

the hyperplane b = [b1, …, bp] which best separates the two classes via the subject scores 
Xb. To solve this standard binary classification problem, SVM (Cortes and Vapnik 1995) 

identifies the hyperplane that maximizes the margin separating the two classes. However, 

SVM can suffer from the data piling problem as shown in Marron et al. (2007), which means 

many data points may pile up on the margin when the SVM is applied to high-dimensional 
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data. To tackle this issue, they proposed distance weighted discrimination (DWD) which 

finds the separating hyperplane that minimizes the sum of the inverse distance from the data 

points to the hyperplane. The standard DWD is formulated as the following optimization 

problem:

argmin
r, b, b0, ξ

∑
i = 1

N 1
ri

+ C ξi

subject to ri = yi xi
Tb + b0 + ξi ≥ 0 and ξi ≥ 0 for i = 1, …, N, and ∥ b ∥≤ 1. Here, C is the 

penalty parameter and b0 is an intercept term. The classification rule is given by the sign of 

xib + b0, and thus ξi can be considered a penalty for misclassification.

3.2 Sparse DWD

The standard DWD may not be suitable for high dimensional classification when the 

underlying signal is sparse, as it does not conduct variable selection. To further improve 

performance and efficiency of DWD in high-dimensional classification, Wang and Zou 

(2016) proposed sparse DWD by adding penalties on the model coefficients to enforce 

sparsity. The generalization of standard DWD to sparse DWD is based on the fact that 

the objective function for standard DWD can be decomposed into two components: loss 

function and penalty (Liu et al. 2011):

arg min
b0, b

1
N ∑

i = 1

N
V yi b0 + xi

Tb + λ2

2 b
2

2

(1)

where the loss function is given by

V (u) = 1 − u,  if u ≤ 1/2
1/(4u),  if u > 1/2. (2)

To account for sparsity, many variations of penalties can be added in the model, such as 

lasso and elastic-net (Wang and Zou 2016). The elastic-net penalty often outperforms the 

lasso in prediction, and thus the elastic-net penalized DWD is attractive, with the objective 

function

arg min
b0, b

1
N ∑

i = 1

N
V yi b0 + xi

Tb + Pλ1, λ2 b (3)

with V(·) defined as in (2) and

Pλ1, λ2(b) = λ1‖b‖1 + λ2
2 ‖b‖2

2

in which λ1 and λ2 are tuning parameters for regularization. Both parameters control the 

shrinkage of the coefficients toward 0. However, the L1 penalty controlled by λ1 may result 

in some model coefficients being shrunk exactly to 0, and in this way, sparsity (retention 
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of relatively few of the covariates for the classification) is imposed. In practice, λ1 and λ2 

can be determined by cross-validation. Comparing the objectives (1) and (3), note that the 

penalized elastic net DWD is equivalent to standard DWD when λ1 = 0.

3.3 Multiway DWD

The standard DWD (Section 3.1) and sparse DWD (Section 3.2) are designed for high-

dimensional classification on vector-valued data. Lyu et al. (2017) proposed a multiway 

DWD model which extends the standard DWD from single vector to multiway features. The 

assumption of this model is that the multiway coefficient matrix can be decomposed into 

patterns that are particular to each dimension, giving a low-rank-representation.

Consider classification of subjects with matrix valued covariates Xi: P1 × P2, concatenated to 

form the three-way array X:N × P1 × P2 (for example, mice by metabolites by brain regions). 

In this multiway context, the coefficients take the form of a matrix B: P1 × P2, and the 

separating hyperplane is given by f(Xi) = XiB where B is the coefficient matrix. The rank-1 

multiway DWD model assumes that the coefficient matrix B has the rank-1 decomposition: 

B = u1u2
⊤, where u1: P1 × 1 and u2: P2 × 1 denote vectors of weights for each dimension. 

Under this assumption, the hyperplane to separate the two classes is:

f Xi = Xi ⋅ B = ∑
i1 = 1

P1

∑
i2 = 1

P2
Xi i1, i2 u1 i1 u2 i2 .

For example, for MRS data of the form Xi: Metabolites × Regions, u1 gives a discriminating 

profile across the metabolites and u2 weights that profile across the different regions. The 

rank R model allows for additional patterns in each dimension via B = U1U2
⊤ where U1: P1 × 

R and U2: P2 × R. The coefficients are estimated by iteratively updating the weights in each 

dimension to optimize an objective function. It has been shown that this multiway DWD 

model can improve classification accuracy when the underlying true model has a multiway 

structure and can provide a simple and straightforward interpretation (Lyu et al. 2017).

4 Proposed methods

We propose a general framework for classifying high-dimensional multiway data that 

combines aspects of sparse DWD (Section 3.2) and multiway DWD (M-DWD) (Section 

3.3). The proposed method can be considered as a multiway version of sparse DWD that 

allows for any number of dimensions Xi:P1 × ⋯ × PK, combined across subjects to form 

X:N × P1 × ⋯ × PK. In the following we first describe our generalization of multiway DWD 

to an arbitrary number of dimensions (Section 4.1), then we describe our sparsity inducing 

objective function classification method that assumes the coefficient array has a low-rank 

decomposition (Section 4.2).

4.1 Generalized multiway DWD

The generalized rank-1 multiway model assumes that the coefficient array B:P1 × ⋯ × PK has 

a rank-1 decomposition B = u1 ∘ u2 ∘ ⋯ ∘ uK, where uk k = 1
K  denote the vector of weights for 
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each dimension. The hyperplane for separating the two classes is f Xi = Xi ⋅ B, and thus for 

the rank-1 model

f Xi = ∑
i1 = 1

P1
⋯ ∑

iK = 1

PK
X i, i1, ⋯, iK u1 i1 u2 i2 ⋯uK iK .

For our motivating application, u1 identifies a metabolite profile that is weighted (u2) and 

time points (u3) (or equivalently, a time profile that is over the regions (weighted across the 

metabolites and regions) to discriminate the classes.

The rank-1 model assumes the classification is given by combining a single pattern in 

each dimension. However, in practice multiple patterns may contribute, e.g., a different 

metabolite profile may affect the classification for different regions of the brain. Thus, 

we propose a rank-R model for the coefficient array B that is assumed to have a rank-R 

Candecomp/Parafac (CP) factorization (Harshman 1970):

B = U1, …, UK = ∑
r = 1

R
u1r ∘ ⋯ ∘ uKr

where Uk: Pk × R for k = 1, …, K with columns ukr as the weight for the kth dimension and 

rth rank component. The coefficient array B in the rank-1 multiway model is a special case 

of the rank-R multiway model when R = 1. Moreover, as the CP factorization extends 

the matrix rank, this model is equivalent to that for the multiway DWD approach in 

Section 3.3 when K = 2. Note that with no constraints on the coefficient array B the 

number of free parameters is ∏k = 1
K Pk, and with the rank-R constraint B has R P1 + ⋯ + PK

free parameters. Thus, in addition to facilitating interpretation of relevant patterns in each 

dimension, a low-rank approach can reduce over-fitting and improve performance when 

there is multiway structure. While further restrictions (e.g., orthogonality) are needed for 

the identifiable of the components when K = 2, the components are identifiable under a 

much broader set of conditions when K > 2, including linear independence of the columns 

Uk in at least two dimensions (Bro 1997). Thus, while we rotate the components to satisfy 

orthogonality for the two-way model in Section 3.3, no such step is needed for the higher-

order context.

4.2 Objective functions

To allow for sparsity in the generalized multiway DWD model, we consider an extension of 

the sparse DWD objective (3),

ℎ y, X; B, b0 = 1
N ∑

i = 1

N
V yi b0 + Xi ⋅ B + Pλ1, λ2(B), (4)

which we minimize under the restriction that rank B = R. For the penalty Pλ1, λ2(B) we 

consider different extensions of the elastic net to low-rank multiway coefficients, which do 

or do not distribute the L1 and L2 penalties across the factorization components:
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Pλ1, λ2
B (B) = λ1‖B‖1 + λ2

2 ‖B‖2
2

Pλ1, λ2
U (B) = λ1 ∑

r = 1

R
∏

k = 1

K
ukr 1 + λ2

2 ∑
r = 1

R
∏

k = 1

K
ukr 2

2, or Pλ1, λ2 B = λ1 ∑
r = 1

R
∏

k = 1

K
ukr 1 + λ2

2 ‖B‖2
2. 

For R = 1, the three penalties are equivalent. For R > 1, we find that the solution of the 

objective for the penalty Pλ1, λ2
U (B) is often shrunk to a lower rank than the specified rank R 

(see Section S2 of the supplementary material). This is due to the distributed L2 penalty 

term, and similar behavior has been observed in other contexts; for example, when K = 2 the 

distributed L2 penalty is equivalent to the nuclear norm penalty for matrices (Lock 2018), 

which favors a smaller rank.

However, the distributed version of the L1 penalty in Pλ1, λ2
U ( ⋅ ) and Pλ1, λ2( ⋅ ) intuitive because 

it enforces sparsity in the weights for each dimension (e.g., for the metabolites, regions, 

and time points) separately for each rank-1 component. For example, if different subsets 

of metabolites are discriminative in different brain regions, that is efficiently captured 

by multiple rank-1 components with distinct sparsity. Moreover, Pλ1, λ2( ⋅ ) is amenable to 

coordinate-wise approaches to optimization (see Section 4.3), which are not straightforward 

for Pλ1, λ2
B ( ⋅ ) Thus, in what follows, we use Pλ1, λ2( ⋅ ) as our penalty.

This objective function for generalized sparse multiway DWD subsumes standard DWD, 

multiway DWD, and sparse DWD. The objective function is equivalent to that for standard 

DWD when K = 1 and λ1 = 0 (Marron et al. 2007; Liu et al. 2011), it is equivalent to sparse 

DWD (Wang and Zou 2016) when K = 1 and λ1 > 0, and it is equivalent to multiway DWD 

(Lyu et al. 2017) if λ1 = 0 and K = 2.

4.3 Optimization

Here we describe the estimation algorithm for fixed penalty parameters λ1 and λ2; selection 

of these parameters is discussed in Section 4.4. To obtain estimates of the coefficient 

array B and intercept b0, we iteratively optimize the objective function ℎ y, X, B, b0  (4) for 

each dimension to obtain the estimated weights for that dimension with other dimension’s 

weights fixed. This general iterative estimation approach is described in Algorithm 1.

1. Initialization. Generate K random matrices Uk: Pk × R for k = 1, …, K. In 

our implementation, entries are generated independently from a Uniform[0,1] 

distribution. Compute the coefficient array B = U1, …, UK , and initialize b0 = 0.

2. Iteration. Update U1 and b0 by optimizing the conditional objective,

b0, U1 = arg min
b0, U1

ℎ y, X; U1, U2, …, UK , b0 . (5)
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Similarly update U2, …, UK, with the value for b0 updated at each step. The 

details of the optimization sub-step (5) are described below.

3. Convergence. Set BNew = U1, …, UK  If BNew − B 2
2

> ϵ for some prespecified 

threshold ϵ, update B = BNew and repeat Step 2. Otherwise, our final estimates 

are B = B and b 0 = b0.

Algorithm 1: General estimation steps.

The procedure for solving the optimization problem in equation (5) depends on whether the 

model is rank-1 (R = 1) or higher rank (R ≥ 2). If R = 1, then B = u1 ∘ ⋯ ∘ u2 and the objective 

in (5) can be expressed as

1
N ∑

i = 1

N
V yi b0 + xi

(1)Tu1 + λ1 ∏
k = 2

K
uk 1 u1 1 + λ2

2 ∏
k = 2

K
uk 2

2 u1 2
2,

where

xi
(1) p1 = Xi p1, … ⋅ u2 ∘ ⋯ ∘ uK  for p1 = 1, …, P1 . (6)

This is equivalent to the vector sparse DWD objective (3) as a function of b0 and u1, and 

thus can be solved using existing software such as the sdwd function in the R package 

SDWD (Wang and Zou 2015). For rank R ≥ 2, we solve (5) using a coordinate descent 

algorithm based on the majorization-minimization (MM) principle (Hunter and Lange 

2004), thus extending the algorithm described in Wang and Zou (2016). The steps for this 

procedure are given in Algorithm 2, and analogous updates are used for U2, …, UK.

To derive Step b of Algorithm 2, consider replacing U1[j, r] with U1[j, r] in B to obtain B *. 

Then,

ℎ y, X;, B * , b0 = 1
N ∑

i = 1

N
V μi + yiXi

(1)[j, r] U1[j, r] − U1[j, r] + Pλ1, λ2 B * ,

and we approximate ℎ y, X;B * , b0  with a quadratic form analogous to that in Wang and Zou 

(2016),

1
N ∑

i = 1

N
V μi + 1

N ∑
i = 1

N
V ′ μi U1[j, r] − U1[j, r] + 2 U1[j, r] − U1[j, r] 2

+ Pλ1, λ2 B * .
(7)

Note that

Pλ1, λ2 B * = λ1qr U1[j, r] + λ2
2 W[r, r]U1[j, r]2 + ∑

r′ ≠ r

R
W r, r′ U1 j, r′ + C,
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for a value C that is constant with respect to U1[j, r]. Thus, the minimizer of (7) over U1[j, r] 
is given by U1[j, r]new in Step b. A similar justification is used for the update of the intercept 

in Step c.

Step a: Compute Xi
(1):P1 × R with columns defined as in (6) for each rank component r = 1, 

…, R:

Xi
(1) p1, r = Xi p1, … ⋅ u2r ∘ ⋯ ∘ uKr

and let μi = yi b0 + U1 ⋅ Xi
(1)  for i = 1, …, N (note: U1 ⋅ Xi

(1) = Xi · B). Define W: R × R by 

W = U2
TU2 ⋯ UK

T UK .

Step b: Update U1 via the MM principle and cyclic coordinate decent over j = 1, …, P1 and 

r = 1, …, R.

• Compute z = 4U1[j, r] − 1
N ∑i = 1

N V ′ μi Xi
(1)[j, r]yi − λ2∑r′ ≠ r

R W r, r′ U1 j, r′ , where 

V′ is the derivative of V in (2).

• Compute U1[j, r]new = S z, λ1qr
4 + λ2W[r, r] , where qr = ∏k = 2

K Ukr 1 is the weight for the 

L1 penalty, and S(z, g) = sign (z)(| z | − g)+ is the soft-thresholding operator in 

which ω+ = max (ω, 0).

• Update μi = μi + yi U1[j . r]new − U1[j, r] Xi[j, r] for i = 1, …, N.

• Set U1[j, r] = U1[j, r]new.

Step c: Update the intercept.

• Compute b0
new = b0 − ∑i = 1

N V ′ μi yi/(4N)

• Update μi = μi + yi b0
new − b0

• Set b0 = b0
new

.

Step d: Repeat steps b-c until the difference between new estimates and 

previous estimates is smaller than a prespecified threshold, for example, 

∑j = 1
P1 ∑r = 1

R U1[j, r]new − U1[j, r] 2 + b0
new − b0

2 < ϵ. At the end of iterations, we have the 

updated weight matrix U1.

Algorithm 2: Update for U1 when R ≥ 2.

In general, Algorithm 1 does not guarantee convergence to a global optimum; it converges 

to a coordinate-wise optimum, meaning the objective cannot be improved by changing any 

of the components U1, U2, …, Uk or b0 while keeping the others fixed. We conducted 

simulation studies to assess the convergence of the proposed method and other alternative 

methods in Section 5.2, and in Section S4 of the supplementary material. In practice, we find 

that starting with multiple initial values and pruning the paths with inferior objective values 

can improve the algorithm and obtain more robust results.
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4.4 Selection of tuning parameters

To determine the best pair of λ1 and λ2, K-fold cross-validation can be used across a 

grid of λ1 and λ2 values. For example, by default we set the following candidates for the 

tuning parameters: λ1 = (10−4, 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 1) and 

λ2 = (0.25, 0.50, 0.75, 1.00, 3, 5). The misclassification rate under cross-validation is one 

potential criterion; however, different parameter values may yield the same misclassification 

rate, especially if the classes are perfectly separated or nearly perfectly separated (see 

Section S7). We thus recommend using t-test statistics for the DWD scores between the 

two classes on the validation sets as a more general measure of separation for selecting 

tuning parameters. For each pair of λ1 and λ2 we compute the predicted DWD scores for all 

subjects via K-fold cross-validation, and then report t-test statistics for the difference of the 

predicted DWD scores between the two classes using the test-data. We selected as optimal 

the pair of λ1 and λ2 with the maximum t-test statistic. For a fixed λ2, the warm-start trick 

is used in the algorithm to select the optimal λ1. That is, we use the solution at a smaller 

λ1 as the initial value (the warm-start) to compute the solution at the next λ1, improving 

computational efficiency. The performance of cross-validation for selecting λ1 an λ2 is 

evaluated through simulation studies presented in the supplementary material (Section S1). 

If the rank R is unknown it can also be estimated via cross-validation, e.g., by selecting 

the triplet (λ1, λ2, R) with the largest t-statistic on the validation sets; this is evaluated in 

Section S6 of the supplementary material.

5 Simulations

In our simulation studies, we first compare the proposed rank-1 multiway sparse model with 

the existing methods in Section 5.1. In Section 5.2 we explore convergence and its impact 

on performance. In Section 5.3, we show the rank-R sparse model performs well when the 

true data generating model has a higher rank. Additional simulation studies are presented in 

the supplementary material, including simulations to assess cross-validation for parameter 

selection, rank misspecification, correlated predictors, and different penalization approaches.

5.1 Rank-1 model simulation design

To evaluate the performance of the rank-1 multiway sparse DWD model (M-SDWD), we 

compared it with a rank-1 multiway sparse DWD model with λ1 = 0 (M-SDWD λ1 = 

0), non-sparse multiway DWD (M-DWD), and the full model sparse DWD (Full SDWD). 

For M-DWD we use an extended version of multiway DWD (Lyu et al. 2017) that allows 

for data of any dimension K > 2. The full model sparse DWD is a naive way to analyze 

multiway data by applying the standard sparse DWD (Wang and Zou 2016) to the vectorized 

multiway data, without considering multiway structure (i.e., no rank constraint). In this 

simulation study, data were generated under several conditions, including different multiway 

array dimensions, sample sizes, and sparsity levels. For all scenarios, training datasets with 

two classes of equal size (N0 = N1 = N / 2, N = 40 or 100) were generated. The predictors 

have the form of a three-way array of dimensions Xi:P1 × P2 × P3. We consider two settings 

of different dimensionality: higher dimensional (30 × 15 × 15) and lower dimensional (15 

× 4 × 5). In each training dataset, for the N0 samples corresponding to class −1, the entries 

of Xi were generated independently from a N(0, 1) distribution. For the other N1 samples 
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corresponding to class 1, the entries of Xi were generated independently from a normal 

distribution with variance 1 and the mean for each entry given by the array αμ1 where μ1 

= u1°u2°u3; the non-zero values of uk, k = 1, 2, 3, were generated independently from a 

N(0, 1) distribution. Here, α gives the signal to noise ratio, i.e., the variance of the mean 

difference between the two classes over the residual variance. We set α = 0.2 for this 

simulation study. Section S3 of the supplementary material presents results with different 

signal to noise ratios. Section S7 presents results under a multiway residual covariance 

structure assumed by the CATCH method (Pan et al. 2018), with comparisons to CATCH.

We consider three scenarios with varying degrees of sparsity: more sparsity, less sparsity 

and no sparsity. Under the more sparsity scenario, about 1/3 of the mean weights in each 

dimension ({u1, u2, u3}) are set to zero. Specifically, under the high dimensional case (30 

× 15 × 15), 25 entries of u1, and 10 entries each of u2 and u3 are set to zero, that is, 5 ×5 

× 5 of the variables have signal discriminating the classes; under the low dimensional case 

(15 × 4 × 5), only 5 entries of u1, and 2 entries each of u2 and u3 are non-zero. Under the 

less sparsity scenario, sparsity is considered for only one dimension. In particular, 10 entries 

of u1 under both the high and low dimensional cases are set to zero, and the rest of the 

uk are non-zero. Under the no sparsity case, all variables for each uk are nonzero. For the 

high dimensional case we also considered an additional case with even more sparsity in the 

model: only 3 variables of each dimension have signals and the rest of variables for each 

dimension are zero. Each scenario was replicated 200 times.

Under all these scenarios, as a scale-invariant measure of similarity with the true 

discriminating signal we computed the sample Pearson correlation between the vectorized 

estimated coefficients B and the vectorized “true” coefficients μ1. Here, μ1 is the mean 

difference between the classes and corresponds to the Bayes linear classifier. We assess 

predictive performance by considering misclassification rates for test data that were 

generated from the same distributions as the training data with the same sample sizes (N 
= 40 or 100). To assess recovery of the sparsity structure, we computed the true positive 

rates and true negative rates for the proportions of non-zero/zero weights that were correctly 

estimated. All these statistics were computed based on the vectorized weights for multi-

way based methods. The margin of error across the replicates for each statistic was also 

computed.

Table 1 and Table 2 summarize the simulation results for lower and higher dimensional 

data, respectively. Both tables show the proposed rank-1 multiway sparse DWD model has 

the best performance, with higher correlation and lower misclassification rates than other 

methods, when the true model is more sparse. When the true model is less sparse or not 

sparse, the proposed method has comparable performances to multiway DWD (M-DWD). 

All multiway based methods have higher correlations and lower misclassification rates than 

the full sparse DWD model under different scenarios. Overall the proposed rank-1 multiway 

sparse DWD model performs well, but some of the advantages are not obvious. In particular, 

the mean correlations are relatively low for the very sparse models, since the correlations 

with the truth are very small for some simulation replications. This is because the algorithm 

may converge to local minima, which is explored further in Section 5.2.
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5.2 Assessment of convergence

To assess the convergence of the four methods, we show the distributions of correlations 

between the true and estimated hyperplane for the “more sparsity” scenario for high 

dimensional data in Figure 1. The distribution is bimodal for the three multiway methods, 

where for some replications the signal is estimated very well (correlation ≈ 1) and others 

do not recover the true signal at all (correlation ≈ 0). We find that the poor performing 

replications are due to the algorithm converging to a local optimum, which does not occur 

for the full (vectoriozed) SDWD method. The proposed multiway sparse DWD (M-SDWD) 

performs better than other methods with more reasonable correlations. In addition, the 

bimodality becomes less severe when the signal to noise ratio increases (see Section S4 

of the Supplementary Material). Considering prediction performance without separating out 

the replications that do not converge appropriately may complicate interpretation of the 

results, hense we present another two tables that show those simulations with correlation 

greater than 0.5 for each method, and the statistics among those simulations with correlation 

greater than 0.5 for that method. From Table 3 and Table 4 we can see the proposed method 

performs the best under the “even more” and “more” sparsity cases. To reduce convergence 

to non-optimal solutions, we recommend running the algorithm with multiple initial values 

for the first several iterations of the algorithm and then selecting the optimal path to proceed; 

by default our implementation randomly generates 5 sets of initial values, runs Algorithm 

1 for 10 updating cycles over all parameters for each set of initial values, and selects the 

set that results in the lowest value of the objective function after 10 cycles to proceed with 

estimation until convergence.

5.3 Rank-R model simulation and results

In this simulation study, we aim to validate the higher rank multiway sparse model with a 

scenario in which R = 2. The procedure for data generation is similar to that of the rank-1 

model. Instead of generating vectors uk for each dimension, we generated three matrices 

Uk, k = 1, 2, 3 with dimensions Pk × 2. The entries of Uk are generated independently 

from a normal distribution N(0, 1), then we compute μ1 = [[U1, …, UK]]. The N1 

samples corresponding to class 1 were generated from a multivariate normal distribution 

N μ1, IP1P2P3 × P1P2P3 . The N0 samples in class −1 were generated independently from a N(0, 

1) distribution. Different scenarios are considered in terms of dimensions, sample size and 

sparsity levels. The results in Table 5 show that the rank-2 model has the best performance 

when the data were generated from a true rank-2 model under different scenarios. The 

performances of these methods are similar for a higher rank (R=5) and low dimensional case 

(see Section S5 of the Supplementary Material).

6 Applications

6.1 MRS data

We apply the proposed method to our motivating application with MRS data to illustrate 

its utility. Friedreich’s ataxia (FRDA) is an early-onset neurodegenerative disease caused 

by abnormalities in the frataxin gene (Pandolfo 2008) resulting in knockdown of frataxin 

protein. The motivation of this study is to assess brain metabolic changes in a transgenic 
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mouse model in which frataxin knockdown can be turned on by giving the antibiotic 

doxycycline (Chandran et al. 2017). Wild type (WT) mice and transgenic (TG) mice were 

randomly assigned to two different treatment groups: doxycycline treated group (N1 = 

11) and controls (N0 = 10). Thus, the study included 4 groups of mice: WT treated with 

dox (WT-dox), WT without dox (WT-nodox), TG treated with dox (TG-dox), TG without 

dox (TG-nodox). Treatment was applied during weeks 1–12, then stopped during weeks 

12–24 (recovery). Frataxin knockdown during weeks 1–12 was expected only in the TG-dox 

group, but not in WT animals nor in animals not receiving dox. The concentrations of 

13 metabolites were measured in three different regions (cerebellum, cortex, and cervical 

spine). These animals were scanned at three time points: 0 weeks, 12 weeks and 24 weeks. 

The data have a multiway structure with four dimensions: mice × metabolites × regions × 

time, X:21 × 13 × 3 × 3. Our goal is to summarize the signal distinguishing the two treatment 

groups (dox vs. no dox) across the different dimensions, and assess how the effect of 

treatment depends on WT/TG status.

The penalty parameters for multiway sparse DWD were selected through 10-fold cross 

validation (see Section S9 of the supplementary material), and the rank-1 model was 

selected. Using the selected tuning parameters, Figure 2 shows the DWD scores computed 

under leave-one-out cross-validation based on the rank-1 multiway sparse DWD model. 

These scores show robust separation of the no-dox and dox groups (which correspond to 

the two classes yi = −1 and yi = 1) but only for the transgenic (TG) mice. The three scores 

for the TG-nodox, WT-nodox, and WT-dox groups are very similar. Because we train the 

classifier on both genetic cohorts but only observe a difference in the transgenic mice, this 

confirms the hypothesis that wild type mice are not affected by treatment; further, the results 

illustrate the robustness of the approach to within-class heterogeneity.

In order to capture the uncertainty of the estimated weights and construct 95% confidence 

intervals, 500 bootstrap samples were generated. For each bootstrap sample, 21 mice were 

resampled with replacement, and then the model was fit to the bootstrap sample to estimate 

weights for each dimension. The 2.5% and 97.5% quantiles for each estimated weight across 

the 500 bootstrap samples were computed to construct the 95% confidence interval. Figure 3 

shows the estimated weights and their 95% bootstrap confidence intervals. The metabolites 

with large absolute weights, such as PCho+GPC, Cr+PCr, and Ins, are considered important 

for Friedreich’s ataxia research (França et al. 2009; Iltis et al. 2010; Gramegna et al. 

2017), so were expected to have high weights for distinguishing the two groups. Two 

metabolites (Lac and Glu) and one time point (0 weeks) did not inform the classification 

as their estimated weights are exactly 0 in the full data fit. Having no effect at baseline 

(0 weeks) makes sense as this is prior to the dox treatment. The observed changes at the 

later time points are similar to those observed in the R6/2 mouse, a severe mouse model 

of Huntington’s disease (Zacharoff et al. 2012). This is consistent with the fact that both 

Friedreich’s ataxia and Huntington’s disease are characterized by impairment in energy 

metabolism.

We compared misclassification rates for the M-SDWD, M-SDWD with λ1 = 0, M-DWD, 

CATCH, Full SDWD and Random Forests by 10-fold cross validation. The 21 mice 

were randomly partitioned into 10 test subgroups of approximately equal size. Tuning 
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parameters were estimated within each training set by an inner cross-validation procedure. 

This procedure was repeated 100 times with different random partitions and the average test 

misclassification rates for dox vs. no dox were as follows: 22.1% for M-SDWD, 20.9% for 

M-SDWD with λ1 = 0, 23.6% for M-DWD, 22.3% for CATCH, 42.9% for Full SDWD, 

and 22.3% for Random Forest. To better reflect the reality of the treatment effect, we 

further considered the misclassification rate for TG-dox vs. the other three groups under this 

approach: 3.1% for M-SDWD, 1.9% for M-SDWD with λ1 = 0, 4.6% for M-DWD, 4.0% 

for CATCH, 24.6% for Full SDWD, and 10.5% for Random Forest. Overall, the multiway 

methods perform better than the non-multiway methods (Full SDWD and Random Forest), 

illustrating the advantages of accounting for multiway structure. Moreover, the factorization 

of weights across dimensions in Figure 3 is useful for interpretation, and is not provided by 

the CATCH model. We conclude that the performance of M-SDWD model is competitive 

with alternatives. The rank-2 multiway sparse model was also applied, resulting in a higher 

misclassification rate (29.9% for dox vs. no dox and 10.8% for TG-dox vs. the other three 

groups), indicating that the rank-1 model is sufficient. Results for the rank-1 model were the 

same over 10 runs of the algorithm with random initializations.

6.2 Gene time course data

We further applied multiway sparse DWD to the gene expression time course data described 

in Baranzini et al. (2004). The purpose of this study is to classify clinical response to 

treatment for multiple sclerosis (MS) patients. Recombinant human interferon beta (rIFNβ) 

was given to 53 patients for controlling the symptoms of MS. For each patient, gene 

expression was measured for 76 genes at 7 time points: baseline (i.e. before treatment) and 

6 follow-up time points (3 months, 6 months, 9 months, 12 months, 18 months, and 24 

months). The data are a multi-way array with 3 dimensions: patients × genes × time points, 

X:53 × 76 × 7. Based on clinical characteristics, each patient was designated as a good 

responder or poor responder to rIFNβ. The proposed multiway sparse DWD model was used 

to differentiate good responders from poor responders, and a rank-1 model was selected 

by 10-fold cross-validation. Figure 4 shows the DWD scores under leave-one-out cross 

validation for the rank-1 multiway model. The groups of these good and poor responders are 

nearly perfectly separated. The coefficient estimates and 95% bootstrap confidence intervals 

for each gene and each time point are shown in Figure 5. The coefficients across time had 

little variability, which suggests that the distinction between good and poor responders is 

not driven by effects that vary over the time course. This agrees with the results reported in 

Baranzini et al. (2004) where they found there was no group*time interaction effects. Note 

that the data are not very sparse as almost all estimated coefficients for gene and time are 

not zero. We also compared the performance of the rank-1 model with other competitors. 

The mean misclassification rates were 13.0% for M-SDWD, 12.6% for M-SDWD with λ1 = 

0, 17.4% for M-DWD, 20.8% for CATCH, 20.5% for Full SDWD and 31.5% for Random 

Forest. The rank-1 multiway sparse models have the best classification over other methods. 

It is notable that the multiway sparse DWD model outperforms multiway DWD even when 

the degree of sparsity in the data is low. We also considered the rank-2 multiway sparse 

model to classify good and poor responders. A rank-2 model performs worse than the rank-1 

model with a higher misclassification rate (18.7 %), which agrees with the results in Lyu et 
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al. (2017). Results for the rank-1 model were the same over 10 runs of the algorithm with 

random initializations.

7 Discussion

We have proposed a general framework for high dimensional classification on multiway 

data with any number of dimensions, which can account for sparsity in the model. Both 

the simulation and data analysis results have shown that the proposed multiway sparse 

DWD model can improve classification accuracy when the underlying signal is sparse or has 

multiway structure. The proposed method is robust to any degree of sparsity in the model, 

which has been demonstrated in both simulation and applications. Moreover, the method is 

robust to the complexity of the shared signal across the different dimensions, by allowing 

for higher rank models. Lastly, the use of multiway structure and sparsity can facilitate and 

simplify interpretation. For our motivating application in Section 6.1, a single application of 

multiway sparse DWD provided the following insights: (1) TG mice show a distinct brain 

metabolomic profile after receiving doxycycline but WT mice do not, (2) these changes to 

the metabolite profile are similar across three neurological regions but most pronounced 

in the cerebellum, and (3) these changes are most prominent at the end of 12 weeks of 

treatment, but subside post-treatment.

Despite the flexibility of multiway sparse DWD, the results are sensitive to the choice of 

rank and tuning parameters. The simulation in Section 5.1 shows that when the model is 

not sparse, the rank-1 model with λ1 = 0 performs better than the rank-1 model with λ1 

selected by cross validation; thus, the sparsity penalty only improves results when the signal 

is truly sparse. Also, the rank-1 model performs poorly when the true model has higher 

rank, as expected. For certain applications these choices may depend on domain-specific 

knowledge and goals, e.g., whether a sparse (λ1 > 0) or higher rank (R > 1) solution makes 

sense in context; otherwise, we suggest selecting these parameters by cross-validation. 

Also, as discussed in Sections 4.3, 5.2, and the Supplement S4, algorithms using cyclic 

coordinate descent, including ours, may not converge to a global optimum. In practice, we 

suggest running the algorithm from multiple starting values to assess the stability of the 

results and (if results are sensitive to starting values) select the solution that yields the 

smallest value for the objective function. We have prioritized computational efficiency in 

our implementation. For the applications in Section 6 computing time ranged from less 

than a second for a single run of the algorithm, to 10 minutes using multiple random starts 

and cross-validation to select tuning parameters (see Supplement S10). There are many 

approaches to penalization in the sparse multiway context, and while our chosen penalty 

has advantages with respect to its flexibility, interpretation and feasibility, other possibilities 

discussed in Section 4.2 are worth pursuing in more depth. Moreover, in this article we 

only consider binary classification, and extensions to multi-category classification (e.g., as in 

Huang et al. (2013)) is another worthwhile future direction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Histogram of correlations between true hyperplane and estimates with four classification 

methods under the more sparsity case based on high dimensional data (30 × 15 × 15) and 

sample size N = 100.
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Fig. 2. 
FRDA mouse study: Rank-1 multiway sparse DWD scores under leave-one-out cross-

validation to classify mice that did or did not receive dox treatment. The transgenic (TG) 

mice that received dox are clearly distinguished from the TG mice that did not and from the 

wild-type (WT) mice. A kernel density estimate is shown for the scores in each subgroup.
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Fig. 3. 
FRDA mouse study: Rank-1 multiway sparse DWD weights for metabolites, regions and 

time with 95% bootstrap confidence intervals.
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Fig. 4. 
MS treatment study: Rank-1 multiway sparse DWD scores under leave-one-out cross-

validation for good and poor treatment responders, with a kernel density estimate for each 

group.
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Fig. 5. 
MS treatment study: Rank-1 multiway sparse DWD weights for genes and time with 95% 

bootstrap confidence intervals.
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Table 1

Simulation results under the low dimensional scenario (15 × 4 × 5). In the Sparsity column, the numbers in 

parentheses indicate the number of non-zero variables in each dimension. “Cor” is the correlation between the 

estimated linear hyperplane and the true hyperplane. “Mis” is the average misclassification rate. “TP” is the 

true positive rate, i.e., the proportion of non-zero coefficients that are correctly estimated to be non-zero.“TN” 

is the true negative rate, i.e., the proportion of zero coefficients that are correctly estimated to be zero. The 

margins of error (2* standard errors across 200 replicates) for each statistic are also listed following the ± 

symbol.

N Sparsity Methods Cor Mis TP TN

40 More (5 × 2 × 2) M-SDWD 0.359±0.054 0.390±0.025 0.492±0.057 0.644±0.056

M-SDWD (λ1 = 0) 0.318±0.049 0.386±0.025 1.000±0.000 0.000±0.000

M-DWD 0.313±0.049 0.388±0.026 1.000±0.000 0.000±0.000

Full SDWD 0.284±0.039 0.402±0.023 0.337±0.041 0.748±0.043

Less (5 × 4 × 5) M-SDWD 0.773±0.034 0.156±0.024 0.646±0.045 0.527±0.053

M-SDWD (λ1 = 0) 0.768±0.035 0.146±0.022 1.000±0.000 0.000±0.000

M-DWD 0.757±0.042 0.154±0.024 1.000±0.000 0.000±0.000

Full SDWD 0.532±0.031 0.214±0.024 0.320±0.038 0.776±0.039

No (15 × 4 × 5) M-SDWD 0.894±0.025 0.052±0.015 0.792±0.038 -

M-SDWD (λ1 = 0) 0.901±0.026 0.048±0.014 1.000±0.000 -

M-DWD 0.896±0.030 0.054±0.017 1.000±0.000 -

Full SDWD 0.639±0.026 0.096±0.020 0.444±0.045 -

100 More (5 × 2 × 2) M-SDWD 0.574±0.056 0.332±0.025 0.536±0.055 0.713±0.051

M-SDWD (λ1 = 0) 0.489±0.055 0.329±0.025 1.000±0.000 0.000±0.000

M-DWD 0.489±0.056 0.331±0.025 1.000±0.000 0.000±0.000

Full SDWD 0.448±0.049 0.337±0.024 0.318±0.037 0.841±0.034

Less (5 × 4 × 5) M-SDWD 0.902±0.022 0.112±0.018 0.720±0.038 0.551±0.050

M-SDWD (λ1 = 0) 0.890±0.025 0.113±0.018 1.000±0.000 0.000±0.000

M-DWD 0.898±0.027 0.111±0.018 1.000±0.000 0.000±0.000

Full SDWD 0.695±0.028 0.156±0.021 0.357±0.034 0.794±0.033

No (15 × 4 × 5) M-SDWD 0.954±0.014 0.035±0.012 0.870±0.031 -

M-SDWD (λ1 = 0) 0.963±0.012 0.035±0.011 1.000±0.000 -

M-DWD 0.965±0.014 0.035±0.012 1.000±0.000 -

Full SDWD 0.782±0.021 0.061±0.015 0.433±0.036 -
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Table 2

Simulation results under the high dimensional scenario (30 × 15 × 15). In the Sparsity column, the numbers in 

parentheses indicate the number of non-zero variables in each dimension. “Cor” is the correlation between the 

estimated linear hyperplane and the true hyperplane. “Mis” is the average misclassification rate. “TP” is the 

true positive rate, i.e., the proportion of non-zero coefficients that are correctly estimated to be non-zero.“TN” 

is the true negative rate, i.e., the proportion of zero coefficients that are correctly estimated to be zero. The 

margins of error (2* standard errors across 200 replicates) for each statistic are also listed following the ± 

symbol.

N Sparsity Methods Cor Mis TP TN

40 Even more (3 × 3 × 3) M-SDWD 0.214±0.053 0.426±0.025 0.077±0.012 0.738±0.054

M-SDWD (λ1 = 0) 0.154±0.042 0.415±0.025 0.216±0.000 0.000±0.000

M-DWD 0.171±0.043 0.404±0.025 0.216±0.000 0.000±0.000

Full SDWD 0.233±0.041 0.388±0.024 0.039±0.008 0.900±0.035

More (5 × 5 × 5) M-SDWD 0.644±0.056 0.218±0.033 0.489±0.052 0.778±0.047

M-SDWD (λ1 = 0) 0.516±0.056 0.216±0.031 1.000±0.000 0.000±0.000

M-DWD 0.505±0.058 0.236±0.033 1.000±0.000 0.000±0.000

Full SDWD 0.389±0.039 0.238±0.027 0.129±0.026 0.932±0.026

Less (10 × 15 × 15) M-SDWD 0.983±0.002 0.000±0.000 0.872±0.026 0.394±0.060

M-SDWD (λ1 = 0) 0.988±0.001 0.000±0.000 1.000±0.000 0.000±0.000

M-DWD 0.990±0.001 0.000±0.000 1.000±0.000 0.000±0.000

Full SDWD 0.654±0.016 0.002±0.002 0.143±0.019 0.943±0.017

No (30 × 15 × 15) M-SDWD 0.987±0.003 0.000±0.000 0.869±0.028 -

M-SDWD (λ1 = 0) 0.994±0.001 0.000±0.000 1.000±0.000 -

M-DWD 0.997±0.000 0.000±0.000 1.000±0.000 -

Full SDWD 0.724±0.010 0.000±0.000 0.262±0.032 -

100 Even more (3 × 3 × 3) M-SDWD 0.140±0.045 0.467±0.016 0.018±0.004 0.784±0.049

M-SDWD (λ1 = 0) 0.084±0.032 0.464±0.016 0.064±0.000 0.000±0.000

M-DWD 0.101±0.035 0.455±0.017 0.064±0.000 0.000±0.000

Full SDWD 0.218±0.047 0.431±0.020 0.018±0.003 0.868±0.038

More (5 × 5 × 5) M-SDWD 0.849±0.038 0.089±0.020 0.668±0.040 0.806±0.041

M-SDWD (λ1 = 0) 0.796±0.040 0.101±0.021 1.000±0.000 0.000±0.000

M-DWD 0.766±0.049 0.121±0.025 1.000±0.000 0.000±0.000

Full SDWD 0.636±0.035 0.136±0.022 0.172±0.023 0.957±0.022

Less (10 × 15 × 15) M-SDWD 0.992±0.001 0.000±0.000 0.890±0.021 0.461±0.060

M-SDWD (λ1 = 0) 0.995±0.000 0.000±0.000 1.000±0.000 0.000±0.000

M-DWD 0.996±0.000 0.000±0.000 1.000±0.000 0.000±0.000

Full SDWD 0.816±0.009 0.000±0.001 0.199±0.014 0.954±0.008

No (30 × 15 × 15) M-SDWD 0.995±0.001 0.000±0.000 0.934±0.016 -

M-SDWD (λ1 = 0) 0.997±0.001 0.000±0.000 1.000±0.000 -

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Guo et al. Page 26

N Sparsity Methods Cor Mis TP TN

M-DWD 0.999±0.000 0.000±0.000 1.000±0.000 -

Full SDWD 0.848±0.005 0.000±0.000 0.342±0.027 -
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Table 3

Simulation results among simulations with correlation greater than 0.5 under the high dimensional scenario 

(30 × 15 × 15). In the Sparsity column, the numbers in parentheses indicate the number of non-zero variables 

in each dimension. “Cor” is the correlation between the estimated linear hyperplane and the true hyperplane. 

“Mis” is the average misclassification rate. “TP” is the true positive rate, i.e., the proportion of non-zero 

coefficients that are correctly estimated to be non-zero.“TN” is the true negative rate, i.e., the proportion of 

zero variables that are correctly estimated to be zero. The margins of error (2* standard errors across 200 

replicates) for each statistic are also listed following the ± symbol.

N Sparsity Methods Cor Mis TP TN Prop. cor >0.5

40 Even more (3 × 3 × 3) M-SDWD 0.905±0.031 0.045±0.018 0.145±0.020 0.853±0.109 0.16

M-SDWD (λ1 = 0) 0.783±0.039 0.074±0.029 0.216±0.000 0.000±0.000 0.175

M-DWD 0.816±0.035 0.068±0.023 0.216±0.000 0.000±0.000 0.175

Full SDWD 0.739±0.031 0.112±0.031 0.033±0.006 1.014±0.001 0.22

More (5 × 5 × 5) M-SDWD 0.888±0.017 0.034±0.011 0.638±0.052 0.802±0.055 0.61

M-SDWD (λ1 = 0) 0.840±0.022 0.039±0.012 1.000±0.000 0.000±0.000 0.585

M-DWD 0.863±0.021 0.039±0.013 1.000±0.000 0.000±0.000 0.56

Full SDWD 0.682±0.021 0.044±0.014 0.091±0.015 0.997±0.001 0.41

Less (10 × 15 × 15) M-SDWD 0.983±0.002 0.000±0.000 0.872±0.026 0.394±0.060 1

M-SDWD (λ1 = 0) 0.988±0.001 0.000±0.000 1.000±0.000 0.000±0.000 1

M-DWD 0.990±0.001 0.000±0.000 1.000±0.000 0.000±0.000 1

Full SDWD 0.682±0.013 0.000±0.000 0.135±0.015 0.956±0.011 0.885

No (30 × 15 × 15) M-SDWD 0.987±0.003 0.000±0.000 0.869±0.028 - 1

M-SDWD (λ1 = 0) 0.994±0.001 0.000±0.000 1.000±0.000 - 1

M-DWD 0.997±0.000 0.000±0.000 1.000±0.000 - 1

Full SDWD 0.727±0.009 0.000±0.000 0.262±0.032 - 0.99

100 Even more (3 × 3 × 3) M-SDWD 0.922±0.051 0.136±0.056 0.045±0.009 1.000±0.018 0.09

M-SDWD (λ1 = 0) 0.794±0.064 0.146±0.056 0.064±0.000 0.000±0.000 0.085

M-DWD 0.784±0.060 0.153±0.042 0.064±0.000 0.000±0.000 0.115

Full SDWD 0.840±0.037 0.194±0.033 0.022±0.004 1.015±0.001 0.215

More (5 × 5 × 5) M-SDWD 0.935±0.010 0.048±0.010 0.697±0.038 0.831±0.042 0.905

M-SDWD (λ1 = 0) 0.899±0.012 0.051±0.010 1.000±0.000 0.000±0.000 0.88

M-DWD 0.926±0.010 0.042±0.009 1.000±0.000 0.000±0.000 0.825

Full SDWD 0.760±0.017 0.060±0.011 0.156±0.016 0.994±0.001 0.765

Less (10 × 15 × 15) M-SDWD 0.992±0.001 0.000±0.000 0.890±0.021 0.461±0.060 1

M-SDWD (λ1 = 0) 0.995±0.000 0.000±0.000 1.000±0.000 0.000±0.000 1

M-DWD 0.996±0.000 0.000±0.000 1.000±0.000 0.000±0.000 1

Full SDWD 0.818±0.008 0.000±0.000 0.198±0.013 0.955±0.007 0.995

No (30 × 15 × 15) M-SDWD 0.995±0.001 0.000±0.000 0.934±0.016 - 1

M-SDWD (λ1 = 0) 0.997±0.001 0.000±0.000 1.000±0.000 - 1
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N Sparsity Methods Cor Mis TP TN Prop. cor >0.5

M-DWD 0.999±0.000 0.000±0.000 1.000±0.000 - 1

Full SDWD 0.848±0.005 0.000±0.000 0.342±0.027 - 1
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Table 4

Simulation results among simulations with correlation greater than 0.5 under the low dimensional scenario (15 

× 4 × 5). In the Sparsity column, the numbers in parentheses indicate the number of non-zero variables in each 

dimension. “Cor” is the correlation between the estimated linear hyperplane and the true hyperplane. “Mis” is 

the average misclassification rate. “TP” is the true positive rate, i.e., the proportion of non-zero coefficients 

that are correctly estimated to be non-zero.“TN” is the true negative rate, i.e., the proportion of zero 

coefficients that are correctly estimated to be zero. The margins of error (2* standard errors across 200 

replicates) for each statistic are also listed following the ± symbol.

N Sparsity Methods Cor Mis TP TN Prop. of Cor >0.5

40 More (5 × 2 × 2) M-SDWD 0.829±0.028 0.159±0.030 0.616±0.077 0.768±0.079 0.31

M-SDWD (λ1 = 0) 0.778±0.030 0.179±0.030 1.000±0.000 0.000±0.000 0.34

M-DWD 0.815±0.029 0.149±0.029 1.000±0.000 0.000±0.000 0.3

Full SDWD 0.721±0.038 0.159±0.033 0.277±0.052 0.955±0.019 0.22

Less (5 × 4 × 5) M-SDWD 0.851±0.019 0.101±0.017 0.684±0.044 0.518±0.057 0.845

M-SDWD (λ1 = 0) 0.853±0.018 0.102±0.017 1.000±0.000 0.000±0.000 0.865

M-DWD 0.877±0.017 0.096±0.016 1.000±0.000 0.000±0.000 0.84

Full SDWD 0.696±0.021 0.089±0.018 0.280±0.033 0.869±0.027 0.54

No (15 × 4 × 5) M-SDWD 0.930±0.010 0.030±0.008 0.816±0.036 - 0.95

M-SDWD (λ1 = 0) 0.935±0.011 0.031±0.009 1.000±0.000 - 0.96

M-DWD 0.947±0.010 0.027±0.009 1.000±0.000 - 0.94

Full SDWD 0.724±0.016 0.029±0.008 0.434±0.049 - 0.765

100 More (5 × 2 × 2) M-SDWD 0.872±0.024 0.191±0.025 0.673±0.058 0.772±0.058 0.535

M-SDWD (λ1 = 0) 0.850±0.023 0.186±0.024 1.000±0.000 0.000±0.000 0.515

M-DWD 0.853±0.026 0.190±0.025 1.000±0.000 0.000±0.000 0.525

Full SDWD 0.800±0.027 0.177±0.025 0.340±0.042 0.953±0.016 0.45

Less (5 × 4 × 5) M-SDWD 0.929±0.011 0.090±0.014 0.749±0.033 0.536±0.051 0.945

M-SDWD (λ1 = 0) 0.927±0.010 0.094±0.014 1.000±0.000 0.000±0.000 0.95

M-DWD 0.939±0.010 0.093±0.014 1.000±0.000 0.000±0.000 0.95

Full SDWD 0.768±0.018 0.106±0.016 0.336±0.032 0.838±0.028 0.83

No (15 × 4 × 5) M-SDWD 0.962±0.009 0.031±0.010 0.879±0.030 - 0.99

M-SDWD (λ1 = 0) 0.968±0.008 0.033±0.010 1.000±0.000 - 0.995

M-DWD 0.975±0.006 0.030±0.010 1.000±0.000 - 0.99

Full SDWD 0.816±0.013 0.036±0.010 0.437±0.037 - 0.925
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Table 5

Simulation results under the high dimensional scenario (30 × 15 × 15) when the true model is rank-2. In the 

Sparsity column, the numbers in parentheses indicate the number of non-zero variables in each dimension. 

“Cor” is the correlation between the estimated linear hyperplane and the true hyperplane. “Mis” is the average 

misclassification rate. “TP” is the true positive rate, i.e., the proportion of non-zero coefficients that are 

correctly estimated to be non-zero.“TN” is the true negative rate, i.e., the proportion of zero coefficients that 

are correctly estimated to be zero. The margins of error (2* standard errors across 200 replicates) for each 

statistic are also listed following the ± symbol.

N Sparsity Methods Cor Mis TP TN

40 More (5 × 5 × 5) M-SDWD (R=2) 0.833±0.020 0.027±0.011 0.714±0.038 0.761±0.043

M-SDWD (λ1 = 0, R=2) 0.747±0.025 0.040±0.013 1.000±0.000 0.000±0.000

M-SDWD (R=1) 0.779±0.025 0.035±0.014 0.678±0.039 0.716±0.050

M-SDWD (λ1 = 0, R=1) 0.745±0.026 0.043±0.015 1.000±0.000 0.000±0.000

M-DWD 0.736±0.033 0.055±0.019 1.000±0.000 0.000±0.000

Full SDWD 0.591±0.024 0.071±0.015 0.150±0.013 0.984±0.007

Less (10 × 15 × 15) M-SDWD (R=2) 0.984±0.003 0.000±0.000 0.942±0.016 0.402±0.060

M-SDWD (λ1 = 0, R=2) 0.990±0.002 0.000±0.000 1.000±0.000 0.000±0.000

M-SDWD (R=1) 0.813±0.011 0.000±0.000 0.840±0.029 0.488±0.062

M-SDWD (λ1 = 0, R=1) 0.821±0.010 0.000±0.000 1.000±0.000 0.000±0.000

M-DWD 0.786±0.016 0.000±0.000 1.000±0.000 0.000±0.000

Full SDWD 0.750±0.009 0.000±0.000 0.239±0.018 0.937±0.012

No (30 × 15 × 15) M-SDWD (R=2) 0.996±0.000 0.000±0.000 1.000±0.000 -

M-SDWD (λ1 = 0, R=2) 0.996±0.000 0.000±0.000 1.000±0.000 -

M-SDWD (R=1) 0.790±0.012 0.000±0.000 0.836±0.033 -

M-SDWD (λ1 = 0, R=1) 0.799±0.010 0.000±0.000 1.000±0.000 -

M-DWD 0.763±0.016 0.000±0.000 1.000±0.000 -

Full SDWD 0.784±0.006 0.000±0.000 0.399±0.036 -

100 More (5 × 5 × 5) M-SDWD (R=2) 0.925±0.010 0.012±0.004 0.841±0.026 0.754±0.041

M-SDWD (λ1 = 0, R=2) 0.889±0.011 0.016±0.005 1.000±0.000 0.000±0.000

M-SDWD (R=1) 0.853±0.012 0.015±0.004 0.738±0.031 0.818±0.039

M-SDWD (λ1 = 0, R=1) 0.829±0.014 0.019±0.005 1.000±0.000 0.000±0.000

M-DWD 0.825±0.020 0.027±0.010 1.000±0.000 0.000±0.000

Full SDWD 0.797±0.014 0.026±0.007 0.236±0.016 0.992±0.002

Less (10 × 15 × 15) M-SDWD (R=2) 0.992±0.001 0.000±0.000 0.958±0.012 0.456±0.061

M-SDWD (λ1 = 0, R=2) 0.996±0.000 0.000±0.000 1.000±0.000 0.000±0.000

M-SDWD (R=1) 0.807±0.010 0.000±0.000 0.871±0.024 0.526±0.062

M-SDWD (λ1 = 0, R=1) 0.807±0.010 0.000±0.000 1.000±0.000 0.000±0.000

M-DWD 0.797±0.012 0.000±0.000 1.000±0.000 0.000±0.000

Full SDWD 0.856±0.005 0.000±0.000 0.346±0.019 0.935±0.012
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N Sparsity Methods Cor Mis TP TN

No (30 × 15 × 15) M-SDWD (R=2) 0.998±0.000 0.000±0.000 1.000±0.000 -

M-SDWD (λ1 = 0, R=2) 0.998±0.000 0.000±0.000 1.000±0.000 -

M-SDWD (R=1) 0.786±0.009 0.000±0.000 0.908±0.023 -

M-SDWD (λ1 = 0, R=1) 0.790±0.009 0.000±0.000 1.000±0.000 -

M-DWD 0.758±0.014 0.000±0.000 1.000±0.000 -

Full SDWD 0.871±0.004 0.000±0.000 0.466±0.029 -
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