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Abstract

The transformation of experiences into meaningful events and memories is intertwined with 

the notion of time. Temporal perception can influence, and be influenced by, segmenting 

continuous experience into meaningful events. Episodic memories formed from these events 

become associated with temporal information as well. However, it is less clear how temporal 

perception contributes to structuring events and organizing memory: whether it plays a more 

active or passive role, and whether this temporal information is encoded initially during 

perception or influenced by retrieval processes. To address these questions, we examined how 

event segmentation influences temporal representations during initial perception and memory 

retrieval, without testing temporal information explicitly. Using a neural measure of temporal 

context extracted from scalp electroencephalography in human participants (N=170), we found 

reduced temporal context similarity between studied items separated by an event boundary when 

compared to items from the same event. Further, while participants free recalled list items, 

neural activity reflected reinstatement of temporal context representations from study, including 

temporal disruption. A computational model of episodic memory, the Context Maintenance and 

Retrieval model (CMR; Polyn, Norman & Kahana, 2009), predicted these results, and made novel 

predictions regarding the influence of temporal disruption on recall order. These findings implicate 

the impact of event structure on memory organization via temporal representations, underscoring 

the role of temporal information in event segmentation and episodic memory.
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Introduction

An overarching question in cognitive psychology and neuroscience is how the external 

environment is transformed into internal representations. This question is key to 

understanding the transition from sensory processing to subjective perception, as well as 

how perceptual processes interact with memory. Temporal context — the representation 

of item features surrounding but not comprising the item itself – is a defining feature 

of episodic memory (Tulving, 1972), which helps account for many episodic memory 

phenomena (e.g. Healey & Kahana, 2016; Howard et al., 2009; Logan, 2021; Lohnas & 

Healey, 2021; Lohnas & Kahana, 2014b). Temporal context also plays a role in perception, 

as a change in nontemporal features can lead to longer prospective temporal judgments 

(e.g. Block, 1982; Ezzyat & Davachi, 2014; Faber & Gennari, 2017; Lositsky et al., 

2016). Further evidence for a common role of temporal context in both memory and 

perception comes from studies examining how continuous ongoing experience is structured 

into events (Kurby & Zacks, 2008; Radvansky & Zacks, 2014; Zacks et al., 2007): items 

in different events not only tend to be linked more weakly in memory (e.g. Ezzyat & 

Davachi, 2014; Heusser et al., 2018; Speer & Zacks, 2005; Zwaan, 1996), but also tend 

to be perceived as occurring further apart in time (Clewett et al., 2020; DuBrow & 

Davachi, 2013; Ezzyat & Davachi, 2014; Faber & Gennari, 2017; Lositsky et al., 2016). 

However, prospective temporal judgments may involve different cognitive mechanisms 

than retrospective temporal judgments (Grondin, 2010; Pöppel, 1997), leaving unclear 

how transient changes in temporal information may inform persistent changes in memory 

representations. Further, there is no consensus on whether temporal information is secondary 

or primary in structuring events and organizing memories.

Despite increasing interest and open questions regarding the intersection between these 

phenomena (Clewett et al., 2019; Frank et al., 2020; Radvansky & Zacks, 2017), few 

studies have directly examined the three-way interaction between temporal perception, 

memory, and event segmentation. Here we consider these interactions, examining how 

endogenous temporal information and event segmentation interact to organize memory. We 

present a computational model which formalizes how event boundaries influence temporal 

information and memory representations. We verify novel predictions of this model using 

human behavior and neural activity, confirming the impact of event structure on temporal 

representations during memory encoding and retrieval.

Event segmentation and episodic memory

On a behavioral level, there is a wealth of data suggesting that stimuli presented in the same 

event share stronger associations in long-term memory than stimuli presented in different 

events (DuBrow & Davachi, 2013; DuBrow & Davachi, 2014, 2016; Ezzyat & Davachi, 

2011; Ezzyat & Davachi, 2014; Heusser et al., 2018; Speer & Zacks, 2005; Zwaan, 1996). 

For instance, recognition of recently presented information is worse with a change in event, 

or event boundary, between presentation and test (Swallow et al., 2011; Swallow et al., 

2009). Neural data corroborate these findings, as neural activity for pairs of stimuli from 

the same event is more similar than for stimulus pairs from different events (Baldassano et 

al., 2017; DuBrow & Davachi, 2013; DuBrow & Davachi, 2014; Ezzyat & Davachi, 2014; 
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Hsieh et al., 2014; Lositsky et al., 2016; Schapiro et al., 2013). Further, brain activity in 

mnemonic brain regions (e.g. hippocampus) is greater during retrieval of items from another 

event rather than the current event (Swallow et al., 2011), suggesting that retrieval might 

be more effortful for information outside of the current event. Taken together, these results 

suggest that associations are weaker between memories separated by an event boundary, and 

that overcoming such weakened associations may require more effortful retrieval.

Why might an event boundary weaken associations in memory? One possibility is that 

stimuli separated by an event boundary may simply share fewer common perceptual or 

categorical features (Clewett et al., 2019; Zacks et al., 2001). For instance, event boundaries 

may be caused by physical changes to the environment, such as a change in background 

scene (Zacks et al., 2007). As another example, DuBrow and Davachi (2014) found evidence 

that items within the same event form strengthened associations, which can then support 

reinstatement of one another and their shared event information. In particular, participants 

made a recency judgment between two items previously studied with the same category 

and task. On a neural level, the category of the intervening items was decoded using 

whole brain multivariate pattern analysis (Norman et al., 2006), and classifier performance 

predicted the category of these intervening items. On a behavioral level, DuBrow and 

Davachi (2014) posited that, if testing items from the same event evokes event-level 

reinstatement, then this reinstatement should facilitate memory recognition of other items 

from that event. Consistent with this hypothesis, participants recognized an item more 

quickly when it was preceded by a recency judgment of other same-event items. Taken 

together, these results reflect the strong associations between items within an event, and how 

such associations promote memory reinstatement of event-related information. Studies using 

television episodes, rather than discrete stimuli, have also found such neural evidence of 

event-level reinstatement (Baldassano et al., 2017; Chen et al., 2017; Zadbood et al., 2017). 

Although these studies provide support for the stronger associations between items within an 

event due to their shared features, this explanation is not mutually exclusive with an alternate 

account, which we next explore: event boundaries weaken temporal associations.

An emerging role of temporal context in event segmentation and episodic memory

Supporting the notion that event boundaries may weaken temporal associations across items, 

stimuli separated by event boundaries are perceived as occurring farther apart in time than 

stimuli occurring in the same event (Ezzyat & Davachi, 2014; Faber & Gennari, 2017; 

Lositsky et al., 2016). Also suggestive of the the importance of temporal information to 

event structure, if participants are informed that a long amount of time has passed in a 

narrative, irrespective of other stimulus changes, they are more likely to perceive this as an 

event boundary in the narrative (Ezzyat & Davachi, 2011; Speer & Zacks, 2005; Zwaan, 

1996). Of course, it is possible that changes in temporal information are a by-product of 

an event boundary, rather than a necessary component. Further, most studies define event 

boundaries with changes in stimulus or context features, and thus do not separate temporal 

context from nontemporal context. This motivates our current study of the interaction 

between temporal associations, memory and event segmentation. We next review studies 

which provide evidence that event boundaries weaken temporal associations when changes 

in stimulus features are minimized.
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In a series of studies with more controlled changes to stimuli between events, DuBrow and 

Davachi (2013) and DuBrow and Davachi (2014) found that event boundaries influenced 

memory performance and memory representations. They defined an event as a sequence of 

presented stimuli from the same semantic category and with the same encoding task. In each 

list, they presented participants with sequences of items, switching back and forth between 

the two categories and tasks. Critically, they tested participants with pairs of items, where 

each pair contained items from the same category and task, but only a subset of pairs were 

from the same event. With these test stimuli, participants exhibited less accurate recency 

judgments for item pairs across events than within event. This suggests that weakened 

associations across events are not completely a by-product of fewer shared stimulus features, 

and points to an important role of temporal information. However, these studies still leave 

unresolved how and when temporal information influences, or is influenced by, event 

structure in memory.

Polyn et al. (2009a, 2009b) examined the contributions of temporal and nontemporal 

features to event structure using model simulations. Although they did not frame their 

results in terms of event boundaries, like the DuBrow and Davachi studies, participants 

studied items with one of two encoding tasks, and thus a sequence of items with the same 

task can be operationalized as an event. Critically, to distinguish between event-level and 

temporal information, Polyn et al. (2009a) examined predictions of a computational model 

of episodic memory, the Context Maintenance and Retrieval (CMR) model. CMR assumes 

that two types of context are updated whenever an item is studied or retrieved: (a) temporal 

context, reflecting the surrounding temporal information of a given item; (b) task or source 

context, implemented experimentally as an encoding task. In this way, all items within 

the same event share similar source context and similar temporal context. By contrast, 

two neighboring items separated by an event boundary have similar temporal contexts yet 

distinct source contexts. Two temporally distant items may share the same source context, 

even though they were presented in different events. Polyn et al. (2009a) compared two 

variants of the CMR model: (1) one variant assumed that an event boundary evokes a change 

to source context only; (2) another variant assumed that an event boundary evokes a change 

to source context as well as a disruption to temporal context. The second CMR model 

variant made more accurate predictions of participants’ memory performance, and hereafter 

we refer to this model variant as CMR.

The success of this model variant suggests that an event boundary imposes a perceived 

shift or disruption in temporal information, even when accounting for differences between 

stimuli occurring in different events. These results underscore the critical role of temporal 

information in event representation, both in the moment and in mnemonic representations. 

These results suggest that temporal information is not just a secondary by-product of event 

segmentation, but rather may play a critical role in structuring events. Nonetheless, CMR 

only predicts behavior based on its assumptions of memory representations, and these 

assumptions may be incorrect. Thus, we sought to examine CMR’s predictions using brain 

activity as well as behavior. Further, we compared predictions of CMR to the less successful 

model variant which does not assume that an event boundary evokes a change to temporal 

context.
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The current study

Thus far, we have reviewed how event segmentation influences memory, and studies 

dissociating the contributions of temporal and nontemporal information to event boundaries 

and memory. An understanding of the interactions between event segmentation and memory 

remains incomplete without appreciating the role of temporal information. Specifically, 

it is critical to distinguish between the possibility that temporal representations are a 

defining feature of stimuli, and thus influenced by event boundaries, from the possibility 

that temporal perception effects are a by-product of changes to other stimulus features. 

Distinguishing between these possibilities is not only important in event segmentation, but 

more broadly may inform the role of temporal information to other perceptual and memory 

paradigms.

Critically, to our knowledge no research directly links the impact of event segmentation at 

study, including its impact on temporal disruption, to neural and behavioral measures of 

memory retrieval. Here we examined these relationships among memory behavior and a 

neural measure of temporal context (Folkerts et al., 2018; Howard et al., 2012; Manning 

et al., 2011; Manns et al., 2007). This neural measure allowed us to assess how temporal 

context states from study were reinstated during memory retrieval to influence behavior. To 

minimize nontemporal contributions to event boundaries, stimuli comprising the events and 

the event boundaries were kept as simple as possible. In particular, participants studied lists 

of words in which each word was associated with an encoding task or no task, with the task 

for a given word was indicated by a unique font, color and case. Events were operationalized 

within a list as a sequence of items with the same encoding task, and a change in event 

was signified both by the change in task and the visual change in studied words. Previous 

studies have also used color to operationalize events, by simply changing a color frame 

surrounding a grayscale image (Heusser et al., 2016; Heusser et al., 2018). Other studies 

have used encoding tasks, in conjunction with other stimulus feature changes, to promote 

event segmentation (DuBrow & Davachi, 2013; DuBrow & Davachi, 2014, 2016; Ezzyat & 

Davachi, 2014; Polyn et al., 2009a, 2009b). Taken together, the current study induces event 

structure while minimizing changes to stimulus features, thus allowing a more direct test of 

temporal information on event segmentation and memory.

CMR provides a very good testbed to examine the links between memory, temporal 

information and event cognition. CMR is a model of episodic memory sharing many 

assumptions with theories of event cognition (e.g. DuBrow & Davachi, 2014; Ezzyat & 

Davachi, 2014; Faber & Gennari, 2017; Frank et al., 2020; Lositsky et al., 2016; Swallow 

et al., 2009). CMR assumes that each studied item is associated with a slowly changing 

temporal context, as well as a source context reflecting the task features of the items within 

a shared event. Thus, CMR simulations allowed us to disentangle the interactions between 

temporal representations and event segmentation. Comparing participants’ data to CMR 

predictions also allows for a more specific characterization of the temporal representations—

whether they might rely on local positional information of items within an event or list, or 

whether they might rely on a more global temporal code.

We compared CMR predictions to data averaged across participants and examined individual 

variability across participants. If temporal disruption underlies event segmentation and 
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memory representations, then we expect (a) accurate predictions from the CMR model; 

(b) a disruption to temporal information at study should manifest in neural activity and 

behavior during recall. To test these hypotheses, we present novel analyses of a neural 

correlate of temporal context, as posited by the CMR framework (Manning et al., 2011), 

as well as analyses of memory behavior which have been used to assess variants of the 

CMR model (Kahana, 1996; Lohnas & Kahana, 2014a; Polyn et al., 2009a; Sederberg 

et al., 2008). We generated CMR simulations and predictions from another dataset and 

its associated best-fit model parameters. We found that CMR predictions were upheld 

in averaged data from the current study, and participant variability was consistent across 

predicted measures. Further, CMR predictions were more accurate than a model variant 

which does not assume that event boundaries evoke temporal context disruptions. Our results 

clarify how event segmentation impacts temporal representations during memory encoding 

and retrieval, influencing perception and memory.

Method

Dataset

The data reported here are from the Penn Electrophysiology of Encoding and Retrieval 

Study (PEERS), which involved three subsequently administered multi-session experiments 

from 2010–2016. PEERS is a large database on the electrophysiological correlates of 

memory encoding and retrieval (Kahana et al., 2022).

Participant Characteristics

The present study considered the 172 younger adults (age 18–30) who completed 

Experiment 1 of PEERS. Participants were right-handed native English speakers.

Sampling Procedures

Participants were recruited through a two–stage process. First, right-handed native English 

speakers were recruited for a single session to introduce participants to EEG recordings 

and the free recall task. Participants who did not make an excess of eye movements during 

item presentation epochs of the introductory session and had a recall probability of less 

than 0.8 were invited to participate in the full study. Approximately half of the participants 

recruited for the preliminary session qualified for, and agreed to participate in, the full study. 

Participants were consented according the University of Pennsylvania’s IRB protocol and 

were compensated for their participation.

Data Diagnosis

One participant was excluded for not having a neural measure of temporal context in 

any session (see definitions below and Figure 1), and another was excluded from all 

behavioral and neural analyses for making too few (< 10) critical recalls (see Figure 4 

and surrounding text). This participant had 7 such observations in total, whereas the next 

fewest participants had 15. For this latter participant, because most analyses include recall 

behavior, for consistency we excluded this participant from all analyses, rather than from 

just the recall analyses.
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Data Collection

Participants completed sessions each with 16 free recall lists. For each list, 16 words 

were presented one at a time on a computer screen followed by an immediate free recall 

test. Generally participants completed 6 sessions, but data collection was incomplete for 

1 session each for 5 participants. Based on our criteria of only including sessions with 

autocorrelated feature vectors (see Neural Feature Selection), 5 participants had 2 included 

sessions, 8 participants had 3 included sessions, 24 participants had 4 included sessions, 

50 had 5 included sessions, and 83 had 6 included sessions. Additional memory tests were 

administered in each session after immediate free recall of the final list. However, we do not 

report results from those tests so omit further detail about them.

Each word was accompanied by a cue to perform one of two judgment tasks, either a size 

judgment task (“Will this item fit into a shoebox?”) or an animacy judgment task (“Does 

this word refer to something living or not living?”) or no encoding task. The current task 

was indicated by the color, font and case of the presented item. There were three conditions: 

no-task lists (participants did not have to perform judgments with the presented items), 

single-task lists (all items were presented with the same task), and two-task lists (items were 

presented with either task). In the two-task lists, items were presented successively with the 

same task in trains of 2–6 items, with train length chosen randomly. The first two lists were 

two-task lists, and each list started with a different task. The next fourteen lists contained 

four no-task lists, six one-task lists (three with each task), and four two-task lists. List and 

task order were counterbalanced across sessions and participants.

Each word was drawn from a pool of 1638 words (available at memory.psych.upenn.edu/

files/wordpools/PEERS_wordpool.zip). Lists were constructed such that varying degrees 

of semantic relatedness occurred at both adjacent and distant serial positions. Semantic 

relatedness was determined using the Word Association Space (WAS) model described by 

Steyvers et al. (2004). WAS similarity values were used to group words into four similarity 

bins based on the similarity between word pairs (high similarity, cos θ > 0.7; medium–high 

similarity, 0.4 < cos θ < 0.7; medium–low similarity, 0.14 < cos θ < 0.4; low similarity, cos 

θ < 0.14). Two pairs of items from each of the four groups were arranged such that one pair 

occurred at adjacent serial positions and the other pair was separated by at least two other 

items.

For each list, there was a 1500 ms delay before the first word appeared on the screen. 

Each item was on the screen for 3000 ms, followed by jittered (i.e., variable) inter-stimulus 

interval of 800–1200 ms (uniform distribution). If the word was associated with a task, 

participants indicated their response via a keypress. After the last item in the list, there was 

a jittered delay of 1200–1400 ms, after which a tone sounded, a row of asterisks appeared, 

and the participant was given 75 seconds to attempt to recall aloud any of the items from the 

most recent list.

Electrophysiological Recordings

Netstation was used to record EEG from Geodesic Sensor Nets (Electrical Geodesics, Inc.) 

with 129 electrodes. The signal from all electrodes was digitized at 500 Hz by either the Net 
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Amps 200 or 300 amplifier and referenced to Cz. Prior to any data processing, recordings 

were rereferenced to the average of all electrodes except those with high impedance or 

poor contact with the scalp. To eliminate electrical line noise, a first order 2 Hz stopband 

Butterworth notch filter was applied at 60 Hz.

We excluded any recalls that occurred within 1000 ms of the next recall to prevent overlap 

of the neural activity between these recalls. In both the neural data and the behavioral 

data, we excluded recalls from output positions 1–3, as such recalls may reflect recall from 

short-term memory in immediate free recall (Kahana, 1996), and such earlier immediate 

recalls may have shorter latencies (Kahana, 2012; Murdock & Okada, 1970). We calculated 

spectral power from 42 of the 129 electrodes (Figure 1), including electrodes in regions 

established in successful memory encoding (Long & Kahana, 2017; Long et al., 2014; 

Weidemann et al., 2009): bilateral anterior superior (corresponding to dorsolateral prefrontal 

cortex), bilateral anterior inferior (corresponding to inferior frontal cortex), and bilateral 

posterior inferior (corresponding to inferior temporal cortex). From these electrodes, we 

calculated spectral power for each event (defined in the next paragraph) by convolving 

its EEG time series with Morlet wavelets (wave number = 6) at each of 46 frequencies 

logarithmically spaced between 2 Hz and 100 Hz. For each frequency and electrode, power 

was averaged across the entire encoding or recall interval. Then, the power values were 

z-scored across encoding and recall events separately for each session to remove the effects 

of these variables. Thus, each study or recall event had a corresponding vector of z-scored 

power values, concatenated across 42 electrodes at each of the 46 frequencies.

We computed spectral power for defined events of interest: We defined encoding events as 

the time window from 200 ms to 3000 ms relative to the onset of each item’s presentation, 

and recall events as the time period −1000 ms to −600 ms relative to the verbalization of an 

item. The time window for presentation events was motivated by the choice of Manning et 

al. (2011), where the 200 ms delay was meant to account for the time delay between when 

the word appears on the screen and the participant begins to process the word, but otherwise 

activity is considered for the entire duration the word is on the screen. For the time window 

of recall events, we evaluated context reinstatement while varying the onset and duration of 

the time window. We evaluated time windows beginning from −1000 ms to −500 ms relative 

to the participant’s recall vocalization, ranging in duration from 300 ms to 800 ms (both 

ranges were assessed in increments of 100 ms). This evaluation of time windows indicated 

that context reinstatement was strongest for the recall time window of −1000 to −600 ms 

relative to recall vocalization (see Appendix C).

Neural Feature Selection—We followed the approach of Manning et al. (2011) to 

determine patterns of neural activity that change gradually with each studied word. First, 

we applied principal components analysis (PCA) to the set power values across electrodes 

and frequency bands contributing to each study or recall event, as described above, using 

control lists only (no-task or single-task lists). We excluded from subsequent analyses those 

principal components that failed to explain a substantial proportion of the variance according 

to the Kaiser criterion (Kaiser, 1960). Next, we quantified the extent to which each principal 

component changed slowly with each studied item, based on its autocorrelation (Equation 

1; Figure 1C). If a principal component was not sufficiently autocorrelated across studied 
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items, it was excluded because it did not meet the critical criterion of temporal context, to 

change slowly with each studied item. In this way, we calculated a set of autocorrelated 

feature vectors consistent with the notion of temporal context.

We follow the terminology of Manning et al. (2011) and refer to such autocorrelated 

principal components as feature vectors. To determine which of the components were 

feature vectors, for each feature x within each list i, we computed the Pearson’s lag 1 

autocorrelation coefficient (ri) and associated P value. We then combined the autocorrelation 

coefficients across lists into a summary autocorrelation measure r:

r = F−1 ∑
i

L
F ri (1)

where F and F−1 are the Fisher z-prime transformation and Fisher inverse transformation, 

respectively. We also computed a summary measure for P across lists, p, by applying the 

inverse Normal transformation to the P values then summing across the transformed P 
values. We defined p as where the sum of the transformed P values fell on the the cumulative 

normal distribution function. Finally, we used r and p as inclusion criteria, and only included 

x as an autocorrelated feature vector if it satisfied r > 0 and p < 0.1.

The neural measure of temporal context was considered separately for each session. If 

there were not at least five feature vectors, the session was excluded from further neural 

and behavioral analysis. If the session produced at least five feature vectors, we applied 

a PCA transformation matrix, determined from the control lists, to calculate temporal 

context vectors from two-task lists. Of the 1027 possible sessions, 1023 sessions produced 

feature vectors. Of these sessions, 879 sessions had at least 5 feature vectors. The threshold 

of at least 5 feature vectors aims to ensure that the feature vectors are of high enough 

dimensionality to observe the potential properties of interest including context reinstatement 

(Manning et al., 2011). Further, 3 of the 4 sessions with no feature vectors had lower than 

average dimensionality from PCA (8, 12, 58; M ± STD = 86.8 ± 15.7), and all participants 

with such sessions did contribute at least 1 other session to the analyses presented here. 

Thus, the lower dimensionality from these sessions may reflect noisier EEG data, or at least 

they suggest that they do not reflect solely participants who fail to exhibit neural features of 

temporal context.

Similarity values—We defined the neural similarity between two feature vectors (in 

the participants’ data) or two temporal context vectors (in CMR) as the cosine of the 

angle between those two vectors (Manning et al., 2011). When comparing similarity values 

between neighboring items within events versus across events, we only calculated an item’s 

similarity to its lag = +1 and lag = −1 neighbors if both the preceding item and the following 

item were valid list positions. Thus, the first list item was never included in similarity 

value calculations as the item immediately following an event boundary (which we term a 

boundary item), and the last list item was never included in similarity values as the item 

preceding an event boundary (which we term a preboundary item).
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Neural similarity between studied items.: As confirmation of the approach for defining 

neural similarity during study, we calculated neural similarity as a function of study lag in 

control lists and two-task lists (see Figure A1). When comparing neural similarity during 

study of two-task lists for within versus across events, we excluded similarity values of 

preboundary items in events of 2 items, as the across-event similarity was included for the 

subsequent boundary item, and the within-event similarity was included for the preceding 

boundary item (aside from the first event). We only calculated within-event similarity for 

preboundary and boundary items; otherwise, the within-event similarity measure would 

include many more items and may not be as comparable to across-event similarity. Finally, 

for preboundary items for which the across-event similarity was already included for the 

boundary item, we only included this value once as an across-event similarity value (i.e. we 

did not double-count these values).

For calculations neural similarity across lists between item pairs of the same or different 

tasks in control lists, we excluded the no-task lists to make the comparisons between control 

lists and two-task lists more comparable, as two-task lists did not include items with no task.

Encoding-retrieval similarity (ERS).: In addition to the general exclusion noted above, 

we did not calculate similarity between a recalled item and any of its study neighbors 

which were already recalled. Including ERS at study for a previously recalled item may be 

problematic, as such similarity values may reflect shared features from retrieval, not from 

study (cf. Folkerts et al., 2018). However, this exclusion did not take into account the items 

excluded in output positions 1–3 or items recalled less than 1 s earlier than the previous 

recall, as those items did not contribute to the initial PCA analysis, and thus presumably did 

not contribute significant variability to the neural measure of temporal context.

Analytic strategy

To compare within-participant conditions across participants with a large sample size, we 

used standard paired t-tests. We calculated effect size using a variant of Cohen’s d based 

on the pooled standard deviation, using the second, fourth and fifth equations given on p. 

7 of Fritz et al. (2012). The formula for ‘very similar’ standard deviations between groups 

was used when standard deviations were within 5% of one another; otherwise, standard 

deviations were at least 7% apart from one another, and the formula for standard deviations 

which ‘differ’ was used.

All correlation analyses used robust regression, a regression measure less sensitive to 

potential outliers. Unlike standard Pearson’s regression, this analysis does not yield the same 

correlation and significance values if the dependent and independent measures are switched 

(i.e., the correlation of x and y is not the same as the correlation of y and x). In our analyses 

we defined the independent measure, plotted on the x axis, as the measure occurring earlier 

in time. Our regression analyses were motivated by CMR predictions, whereby a participant 

exhibiting a stronger impact of temporal disruption in neural reinstatement should also 

exhibit stronger temporal disruption during study, and stronger temporal disruption in recall 

behavior. Thus, for each of our regression analyses we had a hypothesized direction of the 

correlation, and we report one-tailed p-values.
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For comparable comparison between ERS and behavioral lag-CRPs during recall, we 

excluded the items recalled at the first three output positions. Further, for the lag-CRPs 

in two-task lists, we considered transitions from a preboundary or boundary item to any 

possible item, not just those within the same or neighboring event. Thus, the colors and 

legends in Figure 5 is meant to reflect the most likely transition. However, only neighboring 

items are always consistent with the legend. For instance, if a boundary item is in an event of 

length 3, then a transition of lag = +4 would not be to an item in the same event.

Transparency and Openness

The raw behavioral data is available at http://memory.psych.upenn.edu/files/PEERS.data.tgz 

and the raw electrophysiology data is available at http://memory.psych.upenn.edu/

mediawiki/index.php?title=Data_Request&paper=WeidKaha16. The code used for the 

behavioral simulations and analysesis available at http://memory.psych.upenn.edu/CMR, and 

the analysis scripts used for calculating the behavioral lag-CRP analyses is available at 

https://github.com/vucml/EMBAM. Remaining materials are available upon request.

We report how we determined our sample size, all data exclusions, all manipulations, and 

all measures in the study. Because we present analyses of an existing dataset, the sample 

size was not determined specifically for our current set of analyses, and this study was 

not preregistered. However, as described above, the large sample size and large number of 

observations per participant gave us confidence that we would have sufficient statistical 

power for our analyses. Although analyses of the PEERS dataset have been reported 

previously (e.g. Lohnas et al., 2015; Long & Kahana, 2017; Long et al., 2014; Miller et 

al., 2012; Weidemann & Kahana, 2016), all of the analyses presented here are novel.

Results

Temporal context in control lists

We first assessed behavioral and neural measures of temporal context in control lists (see 

Figure 1). These lists did not impose a strong event structure because participants performed 

the same (or no) encoding task for every studied item in each list (e.g., compare with 

Figure 3A). Thus, we used the control lists to assess the contribution temporal information 

to episodic memory encoding (study) and retrieval. We then build upon these analyses to 

address how event segmentation influences temporal context and memory organization.

Evidence of temporal context in recall behavior—After studying each list, 

participants performed free recall, recalling as many items as possible from the just-studied 

list in any order. Despite the open-ended instructions, recall order tends to reflect the 

temporal order in which items were presented (Healey & Kahana, 2014; Healey et al., 2019; 

Kahana, 1996; Kahana et al., 2008; Unsworth et al., 2012; Ward et al., 2010). Contributions 

of temporal organization can be measured by calculating the probability of a recall transition 

between two items, based on their difference in serial positions at study and conditional 

on their availability (lag-CRP; Kahana, 1996). Figure 2B shows the lag-CRP from the 

control lists, demonstrating two ubiquitous and critical features of this function (Kahana 

et al., 2008). First, the lag-CRP tends to be greatest at smaller absolute lags, indicating 
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the increased transition probability between items studied nearby each other. Second, the 

lag-CRP is asymmetric, with greater transition probability in the forward direction (positive 

lag) than the backward direction (negative lag).

Figure 2A presents CMR’s prediction of the lag-CRP and these two critical features. Rather 

than find a set of model parameters which best capture the phenomena of this data set, here 

we took a stricter approach by simulating a dataset and best-fit parameters generated from 

another study with a similar experimental design (Polyn et al., 2009a). This approach shares 

similarities to the generalization criterion method, whereby estimates from a dataset with 

one design (here, no or single-task lists) are validated using data with a different design 

(two-task lists; Ahn et al., 2008; Busemeyer & Wang, 2000). Here, we consider the model 

to be ‘trained’ on one data set, and ‘test’ model predictions on a different data set, for 

both similar effects to the original data set as well as novel effects. Before we consider 

novel predictions of CMR, we first verify that CMR predicts the same core effects in this 

study as in Polyn et al. (2009a), despite some minor differences in experimental procedures 

between the two studies. CMR predicts the temporal contiguity effect, or tendency to recall 

items from smaller absolute lags. CMR predicts this effect due to its core assumptions that 

temporal context changes slowly with each studied item, and recall of an item leads to 

retrieval of its associated context states from study. Thus, when the current context cues 

recall of the next item, the just-recalled item’s context forms a part of this retrieval cue. 

As a result, CMR is more likely to recall items with shared temporal context states to the 

just-recalled item, including that item’s neighbors from study. CMR predicts the forward 

asymmetry in the lag-CRP because the context of a particular item i is incorporated into the 

context state of item i + 1, and thus a recalled item generally has a temporal context more 

similar to the items presented after it. Taken together, we interpret these behavioral recall 

dynamics as evidence for a role of temporal context in control lists.

A neural signature of temporal context during study—According to CMR, the 

behavioral effects in Figure 2 rely on a temporal context representation which changes 

slowly with each studied item (see Figure A1A). We assessed this prediction by defining an 

electrophysiological measure of temporal context consistent with the definitions of Manning 

et al. (2011). Whereas Manning et al. (2011) examined temporal context with intracranial 

EEG, here we examined temporal context with scalp EEG, which unlike intracranial EEG is 

noninvasive. To our knowledge, our results provide the first evidence of a temporal context 

measure using scalp EEG. Further, this lays the foundation to then assess how this neural 

measure of temporal context interacts with event structure and memory representations.

The measure of temporal context was designed to meet several criteria consistent with 

CMR’s assumptions (see Method for full details). Separately for each participant and 

session, we first defined a vector of power values for each study event and recall event, 

where values were concatenated across a range of frequencies and included activity from 

electrodes implicated in mnemonic processing (Figure 1A; Long & Kahana, 2017; Long et 

al., 2014; Weidemann et al., 2009). We then applied PCA to the matrix of power vectors 

across study and recall events, and excluded principal components that contributed a low 

level of variance in principal components space (Kaiser, 1960). Next, we quantified the 

extent to which each of the included principal components was autocorrelated. We only 
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used those principal components meeting the threshold for being substantially autocorrelated 

across each word presentation, consistent with CMR’s assumption that temporal context 

changes slowly with each studied item. Our success in finding such autocorrelated feature 

vectors for 171/172 (99%) of participants attests to the validity of this approach (see also 

Figure A1B).

As described thus far, although feature vectors have properties consistent with temporal 

context, they also have features consistent with a positional code account, whereby each 

feature vector would code the serial position in the list associated with each item (Anderson 

& Matessa, 1997; Brown et al., 2000; Burgess & Hitch, 1999; Farrell, 2012; Henson, 1998). 

Like feature vectors of temporal context, feature vectors of positional codes would also 

be autocorrelated across items within a list. However, unlike temporal context, a purely 

positional code would be shared across lists. Thus, the feature vector of the item in Serial 

Position i in List j should exhibit greater similarity to the item in Serial Position i +1 not 

only from the same list j, but also to the item in Serial Position i +1 in List j +1 or List 

j +2 (Burgess & Hitch, 1999; Conrad, 1960; Henson, 1996; Osth & Dennis, 2015). By 

contrast, a temporal context account would predict that the similarity between item i and 

items i +1 should decrease as the number of lists between i and i +1 increases (Howard 

et al., 2008; Lohnas et al., 2015; Unsworth, 2008). This within-list vs. across-list contrast 

should be most pronounced in neighboring serial positions. Thus, to test this possibility, we 

calculated the neural similarity between items with differing serial positions of lag = 1 and 

with differing list numbers, i.e. list-lags ∈ 0, 1, 2, 3 . Further, to ensure a reduction across 

lists did not reflect differences in source context across lists, we calculated similarity only 

between pairs of items presented with the same encoding task and in control lists. Consistent 

with a temporal context account, neural similarity was greater for between item pairs with 

smaller list-lags (see Figure B1 and surrounding text).

Another way in which positional information might contribute to the current effects is that 

early list positions may contribute more to the positional code than later positions, such 

that these feature vectors really just reflect drift from primacy positions (Henson, 1998). 

However, the autocorrelated property of feature vectors is present across serial positions, 

suggesting that this effect is not driven by positional information from specific serial 

positions (see Figure B2 and surrounding text).

It is also important to rule out the possibility that feature vectors incorporate task 

information, that is, that they might change slowly with studied items but not for all task 

types. We found that neural similarity in feature vectors changed slowly over time for each 

task type and no task (Figure A1C). First, we verified that neural similarity decreased by 

lag, being significantly greater for item pairs with lag = 1 than lags 3 to 5, in lists with no 

task (M = 0.099, SD = 0.040, t(169) = 32.3, CI = [0.0928, 0.1049],p < .00001,d = 0.64), 

lists with the size task (M = 0.086, SD = 0.037, t(169) = 30.6, CI = [0.0809, 0.0921],p < 
.00001,d = 0.56), and lists with the animacy task (M = 0.084, SD = 0.037, t(169) = 29.9, CI 
= [0.0787, 0.0898],p < .00001,d = 0.55).

Further, we calculated mean neural similarity between feature vectors between items of 

the same or different tasks. If task information contributed to the feature vectors, then we 
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would expect neural similarity to be greater for item pairs studied with the same task when 

compared to items with different tasks. We conducted this analysis between item pairs 

studied in neighboring lists (list − lag = 1) because control lists are only comprised of 

items of the same task type or no task type. We thus excluded control lists of items studied 

without a task. To avoid potential positional differences, we calculated neural similarity 

between items with a difference in serial position or lag = 1. In control lists, neural similarity 

between items of the same task did not differ from neural similarity of items studied with 

different tasks (p > .3). Further, the mean magnitude of feature values did not differ between 

lists studied with the size task versus the animacy task (p > .5). Taken together, these 

analyses suggest that the autocorrelated feature vectors reflect temporal context information. 

To further discern the role of these posited temporal context features in memory processes, 

we next examined their properties during memory retrieval.

Reinstatement of temporal context in control lists—We next verified CMR’s core 

prediction that temporal context is reinstated during recall. This prediction suggests that 

temporal information is not just a by-product of study, but rather contributes to memory 

representations and retrieval. To test this prediction, for each recalled item we calculated the 

similarity between the temporal context state of that item when it was originally studied to 

the current temporal context state as the item was being recalled. In addition, we calculated 

the similarity between the current temporal context and the temporal contexts of the item’s 

neighbors from study (see Figure 1E). According to CMR, because an item’s recall leads to 

reinstatement of temporal context state from study, then the ERS between the current context 

and an item’s context from study should reflect the temporal history of studied items, such 

that items with smaller absolute lags should have greater similarity (see Figure 2C).

We assessed CMR’s prediction with the autocorrelated feature vectors, our alleged neural 

measure of temporal context. Specifically, for each recalled item, we calculated the ERS 

between the recalled item’s feature vector to both the feature vectors from study of itself 

(lag = 0) and to its neighbors of lag ∈ − 5, − 4, …, 4, 5 , for those items not yet recalled 

(see Figure 2D; also see Method). For negative lags (i.e., the similarity between an item 

and the items studied before it), CMR predicts that ERS should increase with study-recall 

lag. This is because a recalled item’s retrieved temporal context should have greater overlap 

in temporal context, i.e. greater ERS, with other items studied nearby in time to that item. 

This prediction is critical to distinguish the retrieval of context information, as predicted 

in CMR, from the retrieval of content, or item, information (Manning et al., 2011). To test 

this prediction, we compared the ERS between at lag = -1 to the ERS at more distant lags 

−3 to −5. Consistent with CMR’s prediction, ERS was significantly greater at lag =-1 than 

the average ERS at lags −3 to −5 (M = 0.009, SD = 0.039, t(169) = 2.95, CI = [0.0029, 

0.0146],p = 0.004,d = 0.083). We also evaluated ERS at positive lags, predicting that ERS 

should decrease with lag in the forward direction. Following the logic with negative lags, 

CMR predicts that context states of items studied nearby in time should share more temporal 

context, thus leading to greater ERS. Paralleling the test of ERS with negative lag, we 

compared the ERS at lag = +1 to the ERS at lags 3 to 5, and found that ERS was greater at 

lag = +1 (M = 0.005, SD = 0.031, t(169) = 1.99, CI = [0.0000, 0.0095],p = 0.048,d = 0.043). 

This result is not only consistent with CMR’s prediction, but also helps to rule out the 
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possibility that our neural measure of temporal context at study only reflects autocorrelated 

noise (Manning et al., 2011).

The slight negative asymmetry in the neural CRP shown in Figure 2D appears at odds 

with the striking forward asymmetry in behavioral CRP shown in Figure 2B. Furthermore, 

ERS at retrieval does not peak for the lag = 0 matching item. Both of these results should 

appear less surprising when considering that we designed our neural features to separate 

representations of context from item content. Thus, the neural CRP should not match the 

behavioral lag-CRP, but rather should represent the underlying neural representation of 

context. CMR predicts that such a context representation should decay symmetrically as 

the absolute value of lag increases (Figure 2C). CMR predicts the forward asymmetry in 

the lag-CRP because both temporal context and content information contribute to the recall 

of an item (see Appendix A). Item information promotes recall of items following the 

just-recalled item, and combines with the symmetric support from context information to 

favor recall of items from forward lags over backwards lags (cf. Howard & Kahana, 2002; 

Manning et al., 2011).

Nonetheless, the apparent leftward shift of the neural CRP may reflect a more nuanced 

understanding of the process of contextual updating. This negative shift could arise because 

of the persistence of item representations that penetrate the representation of neural context. 

Although we attempted to rule this out by removing lag = −1 items when participants 

recalled items in forward pairs, this may not have completely eliminated contributions from 

the representation of items in feature vectors, especially for items recalled early in the list 

or within 1 s of each other (see Method). Alternatively, this may reflect our choice of 

presentation time window as in Manning et al. (2011). Importantly, this asymmetry most 

likely does not reflect our selection criterion to have ERS at lag=−1 exceed the mean ERS 

across lags −3, −4, −5. Although such a criterion could, at least in principle, bias us to find 

a time window with a larger lag=-1 value, all of the considered 36 time windows had a 

value of lag=−1 numerically greater than lag = 1. Future work remains to characterize the 

contributions of these factors and relate neural symmetry to behavioral asymmetry. However, 

regardless of the asymmetry, this does not detract from the critical result that temporal 

context is reinstated during free recall.

The influence of event boundaries on temporal context representations

Having established neural and behavioral measures of temporal context in control lists, we 

next turned to the critical analyses of the influence of event boundaries on temporal context 

states. CMR assumes that each item is associated with a temporal context and a source 

context, yet these two contexts interact. Specifically, a change in events (and thus a change 

in source context) leads to a disruption in temporal context. As a result, CMR predicts that 

the similarity in temporal context between neighboring studied items should be less if those 

items are separated by an event boundary. Further, CMR predicts that the state of temporal 

context, incorporating the disruption to temporal context during study, should be reinstated 

during recall. We examined these predictions in two-task lists, where participants performed 

1 of 2 semantic encoding tasks with each studied item, switching back and forth between 

the 2 tasks throughout the list (see Figure 3A). In this way, an event is operationalized as a 
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sequence of items presented with the same task, where task was indicated to the participant 

by the color, font and case of the word. We define an event boundary as a change in 

encoding tasks. Thus, we term a boundary item as the first item presented with the changed 

encoding task, and a preboundary item as the final item in an event before the task switch.

In the experimental data, we calculated temporal context for each item in each two-task list 

using the feature vectors from the control lists (see Figure 1). We excluded the two-task 

lists when calculating the features vectors, so that the autocorrelation in our posited context 

measure could not be driven by a change in encoding task. Because each control list 

is comprised of only one encoding task type (no task, animacy task, or size task), two 

items within the same control list could not have reduced similarity with lag due to a task 

change, because there were no task changes in these lists. Further, our strict criterion of 

autocorrelation across control lists of three task types (see Method) would exclude feature 

vectors only autocorrelated for lists of a single task type. Thus, feature vectors reflect 

information slowly changing with each studied item irrespective of task type, a defining 

feature of temporal context but not source context. As a result, a reduction in neural 

similarity between feature vectors also reflects reduced temporal context similarity due 

to the change in task, but not the perceptual features of the task change. This approach 

shares similarities to the generalization criterion method, where we ‘train’ feature vectors 

on control lists, yet ‘test’ the validity of these features in two-task lists (Ahn et al., 2008; 

Busemeyer & Wang, 2000). By only using control lists to calculate the temporal context 

feature vectors, this makes it more likely to extract feature vectors which are less sensitive to 

changes in features specific to a single encoding task.

We first verified that the temporal context features, defined in control lists, still maintained 

the critical property of autocorrelation in the two-task lists. We calculated neural similarity 

during study between items from the same event, and found that neural similarity was 

significantly greater for item pairs with lag = 1 than lags 3 to 5 (M = 0.070, SD = 0.064, 

t(169) = 14.41, CI = [0.0606, 0.0799],p < 0.0001,d = 0.45; Figure A1B). We also verified 

that these changes were not driven by a single task type (Figure A1C). Similarly to control 

lists, in two-task lists neural similarity was significantly greater for item pairs with lag = 

1 than lags 3 to 5 for the size task (M = 0.070, SD = 0.095, t(169) = 9.7, CI = [0.0559, 

0.0846],p < .00001,d = 0.43) and for the animacy task (M = 0.069, SD = 0.087, t(169) = 

10.3, CI = [0.0555, 0.0817],p < .00001,d = 0.42).

For CMR simulations, temporal context states are determined with model equations (see 

Appendix A), and the similarity between item pairs in a control list is identical to the 

similarity between item pairs from the same event in a two-task list (Figure A1 A). In 

contrast to CMR predictions, neural similarity between item pairs is reduced in two-task 

lists. Most likely, this reflects the exclusion of two-task lists when first applying PCA to 

calculate temporal context vectors. Participant data is more variable than model predictions, 

and the exclusion of the variance provided by two-task lists could cause overall reduced 

similarity between neighboring items. Because these similarity values are only calculated for 

item pairs within the same event, and thus with the same encoding task features, the reduced 

similarity cannot be explained by fewer shared task features across events.
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To further ensure that the reduced neural similarity in two-task lists does not reflect 

differences in task information, we compared mean neural similarity values at study between 

item pairs in control lists to similarity values of item pairs in two-task lists, again with list 
− lag = 1 and lag = 1. In two-task lists, we excluded boundary items to avoid concerns 

that these items may exhibit other control processes independent of task information. Neural 

similarity values did not differ for item pairs of the same task for one task vs. two task lists 

(p > .5), nor for item pairs of different tasks (p > .5). This reinforces that task features do 

not influence differences of neural similarity across list types. To confirm that task features 

do not influence differences in neural similarity across task types, we also compared neural 

similarity for item pairs of the same type or different task types, list − lag = 1 and lag = 1, 

paralleling the analysis in control lists. For this comparison as well, now in two-task lists, 

neural similarity did not differ between item pairs of the same task type vs. different task 

types (p > .5). These analyses suggest that, despite the reduced neural similarity in two-task 

lists, such a reduction is not explained by assuming that feature vectors incorporate task 

information. Having defined event structure and feature vectors of temporal context in the 

two-task lists, changing slowly with each studied item, we now assess CMR predictions in 

the experimental data.

Event boundaries modulate temporal context during study—CMR assumes that 

an event boundary leads to a disruption in temporal context, making temporal context 

after the event boundary less similar to the prior temporal context state. Thus, holding lag 

constant, the neural similarity in temporal context between two items should be less when 

those items are separated by an event boundary. CMR predicts that neural similarity should 

be less across boundaries at any lag, yet because context similarity also decreases with lag, 

at larger lags this difference becomes more subtle. Thus, CMR predicts the most salient 

influence of event boundaries for neighboring pairs of items, and here we examine this 

stricter test of CMR’s predictions at study lag = 1. Figure 3B shows CMR’s prediction of 

the neural similarity between pairs of successive items that border an event boundary, as a 

function of being presented in the same event or different events. Although we show CMR’s 

prediction from a single set of parameters (see Table A1), CMR always predicts greater 

similarity between neighboring pairs in the same event than neighboring pairs in different 

events, arising from the core model assumption that a change in source context, or event 

boundary, leads to a disruption in temporal context (see Appendix A).

We tested CMR’s prediction by calculating the neural similarity between temporal context 

feature vectors of successive items bordering an event boundary during study (see Figure 

3C). We found that neural similarity was greater between item pairs studied within the same 

event than item pairs studied across different events (M = 0.007, SD = 0.040, t(169) = 2.12, 

CI = [0.0005, 0.0126],p = 0.035,d = 0.041). This result is consistent with CMR’s underlying 

assumption that there is a disruption to temporal context at the event boundary, thus leading 

to reduced temporal similarity of items separated by an event boundary. This also suggests 

that, for items separated by an event boundary, their weakened neural similarity may reflect 

their weakened temporal associations.

It is important to consider the alternate explanation that our posited temporal context vectors 

actually reflect task features that change at the event boundary, including the encoding task 

Lohnas et al. Page 17

J Exp Psychol Gen. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the visual properties of the studied word. If this were the case, then a reduction in neural 

similarity would reflect a reduction in task, not temporal context, similarity. We took several 

steps to rule out this alternate explanation. First, temporal context feature vectors are only 

calculated from control lists, where each list only has a single encoding task. Thus, if a 

feature vector is autocorrelated across items within a list, it cannot be driven by changes 

to task features alone. Also attesting to minimal contributions of task across task types, the 

magnitudes of feature vectors did not differ between the two types of control list types with 

a single task, and the control list feature vectors inform those of the two-task lists.

Second, because we defined each feature vector by having a sufficiently high item-to-item 

autocorrelation when summed across lists (see Method), it is less likely that a feature 

vector’s autocorrelation was driven by changes in a single task type. Instead, this metric 

supported features which were autocorrelated across items irrespective of within-list task 

type. Third, neural similarity between feature vectors decreased as a function of study lag 

for item pairs in two-task lists from the same event (and thus with the same task), as well as 

item pairs in control lists for each task type (also always presented with the same task; see 

Figure A1). Finally, we ensured that neural similarity differences between items of the same 

task type or different task types were at equal levels between control lists and two-task lists 

(see previous section).

Taken together, these results suggest the changes in neural similarity across events reflect 

a disruption to temporal context. Further, these results suggest that the purported influence 

of event structure on retrospective temporal judgments may reflect changes to temporal 

representations during initial perceptual processing. However, to fully appreciate the role 

of event structure on temporal information on subsequent memory, we will also need to 

examine these properties during memory retrieval.

Reinstatement of event disruptions to temporal context—We next queried 

temporal context representations during recall, motivated by CMR’s assumption that recall 

of an item evokes retrieval of its context states from study. In the two-task lists, the retrieved 

context includes the source (task) context, and the temporal context modulated by event 

boundaries. Thus, CMR predicts that if a preboundary or boundary item is recalled, then 

the retrieved temporal context of the recalled item should show greater similarity with its 

within-event neighbor from study in comparison its across-event neighbor from study (see 

Figure 4A,B). However, the predicted difference in ERS is more subtle during recall than 

during study (i.e., compare to Figure 3B). In retrieved context models such as CMR, the 

extent of context reinstatement for each item is defined by a parameter ranging from 0 to 1, 

with 0 indicating no context reinstatement and 1 indicating perfect reinstatement. If context 

reinstatement was perfect, then the predictions of study and recall would be the same. To 

best account for human behavior, the context reinstatement parameter is less than perfect 

(here, set to .510; see Table A1). As a result, the difference for within-event similarity vs. 

across-event similarity during recall is less than (a perfect reflection of) the difference in 

context from study.

We next assessed CMR’s prediction in participant EEG data for recall of boundary items and 

preboundary items (see Figure 4C). ERS was not significantly different for a recalled item 
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if the similarity was calculated with its studied neighbor from the same versus a different 

event (M = −0.004, SD = 0.070, t(169) = −0.78, CI = [−0.0147, 0.0064],p = 0.439). Yet this 

is not entirely inconsistent with CMR’s prediction that the difference in similarity reinstated 

during recall is less than the ERS difference at study. To further probe whether this 

nonsignificant difference in ERS might reflect a meaningful signal in temporal context, we 

examined the across-participant variability in temporal context reinstatement. In particular, 

we hypothesized that those participants exhibiting greater disruptions to temporal context 

during study should also exhibit greater reinstatement of those disruptions during recall, 

even if the mean difference in temporal context was not significant. To test this hypothesis, 

we calculated each participant’s difference in neural similarity at study (within vs. across 

event in Figure 3C), and correlated this with each participant’s ERS difference at recall (see 

Figure 4C). We used robust regression, a regression method designed to be less sensitive 

to potential outliers by assigning a weight to each data point, and inherently downweighing 

potential outliers. We found that these two difference measures trended towards a positive 

correlation (N = 170,b = 0.20, one-tailed p = 0.063; Figure 4D). This suggests that, if a 

participant experiences the task changes as more salient disruptions to temporal information 

associated with items, then that participant also reinstates such temporal disruptions when 

recalling those items. Thus, this result is consistent with our hypothesis that the disruptions 

to temporal context by event boundaries from study were reinstated during recall. More 

broadly, this suggests that the influence of event segmentation on retrospective temporal 

judgments reflects reinstatement of temporal context encoded from study.

Event disruptions to temporal context from study influence recall behavior—
We next examined a novel prediction of CMR concerning the impact of event boundaries 

on free recall behavior, in particular recall transitions. This prediction builds on previous 

findings establishing that much of the variability of recall transitions in free recall can be 

explained by the temporal relationships between studied items, as participants are more 

likely to transition between items presented nearby on the study list (Figure 2B; Healey et 

al., 2019; Kahana, 1996, 2012). CMR assumes that temporal context drives this temporal 

organization (see Figure 2A), and so CMR also assumes that recall transitions should be 

modulated by temporal disruptions imposed by event boundaries. As shown in Figure 5A, 

CMR predicts that recall transitions from a preboundary item should be less likely to the 

item at lag = +1 in the two-task lists, as compared to transitions of lag = +1 in the control 

lists (see Figure 2A). This striking prediction stands in contrast to the forward asymmetry 

usually seen in free recall (Healey et al., 2019; Kahana, 1996, 2012). Yet, according to 

CMR, an event boundary disrupts temporal context between the preboundary item and the 

next item (at lag = +1), and so these items do not overlap as much in their temporal 

context states. As a result, when the preboundary item is recalled and its temporal context 

is reinstated, the retrieval cue incorporating this context will overlap less with the context of 

the lag = +1 item. Thus, this state of context does not promote recall of the lag = +1 item 

as strongly as in a control list. Further, more temporal context is shared between the lag = 

−1 item and the preboundary item, because these items are from the same event. Thus, CMR 

predicts that transitions from a preboundary item to the item studied before it, the lag = −1 

item, is more likely when compared to control lists or even to the lag = +1 item.

Lohnas et al. Page 19

J Exp Psychol Gen. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In a complementary way, CMR predicts that recall transitions from boundary items are 

modulated as well (see Figure 5B). A transition from a boundary item to its neighbor at 

lag = +1 should be more likely than in control lists, because these items share both event 

information and temporal information. Following similar logic, CMR also predicts that a 

transition from a boundary item should be less likely to the item at lag =−1, because such 

items were presented in a different event and thus share less temporal context with the 

just-recalled boundary item.

Next, we examined whether CMR’s predictions were upheld in participants’ data. To assess 

these effects statistically, we defined the temporal modulation score as the difference in 

lag-CRP values at | lag | =1 for transitions made within event minus transitions made across 

event. (Thus, for preboundary items this score is defined as CRP values at lag = −1 minus 

those at lag = +1; for boundary item this score is defined as CRP values at lag = +1 minus 

those at lag = −1). As a baseline, we compared this value to the lag-CRP values at the same 

lags from the control lists. We found that the distribution of temporal modulation scores 

from preboundary items was significantly greater in two-task lists than matched lags in 

control lists (M = 0.190, SD = 0.154, t(169) = 16.09, CI = [0.1670, 0.2137],p < .0001,d = 

1.41). Qualitatively, the lag-CRP in the experimental data (see Figure 5C) exhibits a similar 

pattern to CMR’s prediction, with larger values for transition probabilities for negative lags 

over positive lags. In addition, the temporal modulation scores from boundary items were 

also significantly greater in two-task lists than matched lags in control lists (see Figure 5D; 

(M = 0.139, SD = 0.166, t(169) = 10.97, CI = [0.1144, 0.1646],p < .0001,d = 0.98). Thus, 

the recall transitions in two-task lists of the participants’ data are consistent with CMR’s 

assumption. During study, event boundaries disrupted temporal representations, and at recall 

these temporal representations, incorporating the disruption, are reinstated. As a result, this 

promoted transitions between items with more similar temporal context states, typically 

within the same event.

Relating neural temporal context to recall behavior—Having established measures 

suggestive of the impact of event boundaries on temporal context — neurally and 

behaviorally — we next assessed whether there was a causal role of the reinstated temporal 

disruptions, reflecting event structure from study. In particular, we asked whether the neural 

measures predicted the behavioral measures. According to CMR, both the neural modulation 

and the behavioral modulation should be greater when there is a greater disruption to 

temporal context by event information. Although CMR predicts average data, the extent 

of disruption may vary by participant. If this were the case, then those participants 

exhibiting a greater modulation by event boundary in their ERS difference should exhibit 

a greater modulation by event boundaries in their recall transitions. In other words, if each 

participant’s neural measures (see Figure 4) and behavioral measures (see Figure 5) both 

reflected modulations of temporal context by event boundaries, and if such information 

influenced memory, then the neural and behavioral measures should be correlated across 

participants.

We defined a participant’s neural modulation by temporal context as the difference in ERS 

for within-event transitions versus across-event transitions (i.e., the difference in the two 

bars plotted in Figure 4). We defined a participant’s behavioral modulation by temporal 
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context by summing the temporal modulation scores of preboundary and boundary items. 

Here we leveraged the variability across participants in the extent to which event boundaries 

modulate their temporal context states, and we predicted a positive correlation between 

neural modulation and temporal modulation. Again using robust regression to account 

for potential outliers, we found that across participants these two measures were weakly 

correlated (see Figure 6, N = 170,b = .41, one-tailed p = .045). This suggests that variance 

in the temporal modulation scores can be explained by the neural temporal context measure. 

Although there is variability across participants in the extent to which event boundaries 

modulate their behavioral and neural activity, the correlation across participants suggests 

that a disruption to temporal context may underlie both effects.

This correlation also argues against the possibility that the significant differences in 

the temporal modulation scores simply reflect recall organization based on shared event 

information and shared encoding task, rather than shared temporal context. If temporal 

context did not contribute to recall transitions, then we would not expect recall behavior 

to correlate with the neural measure of temporal context. As further attestation to this 

point, if the behavioral modulation was driven by shared source or task context, then 

we would expect the ERS difference to correlate with the degree to which participants 

transition to items of the same task, irrespective of temporal lag. We calculated this task, or 

source, clustering score for transitions made from boundary or preboundary items. Across 

participants, source clustering scores were not correlated with the neural modulation scores 

(N = 170, b = 0.003, p > 0.4), further suggesting that shared task features alone were not 

driving neural activity. Rather, these correlations are most consistent with CMR’s critical 

assumption that a change in source context, or event boundary, disrupts temporal context.

As another approach to assess the importance of temporal context for memory organization, 

we examined predictions of a model variant which makes the same assumptions as 

CMR except that event boundaries do not evoke disruptions in temporal context (best-fit 

parameters of the pure association model from Polyn et al., 2009a, Figure A3). This model 

variant was unable to capture the critical findings in behavioral and neural data. Taken 

together, the results reveal the influence of event structure on temporal context during initial 

perception, and on memory representations to influence retrieval and recall dynamics.

Discussion

How differences emerge between the objective environment and internal experience remains 

a broad yet fundamental question in cognitive psychology. Such differences can impact 

perception of information in the moment, as well as how the information becomes 

represented in memory. Appreciating the interactions between ongoing perception and 

subsequent memory provides insight into both processes (e.g. Clewett et al., 2019; Zacks 

et al., 2007). Here we examined the interaction between event segmentation and episodic 

memory through the lens of temporal context: how online event segmentation influences 

temporal context, and the consequence of context changes to mnemonic representations. 

We examined these effects in memory behavior and in neural activity by recording EEG 

as participants studied and recalled lists of words. To discern the unique contribution of 

temporal information to event segmentation and memory organization, we compared these 
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results to neural and behavioral predictions of a computational cognitive model. Consistent 

with model predictions, these results reveal that temporal information plays a primary role 

in event segmentation and memory: event boundaries disrupt temporal context, impacting 

memory retrieval even when temporal information is not queried directly.

Our measure of perception with temporal information differs from most other studies 

relating event segmentation and temporal representations, which ask participants explicitly 

to make temporal judgments (Ezzyat & Davachi, 2014; Faber & Gennari, 2017; Lositsky 

et al., 2016). Instead, we measured a neural correlate of temporal context with EEG. 

This enabled us to assess temporal perception both prospectively during initial perception 

and encoding, as well as retrospectively during memory retrieval. Further, by not asking 

participants directly about time, this neural measure allowed us to query how temporal 

information influences memory dynamics even when such information is not as critical 

to task performance. The calculation of this temporal measure was motivated by retrieved 

context models such as CMR. These models assume that context changes slowly with each 

studied item, and that an item’s context state is retrieved when the item is recalled (Figure 

1; Howard & Kahana, 2002; Manning et al., 2011). We first established this measure of 

temporal context in control lists, which only had one task type per list and thus presumably 

did not impose a strong event structure during study. We demonstrated for the first time a 

neural correlate of temporal context in scalp EEG (see Figure 2).

Here we operationalized event boundaries with controlled changes to presented information 

to help minimize the impact of these changes on memory performance between events: 

a change in the encoding task performed with each presented item, where the task was 

indicated by the color, font and case of the item. Event boundaries are often operationalized 

by more salient changes, such as a change in the semantic category of presented information 

(e.g. DuBrow & Davachi, 2013; DuBrow & Davachi, 2014; Ezzyat & Davachi, 2014), 

or features of the presented information such as size or location (e.g. Faber & Gennari, 

2015, 2017; Heusser et al., 2016; Heusser et al., 2018; Lositsky et al., 2016; Radvansky 

& Copeland, 2006). By contrast, we minimized stimulus changes between events to better 

isolate the contribution of temporal information to event structure and memory. Nonetheless, 

our operationalization of event boundary — somewhat unpredictable and reflected as a 

change in encoding task and change in visual stimulus features such as color — is consistent 

with previous studies which use these features to impose event structure (e.g. DuBrow 

& Davachi, 2013; DuBrow & Davachi, 2014; Frank et al., 2020; Heusser et al., 2018; 

Radvansky & Zacks, 2017; Zacks et al., 2011; Zacks et al., 2007).

With our conservative definition of event boundaries, we first verified that EEG activity can 

provide a neural measure of temporal context by extracting EEG activity from electrodes 

across mnemonic regions (Long & Kahana, 2017; Long et al., 2014; Weidemann et 

al., 2009). We next verified several CMR predictions regarding the influence of event 

boundaries on temporal information. CMR represents event, task and temporal information 

as context states, and makes testable predictions regarding the interactions between temporal 

context and event structure. Rather than fit parameters to simulate the current study, we 

set a stricter threshold of CMR predictions: we simulated data from a pre-existing set of 

parameters and data, and then assessed CMR predictions in the current study. As a first 
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step to test CMR predictions, we found that neighboring items at study have reduced neural 

similarity in temporal context when separated by an event boundary (see Figure 3).

Critically, we examined how disruption to temporal context during study subsequently 

influenced neural and behavioral activity during memory retrieval. While freely recalling 

list items, participants exhibited neural activity consistent with reinstatement of temporal 

context from study. In control lists, the neural temporal context of a recalled item was 

most similar to the temporal context of its neighbors from study (see Figure 2D), consistent 

with predictions of the retrieved context model framework (see Figure 2C). In addition, in 

the lists with two tasks and event structure, we found evidence that participants reinstated 

temporal context states from study, including temporal context disruptions between events. 

Specifically, participants exhibiting a larger decrease in temporal context similarity across 

events during study trended towards exhibiting a greater decrease in this measure during 

recall (see Figure 4D). This provides support for temporal context reinstatement during 

recall, as those participants more influenced by the disruption of temporal information 

during study also reinstates such information during memory retrieval. Although previous 

studies have demonstrated neural evidence of event-related reinstatement during memory 

retrieval (Baldassano et al., 2017; Chen et al., 2017; DuBrow & Davachi, 2014; Zadbood 

et al., 2017), here we show that temporal information related to the event is reinstated as 

well. Importantly, the free recall test does not explicitly ask participants to remember this 

temporal information or the event structure. Thus, our results suggest that recall of an item 

automatically evokes retrieval of temporal context states from study, consistent with CMR’s 

assumption.

Patterns of recall behavior, and their relation to neural activity, also attested to the influence 

of these neural temporal context states on memory organization. Although in a free recall 

task, participants may recall items in any order, recall order in two-task lists reflected the 

influence of event segmentation. Specifically, recall transitions were less likely between 

items studied in different events than items studied in the same event (see Figure 5C,D). 

CMR predicts this effect with the presented parameter set (see Figure 5A,B), and would 

also predict this effect with most parameter sets, due to its core assumption that an event 

boundary disrupts temporal context and thus weakens memory associations. This pattern of 

behavior was most striking for successive recalls between neighboring items (i.e. lag = ±1). 

Because event boundaries disrupt associative transitions, these results are consistent with 

findings that items across events have weaker memory associations (Baldassano et al., 2017; 

DuBrow & Davachi, 2013; DuBrow & Davachi, 2014; Swallow et al., 2011; Swallow et 

al., 2009). Further, because transitions between temporal neighbors are impacted, and these 

relate to the neural measure of temporal context, we also interpret our results as consistent 

with longer temporal duration judgments across event boundaries (Clewett et al., 2020; 

DuBrow & Davachi, 2013; Ezzyat & Davachi, 2014; Faber & Gennari, 2017; Lositsky et al., 

2016).

We found evidence of these relationships in mean participant data, as well as in across-

participant variability. From the viewpoint of CMR, a participant exhibiting a greater 

difference in neural similarity during study experienced larger disruptions to temporal 

context, which should manifest during the recall test in both neural activity and memory 
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performance. Future work remains to characterize how and why such changes vary by 

participant and by individual event, as well as whether more subtle changes to context might 

be better inferred as a shift in, rather than a disruption to, context (DuBrow et al., 2017). 

Nonetheless, to our knowledge, this is one of the first studies to link directly, through neural 

activity and behavior, how event structure can influence temporal representations to impact 

memory performance. Critically, these results suggest that the influence of event boundaries 

on memory associations and temporal judgments reflect the direct impact of temporal 

context, even though event boundaries are defined by nontemporal features. Further, whereas 

retrospective temporal judgments have been posited to reflect properties of memory distinct 

from those operating during online perceptual processing (Grondin, 2010; Pöppel, 1997), 

our results suggest that the foundation is laid for this critical temporal information during 

initial perception and encoding.

We assessed the success of CMR’s predictions based on qualitative patterns in mean data, as 

well as expected correlations across participants. It is not surprising that the neural measure 

of temporal context, extracted from brain activity across regions and timepoints, is more 

variable than the mean activity predicted by CMR. Variability in neural activity would 

produce weaker neural similarity and ERS values when compared to model predictions. 

Further, because neural analyses of two-task lists used feature vectors calculated from 

control lists only, any variability in neural activity across lists would lead to weaker neural 

similarity in two-task lists. By contrast, CMR does not assume any variability across 

lists. Further, we assert that such noise may also account for the variability in the neural 

similarity difference (at study) or ERS difference (at recall) in two-task lists between 

neighboring items from the same or different events. Although a surprisingly high number 

of participants do not exhibit a negative difference as predicted by CMR, this could again 

be due to a noisier measure in participant data when compared to model predictions. 

Alternatively, greater similarity across boundaries may reflect rapid reinstatement of the 

prior event at the event boundary (Ben-Yakov et al., 2014; Sols et al., 2017). Yet if the 

rapid reinstatement were the primary cognitive mechanism, we would not expect disruptions 

in neural similarity during study, nor decreased transitions across event boundaries during 

retrieval. Thus, although there could be tension at boundaries between temporal disruption 

after the prior event vs. reinstatement of the prior event, we would argue that disruption 

accounts for a greater amount of variance in the current data, consistent with prior studies 

examining the influence of event segmentation on temporal perception (e.g. DuBrow & 

Davachi, 2013; DuBrow & Davachi, 2014; Ezzyat & Davachi, 2014; Faber & Gennari, 2017; 

Lositsky et al., 2016). With respect to model development, future work could incorporate 

other posited mechanisms of event segmentation and other cognitive processes which may 

contribute to the variability in the neural representations. With respect to EEG, future work 

should extend and replicate these results while incorporating other contributions from purely 

electrophysiological signals unrelated to mnemonic activity measures. Here we sought to 

find meaning in the qualitative pattern of results purely due to temporal representations.

We took several steps to ensure that we were assessing a measure of temporal context 

and how it was impacted by source context and event segmentation, rather than simply 

measuring source context itself. That is, we would expect a neural measure of source context 

— like a neural measure of temporal context — to exhibit lower neural similarity between 
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item pairs separated by an event boundary, and so it is important to consider the possibility 

that a change in temporal context truly reflects temporal information. Our approach to 

measuring temporal context was motivated by CMR, which assumes each item is associated 

with a temporal context and a source context. Source context is defined by the encoding 

task of the current item and a change in source (task) context necessarily causes a disruption 

to temporal context. A CMR model variant, the “pure association model variant”, which 

assumes that a change in source context does not cause a disruption to temporal context fails 

to predict recall behavior correctly, as it overpredicts recall transitions between same-source 

items (Polyn et al., 2009a). Thus, on a theoretical level, CMR motivated the expected results 

because it did not consider temporal context alone, but rather interactions between temporal 

context and source context. We also verified in the present study that the “full” CMR model 

provides a better fit to the current set of findings than the pure association model variant.

Experimentally, we calculated slowly changing feature vectors of temporal context in 

control lists which do not have task changes. Thus, if a feature vector changes slowly in a 

list without task changes, it is unlikely that this feature vector primarily incorporates source 

features. It is also not a concern that an individual feature vector only reflects a single task 

type, both because we defined feature vectors with strong autocorrelation across all control 

lists with three possible task types, and because these feature vectors were calculated from 

electrodes previously implicated in memory behavior even when collapsing across the two 

single-task list types (Long et al., 2014). In addition, when examining the impact of event 

boundaries on feature vectors during recall, we found this measure to relate to temporal, but 

not task, recall organization. Taken together, we interpret our neural measure of temporal 

context to reflect the impact of, but not the representations of, source context.

We also assert that the current results cannot be explained by positional information. 

According to retrieved context models such as CMR, temporal context changes slowly with 

each studied item. However, this also means that temporal context shares properties with 

some positional accounts of recall, whereby each item is associated with a positional code 

in the list. If the positional codes change slowly with each studied item, then neural feature 

vectors may reflect positional information, not purely temporal information. Yet neural 

similarity of feature vectors decreased across lists, suggesting that the neural representations 

changed slowly over time, not just as a function of within-list position. Although it is 

possible that within-list positional code information is extracted from temporal context 

representations (Logan & Cox, 2021), our results rule out the possibility that feature vectors 

are purely positional codes maintained across lists. Thus, these results may generalize 

to studies of event segmentation beyond shorter lists of discrete items, where discrete 

positional codes may play less of a role (e.g. Baldassano et al., 2017; Ezzyat & Davachi, 

2014; Zacks et al., 2001).

We also examined contributions of positional information by considering variability across 

serial positions in the primary analyses. Recall probability is greater in some serial 

positions than others (Figure A2), and thus items in these positions may contribute more 

to ERS analyses. We conducted several analyses to ensure that our results did not reflect 

properties unique to items from these serial positions (see Appendix B). Further, CMR 

also incorporates variability in recall across serial positions. When recall begins, the current 
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context cues recall, and context is a recency-weighted sum of studied items. Thus, this 

context state promotes recall of recently presented items, leading CMR to predict greater 

recall of recency items. In addition, CMR assumes that context-to-item associations are 

greater for early list positions. Given an early list and a mid-list item with the same strength 

in context, it is more likely that context will cue, and that CMR will recall, an early-list item 

with greater context-item weight (see Appendix A).

Several possible mechanisms may induce the increase weighting of the context-to-item 

associations in CMR, and an investigation of these mechanisms has been actively 

investigated for decades. Primacy items may benefit from greater attention or novelty 

(Davelaar et al., 2005; Farrell, 2012; Lewandowsky & Farrell, 2008). As another 

explanation, primacy items may also benefit from greater activation energy, or less fatigue, 

at the beginning of the list (Brown et al., 2000; Lohnas et al., 2020; Page & Norris, 1998; 

Tulving & Rosenbaum, 2006). If participants are silently rehearsing items during study, then 

primacy items benefit from more rehearsals (Rundus, 1971; Tan & Ward, 2000). In addition, 

primacy items may benefit from having less interference, as fewer items precede their study 

(Brown et al., 2007; Murdock, 1960; Neath, 1993).

Although CMR’s primacy mechanism does not distinguish between these possibilities, its 

primacy mechanism does have a strong implication for context states. Critically, context 

representations are not influenced by the primacy mechanism, only the context-to-item 

associations are. However, neural activity can differ between items studied earlier and later 

in the list (Reddy et al., 2021; Rushby et al., 2002; Sederberg et al., 2006; Serruya et al., 

2014; Umbach et al., 2020; Wiswede et al., 2007), which may raise concerns that feature 

vectors—the posited measure of temporal context—may incorporate neural activity from 

primacy items. Yet several follow-up analyses which incorporate serial position information 

suggest that our results are not driven by activity unique to early-list items (see Appendix 

B). Taken together, these results support our claim that feature vectors are consistent with 

assumptions of temporal context in retrieved context models, at the exclusion of source or 

positional information.

Our neural definition of temporal context was motivated by prior work incorporating 

assumptions from retrieved context models such as CMR (Folkerts et al., 2018; Howard 

et al., 2012; Manning et al., 2011). However, other definitions of temporal context have 

been queried with neural data. Notably, Kragel et al. (2021) queried brain regions which 

represent temporal context by exhibiting discriminable activity between the serial positions 

of items within a list, between lists within a session, and across sessions. In the current 

study, we were interested in a temporal context measure which changed slowly with each 

studied item, in order to address whether these representations would change more across 

events than within events. If we employed the temporal context measure defined by Kragel 

et al. (2021), this measure might confound the start of an event with the start of a list, and 

might not preserve pairwise similarities between items over time. Future work remains to 

determine how these brain regions provide complementary or shared information to inform 

representations of temporal context in event structure and episodic memory.
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At the same time, our results are broadly consistent with established properties and neural 

regions implicated in temporal context. Although EEG recordings generally have poor 

spatial resolution, our results add confidence that a neural measure of temporal context 

can be measured at the scalp. Here we recorded activity from electrodes over mnemonic 

brain regions in the temporal lobe and frontal lobe (Long & Kahana, 2017; Long et al., 

2014; Weidemann et al., 2009). Previously, studies recording intracranial EEG have reported 

activity consistent with temporal context from regions in the temporal lobe (Folkerts et al., 

2018; Howard et al., 2012; Long et al., 2017; Long et al., 2014; Manning et al., 2011; Manns 

et al., 2007; Yaffe et al., 2014). Studies using functional magnetic resonance imaging have 

also found regions of the temporal lobe exhibit properties consistent with temporal context 

(Hsieh et al., 2014; Jenkins & Ranganath, 2010; Kimura et al., 2010; Konishi et al., 2002; 

Kragel et al., 2015; Nielson et al., 2015; Turk-Browne et al., 2012). In addition, regions of 

the frontal lobe have also shown activity consistent with temporal context representations 

(Cabeza et al., 1997; Eyler Zorilla et al., 1996; Jenkins & Ranganath, 2010; Konishi et al., 

2002).

Although overlap between intracranial and scalp recordings of the temporal lobe might be 

more intuitive, scalp recordings from in the included frontal lobe regions has been posited 

to relate to intracranial medial temporal lobe activity (Long et al., 2014). If electrodes from 

either the frontal lobe or the temporal lobe might reflect medial temporal lobe activity, 

it is worth noting that the medial temporal lobe, and the hippocampus in particular, is 

critical for episodic memory (Aggleton & Brown, 1999; Davachi, 2006; Eichenbaum, 

2004; Fernandez et al., 1999; Goyal et al., 2018; Sugar & Moser, 2019) and for temporal 

representations (Eichenbaum, 2014; MacDonald et al., 2011; Tsao et al., 2018; Umbach 

et al., 2020). Because temporal context is defined by incorporating features of previously 

studied information, our neural measure of temporal context also is consistent with prior 

studies implicating the medial temporal lobe, and the hippocampus in particular, in binding 

of episodic features within and across events (Davachi, 2004; Heusser et al., 2016; Pacheco 

Estefan et al., 2019; Richmond & Zacks, 2017; Staresina & Davachi, 2006, 2009). Through 

these mnemonic representations, the medial temporal lobe has also been shown to represent 

event-related information, including an influence on memory performance (Baldassano et 

al., 2017; DuBrow & Davachi, 2014; Ezzyat & Davachi, 2014; Lositsky et al., 2016). In 

addition, regions of the frontal lobe — including lateral regions more easily measurable 

from the scalp — are also critical for episodic memory (Blumenfeld et al., 2011; Hanslmayr 

& Staudigl, 2014; Long et al., 2014; McAndrews & Milner, 1991; Paller & Wagner, 2002) 

including free recall (Long et al., 2010; Sederberg et al., 2007; Staresina & Davachi, 2006), 

and support event segmentation (Baldassano et al., 2017; Chen et al., 2017; DuBrow & 

Davachi, 2016; Ezzyat & Davachi, 2014; Kurby & Zacks, 2008; Sols et al., 2017; Zacks et 

al., 2001). Thus, our results are broadly consistent with prior studies examining the neural 

correlates of temporal context, episodic memory and event segmentation. Further linking 

how these regions are important for these three seemingly disparate cognitive functions, our 

results suggest that temporal context plays a critical role in episodic memory, and that event 

segmentation influences memory representations to incorporate temporal context.

We presented CMR simulations to provide an intuition for the impact of temporal context 

on event structure and memory. We do not wish to suggest that CMR is the only model 
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which can predict our results, but the current results point to challenges or areas of 

further development for other models. For instance, CMR’s predictions are consistent 

with other current cognitive model frameworks which segment sequences of items and 

make predictions of memory. Whereas other models can infer event structure based on 

stimulus features and predictability (e.g. Radvansky, 2012; Zacks et al., 2007), CMR 

needs to be provided the event structure explicitly to update source context and temporal 

context. Despite the different objectives of these types of models, CMR assumes event 

boundaries cause a disruption to memory associations, similar to established accounts of 

event processing such as Event Segmentation Theory and the Event Horizon Model (Kurby 

& Zacks, 2008; Radvansky, 2012; Radvansky & Zacks, 2017; Zacks et al., 2001). Thus, 

our findings may be explained by the Event Horizon Model framework, which embodies 

Event Segmentation Theory. According to this framework, a current event model is held 

in working memory, and each event boundary updates the model. As a result, it is more 

difficult to retrieve information outside of the current event or the currently retrieved event 

(Radvansky & Zacks, 2017; Swallow et al., 2011). Thus, the Event Horizon Model should 

predict the decrease in recall transitions between neighboring items from different events. 

However, development of the Event Horizon Model has focused primarily on information 

repeated across events, whereas in the current study each event was comprised of unique 

novel items. Currently this model does not make quantitative predictions and is more 

agnostic with respect to the role of temporal representations, so it remains to be fully 

developed to make predictions of memory and temporal information.

In a complementary way, existing models of episodic memory may be amenable to 

incorporating event segmentation findings. For instance, the model of Farrell (2012) 

accounts for major findings in free recall by assuming that participants naturally segment list 

items into groups, where items within a group share a common group context. If the Farrell 

model assumes that successive items with the same task are represented in a group, then it 

would predict that recall transitions are more likely between items within the same event. 

However, the Farrell model assumes that the items within a group are recalled in order, 

and thus the model may have difficulty predicting the increase in lag = −1 transitions for 

preboundary items (Figure 5C). Another intriguing contrast between CMR and the Farrell 

model concerns control lists. Unlike CMR, which treats a control list as a single long event, 

the Farrell model would assume that the list is subdivided into chunks of variable length 

(see also Romani et al., 2016). If event segmentation took place even in control lists, this 

should lead to a greater drift in the feature vectors for some items more so than others. 

By contrast, as a simplifying assumption CMR usually assumes that context changes at a 

constant rate for each item. We kept context drift rates constant to be consistent with prior 

work of successful predictions using the retrieved context framework. The success of CMR 

in the current simulations suggests that varying this parameter was not necessary to account 

for the qualitative pattern of the results, and varying the drift rate leads to interactions with 

other behavioral effects of less interest here (Polyn et al., 2012). Future work will need to 

distinguish whether the variance in temporal autocorrelation across items in control lists 

reflects inevitable noise in neural data, or relates meaningfully to an individual’s endogenous 

segmentation.
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Recently, Frank et al. (2020) presented Structured Event Memory (SEM), a computational 

model of event cognition. Like CMR, SEM can incorporate event structure during study to 

predict memory performance. Unlike CMR, SEM can infer event structure across a range of 

naturalistic stimuli, and can predict memory performance based on the inferred structure. 

Although CMR needs to be provided the event structure explicitly, in a list-learning 

paradigm like the current study, SEM assumes that event structure is inferred correctly 

based on encoding tasks. Yet even if both models were provided with the event structure 

of the current study, SEM does not include explicit representations of temporal information 

nor has it been applied to free recall data. However, it would be an intriguing direction to 

examine how SEM might account for the effects presented here, in the absence of temporal 

information. In a complementary way, CMR may be a suitable framework to extend by 

incorporating more complex stimulus features and event structures. Such an extension would 

build upon CMR simulations accounting for the neural correlates of task representations 

(Morton et al., 2013) and temporal representations (Kragel et al., 2015; Manning et al., 

2011). Nonetheless, the current study, which kept changes between events as minimal as 

possible, allowed us to disentangle the role of temporal information in episodic memory and 

event structure. Thus, we have begun this process by presenting CMR predictions which 

integrate these two types of representations on a neural level and on a behavioral level. Such 

predictions capture how temporal representations, shaped by event segmentation, are formed 

during encoding to influence memory retrieval and recall performance, even though neither 

event nor temporal information are tested directly.

Conclusions

An underlying objective of cognitive neuroscience and psychology is to characterize 

the transformation of external environment into internal experience. This transformation 

begins during initial perception, and then influences how information is encoded into 

memory. Context is posited to be important for both perception and memory, and here 

we link the critical role of temporal context to both perceptual processes and episodic 

memory representations. Previous studies have suggested that event segmentation influences 

temporal perception and memory, but the role of temporal context in these processes 

remained unclear. In particular, it was less clear how and when temporal context influenced 

memory representations, as well as whether this was an automatic process, or only 

manifested when tested explicitly. Here we characterized the influence of event structure on 

temporal representations while participants studied and recalled words. This task imposed 

event structure without requiring explicit retrieval of temporal or event information.

Temporal perception and episodic memory share a complex relationship that is not 

fully understood. Our approach of simultaneously considering behavior and neural 

activity through the lens of a computational model provides novel insight into their 

interactions. Leveraging these methodological tools, we showed that event segmentation, 

even when defined with nontemporal features, impacts temporal representations during 

initial perception and memory encoding. In turn, temporal representations influenced brain 

activity and behavior during memory retrieval. These results suggest that temporal context 

plays a primary, not secondary, role in incorporating event structure into episodic memory. 

Our results underscore the impact of event segmentation on temporal representations, 
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and the role of temporal context in linking initial perceptual processes with memory 

representations.

Constraints on Generality

We anticipate that these results will generalize beyond the current subject pool of young 

adults, aged 18–30 and primarily from Philadelphia universities, to young adults in general. 

On a behavioral level, online populations exhibit similar behavioral results of temporal 

contiguity and free recall (e.g. Mulligan et al., 2022; Mundorf et al., 2021). On a neural 

level, we also anticipate the findings to generalize across young adult populations and to 

other recording techniques. We chose brain regions from a study which found mnemonic 

activity consistent across scalp EEG and intracranial EEG, where the latter was collected 

with a broader range of ages and geographic locations than PEERS (Burke et al., 2014; 

Long et al., 2014). We next consider the generalization of the stimuli, which in the current 

study were common nouns such that each word can be considered its own episodic memory. 

Although these simple stimuli were tested within minutes after being studied, we expect 

the behavioral results to generalize to other types of stimuli and longer timescales. First, 

our work builds on findings of the behavioral temporal contiguity effect, which generalizes 

to autobiographical experiences and timescales of months or years (Cortis Mack et al., 

2017; Moreton & Ward, 2010; Uitvlugt & Healey, 2019). Second, behavioral results of 

event segmentation with more dynamic stimuli and longer timescales are consistent with 

studies using simple stimuli (for recent reviews see Clewett et al., 2019; Frank et al., 2020; 

Radvansky & Zacks, 2017).
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Appendix A: Model simulations

Context Maintenance and Retrieval Model (CMR)

Here we provide an overview of the CMR model, highlighting the components most 

relevant to interactions between temporal context and event segmentation. CMR stores 

representations of item features, their corresponding contexts, and the associations between 

items and context. When an item in serial position i is studied, this activates the item’s 

associated feature representation, fi. CMR assumes a localist representation, such that item 

i is represented by a vector with 1 for those features corresponding to the item’s serial 

position and associated encoding task, and 0’s everywhere else. This feature representation 

is used to generate an input to update context, ci
IN, using an association matrix that links item 

features (F) to context states (C), MFC, with the simple product ci
IN = MFCf i. This input to 

context is then used to update context:

ci = ρici − 1 + βci
IN, (A.1)

where β is a model parameter, and ρ is set so that |c | = 1 (a mathematical convenience). 

Larger values of β mean that the input to context will update context to a greater amount. 

When β is larger, ρ is smaller; as a result, the prior context is downweighed more. Note that 

in these equations, the index of each context and item feature is from the item i. Context is 

updated with each studied item, and thus changes slowly over time.

Critical to CMR’s ability to capture event segmentation, an event boundary updates temporal 

context beyond the updating from the studied item alone. Whenever there is a change in the 

task associated with an item, this causes CMR to present an additional ‘item’ to the model 

and update temporal context. However, these boundary items are not stored in memory and 

cannot be retrieved during the recall period. Nonetheless, they function to update context 

in a similar way to studied items, in that they update context according to Equation A.1. 

Whereas temporal context for a studied item is updated by setting β = βenc
temp, temporal context 

for an event boundary item is updated with value d. This additional item thus disrupts 

the temporal context state, causing temporal context to drift even further from the current 

temporal context state. As a result, the temporal context between two items should less 

similar when they are separated by an event boundary (see Figure 3B). However, in two-task 

lists, item pairs in the same event should have approximately the same levels of similarity 

and decrease with lag, as if they were presented in a control list; both types of items are 

presented with the same task and not separated by event boundary (Figure A1A). This latter 

prediction is upheld in the experimental data, as neural similarity decreases by lag for both 

types of item pairs (Figure A1B).

An update to context also updates the association matrices between items and contexts 

(MFC, MCF) as the Hebbian outer product (e.g., ΔMFC = cif i
⊤). CMR incorporates a primacy 

gradient for the weight given to the updated context states in MCF, such that context is 

updated more strongly from early list items:
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ΔMexp
CF ∝ ϕse−ϕd(i − 1) + 1 f ici

⊤ . (A.2)

In this way, the ϕs gives extra weight to items with smaller values of i in earlier list 

positions, and ϕd scales the rate at which this advantage decays with i. These early-list 

items may benefit from extra weight strength due to greater novelty, attention or energy 

(Brown et al., 2000; Farrell, 2012; Lohnas et al., 2020; Page & Norris, 1998; Sederberg et 

al., 2008; Tulving & Rosenbaum, 2006), and also shares similarities with positional code 

models attributing greater weight to early list items (for a detailed discussion see Logan & 

Cox, 2021). In addition to being updated by experimental associations, CMR also stores of 

pre-experimental semantic associations. However, we omit details of this process as it is less 

important in the current study where we average across serial positions and the lists contain 

mostly unrelated words.

Once CMR is presented with a list of items, the model next attempts to ‘recall’ items as 

a participant would. The model’s current state of context, reflecting the temporal history 

of studied items, is used to cue recall. Specifically, a feature strength is determined for 

each item, based on their relative weight in context: fr
IN = MCFcr, where elements of fr

IN

correspond to studied items. These feature strengths are then used as input to a noisy 

decision process that outputs a single recalled item, where items with larger strengths have a 

greater probability of being recalled (Usher & McClelland, 2001). As described in the next 

paragraph, because these feature strengths are determined from the current state of context, 

items with similar context states to the current context (i.e. items with shared temporal 

context or source context) are more likely to be recalled. At the beginning of an immediate 

free recall period like the current study, this cues items presented at the end of the list, 

causing CMR to predict the recency effect. Further, the heavier weighting of early list items 

supports recall of early list items, leading CMR to predict the primacy effect (Figure A2A).

Once CMR recalls an item, this item is then presented to the model again, and updates 

context according to Equation A.1. Thus, a recalled item generates an input to context, and 

now this input includes the context from when the just-recalled item was originally studied. 

In addition, the rate at which context is updated, β, can vary between study and recall. 

Thus, the temporal context drift rates during study (encoding) and recall are termed and 

βenc
temp and βrec

temp, respectively. Once context is updated from the new item, this new state of 

context is used to recall another item. In this way, recall of an item i leads to reinstatement 

of the context of item i, and thus promotes recall of items with similar context states to 

i, including items with similar temporal contexts (i.e., items presented nearby on the list), 

as well as items with similar source contexts (i.e., items presented with the same task). 

This critical assumption of context updating during retrieval leads to CMR’s predictions of 

neural reinstatement (see Figure 2C) and temporal contiguity in the behavioral lag-CRPs 

(see Figure 2A).

Instead of determining the parameter values that would best capture the present data, here 

we examined whether CMR could account for the data qualitatively based on best-fit 

parameters from a data set used previously (Polyn et al., 2009a). In this way, we were 
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not fitting CMR to the data presented here, but rather using pre-existing parameter values 

and simulated data to predict the pattern of results for this data. To generate the CMR 

predictions, we presented the model with the same lists as participants viewed in that 

original study. Thus, the data used to generate CMR predictions included 45 participants 

with 631 control lists and 631 two-task lists each with list-length = 24.

Pure association model variant

To assess the necessity of the temporal disruption mechanism in CMR, we also examined 

predictions from a model variant which shares identical properties to CMR except that event 

boundaries do not disruption temporal context (i.e. d = 0). Thus, this model variant shares 

core assumptions with CMR: temporal context changes slowly over time, and temporal 

context states are reinstated during recall to influence neural activity and behavior. Using the 

best-fit parameters for this model variant from Polyn et al. (2009a) as shown in Table A1, we 

confirmed these core assumptions based on predictions in control lists (Figure A3A).

Critically, the predictions of the pure association model variant were not consistent with the 

experimental data in two-task lists. First, similarity in neural context during study was the 

same between neighboring items regardless of whether they were studied within the same 

event or different events (Figure A3B), inconsistent with the reduced neural similarity of 

neighboring items studied in different events (compare with Figure 3C). As a result, ERS did 

not differ between neighboring same-event and different-event item pairs (Figure A3C).

On a behavioral level, like CMR the pure association model variant captures the enhanced 

recall probability of same-event items for |lag| = 1 (Figure A3D,E,F; for preboundary items 

M = 0.032, SD = 0.112, t(169) = 3.72, CI = [0.0150, 0.0489],p = 0.0003,d = 0.33; for 

boundary items M = 0.026, SD = 0.110, t(169) = 3.06, CI = [0.0091, 0.0426],p = 0.003,d = 

0.19). Thus, this increased probability may reflect shared event or task information between 

the neighboring items. However, the pure association model fails to capture the reduced 

recall of items from different events (in the experimental data: for preboundary items, M = 

0.158, SD = 0.103, t(169) = 20.11, CI = [0.1740, 0.1429],p < .00001,d = 1.20; for boundary 

items, M = 0.114, SD = 0.101, t(169) = 14.69, CI = [0.1289, 0.0984],p < .00001,d = 1.43). 

Instead the model predicted approximately equal recall probability to items in control lists. 

Taken together, these results underscore that CMR requires the assumption that each event 

boundary induces disruption to temporal context in order to make qualitatively accurate 

predictions of neural activity and memory behavior.

Table A1

Parameter Full Pure Association

βenc
temp 0.776 0.767

βrec
temp 0.510 0.468

βsource 0.588 0.681

Lsw
CF 0.129 0.171
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Parameter Full Pure Association

d 0.767 0

γFC 0.898 0.799

s 2.78 2.71

k 0.111 0.053

λ 0.338 0.272

η 0.159 0.126

τ 0.174 0.145

ϕs 1.07 0.881

ϕd 0.981 0.641

Note: Best-fit parameters from the full model of Polyn et al. 2009, determined using a genetic algorithm fitting technique.

Figure A1. Neural similarity during study by study lag.
A. CMR predicts that neural similarity in temporal context between two items should 

decrease as a function of lag. In two-task lists, items presented within the same event 

should have identical neural similarity values as in one-task lists, regardless of task type. B. 
Participant data. As predicted by CMR (and as confirmation of our approach to calculate 

a neural measure of temporal context), neural similarity decreases as a function of lag 

for items in control lists, and for items from the same event in two-task lists. C. Further 

subdividing by task type, neural similarity also decreases with lag in participant data. Error 

bars represent Loftus and Masson (1994) 95% confidence intervals.
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Figure A2. Serial position curves.
A. CMR predictions of the serial position curve for the control lists (lighter gray) and 

two-task lists (darker teal). These data were simulated using the best-fit parameters and 

experimental lists of Polyn et al. 2009, and thus have a longer list-length than the 

experimental data. Yet critically, CMR predicts greater recall probability for early serial 

positions (primacy effect) and for late serial positions (recency effect). B. Serial position 

curves in the experimental data for the control lists (lighter gray) and two-task lists (darker 

teal), also exhibiting a primacy effect and recency effect. Error bars represent Loftus and 

Masson (1994) 95% confidence intervals.
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Figure A3. 
Predictions of the pure association variant of the Context Maintenance and Retrieval (CMR) 

model, which assumes that a change in task information does not disrupt temporal context or 

cause an event boundary. A. In control lists, encoding-retrieval similarity (ERS) between the 

temporal context state of a recalled item and the temporal contexts of its neighbors during 

study. Lag refers to the distance in serial position between two items from study (see Figure 

1E). Like CMR, the pure association variant predicts that temporal context states will be 

more similar between the recalled item and neighboring items from study. B. Unlike CMR, 

the pure association variant predicts that neural similarity is identical for two neighboring 

items within the same event or two items across different events. C. The pure association 

model variant predicts that the recall of an item bordering an event boundary leads to 

retrieval of that item’s temporal context states from study. Because these temporal context 

states do not incorporate disruptions, ERS values are nearly identical between items studied 

with the same task versus items studied with different tasks. D. The pure association variant 

predicts that, when compared to control lists (gray circles), transitions in two-task lists are 

enhanced for items recalled within the same event (darker teal lines). By contrast, recall 

transitions across events (lighter orange lines) are equivalent to control lists. Both of these 

predictions are present for preboundary items (squares) and boundary items (triangles). E. In 

the experimental data (replotted from Figures 2B, 5C,D), participants exhibit reduced recall 

transitions in two-task lists to items from different events (lighter orange lines), whether 

transitioning from preboundary items (squares) or boundary items (triangles). By contrast, 

participants exhibit similar or greater transitions for items recalled within the same event 
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(darker teal lines). F. The full CMR model makes both critical predictions of reduced 

transitions for items from different events and enhanced transitions between items of the 

same event. For more distant items with darker teal lines, items may be from the following 

event. Error bars represent Loftus and Masson (1994) 95% confidence intervals. Assoc. = 

Association. Sim. = Similarity.

Appendix B: Controlling for positional effects

We conducted supplementary analyses to ensure that the feature vectors, changing slowly 

with each studied item, reflected temporal context rather than serial position information. 

Neural activity, including activity recorded from the regions of interest used for feature 

vectors, can change slowly as a function of an item’s serial position, as measured oscillatory 

power changes in EEG (Sederberg et al., 2006; Serruya et al., 2014), event-related potentials 

(Rushby et al., 2002; Wiswede et al., 2007), or at the level of individual MTL units (Reddy 

et al., 2021; Umbach et al., 2020).

Whether the feature vectors represented a positional code or temporal context, they should 

change slowly with each studied item. However, if feature vectors coded for serial position, 

then the positional codes should reset with each list (Burgess & Hitch, 1999; Conrad, 1960; 

Henson, 1996; Osth & Dennis, 2015). As a result, the neural similarity between a feature 

vector for an item studied at serial position i should be most similar to the feature vector 

for item studied at serial position i + 1, irrespective of whether these items were presented 

in the same list or not. By contrast, if feature vectors change slowly over time, similarity 

across feature vectors should decrease across lists (Howard et al., 2008; Lohnas et al., 2015; 

Unsworth, 2008). We found that, for feature vectors of items from successive serial positions 

in control lists (i.e. lag = 1), similarity decreased with list distance, and thus the feature 

vectors have properties of temporal context not positional codes (see Figure B1 and also 

related text in Results; list − lag = 0 > list − lag = 1 : M = 0.265, SD = 0.131, t(169) = 26.36, 

CI = [0.2449, 0.2846],p < .00001,d = 1.702, list − lag = 1 > list − lag = 2 : M = 0.065, SD = 

0.179, t(169) = 4.76, CI = [0.0383, 0.0926],p < .00001,d = 0.393, list − lag = 2 > list − lag = 

3 : M = 0.065, SD = 0.181, t(169) = 4.65, CI = [0.0373, 0.0922],p < .00001,d = 0.369).

We also conducted several analyses to rule out the possibility that the autocorrelation 

property of feature vectors, averaged across serial positions, was driven by a subset of serial 

positions. In particular, we examined the feature values contributing to each feature vector in 

each list. For each feature, we took the difference in values for each successive pair of serial 

positions (1–2,2–3,3–4, etc.) within each list. We next calculated the differences of these 

pairwise differences (so now we have the difference of 1–2 vs. 2–3, 2–3 vs. 3–4, etc.). These 

difference of difference values help to convey the autocorrelated component of the feature 

values. For instance, if the 1–2 vs. 2–3 differences are small, this should reflect a greater 

autocorrelation value in early serial positions, because the 1–2 difference is a good predictor 

of the 2–3 difference. To equate variability across features, we scaled the absolute value of 

the difference of difference scores on a range from 0 to 1 (where 0 and 1 are the smallest and 

largest, respectively, of the absolute value of difference of difference scores for a feature in 

a list). Across all features, we divided the values at each set of serial positions into deciles 

(0–0.1, 0.1–0.2, etc.), and plotted a histogram of the deciles for each set of serial positions 
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(Figure B2). If items in primacy positions have the greatest autocorrelation, then those items 

should have values in lower deciles. However, going against this account, a larger proportion 

of the values are contained the largest possible decile for items in earliest serial positions 

when compared to the largest decile of other serial positions.

Here we did not want to average across lists, features or participants, as mid-decile average 

activity may be a result of generally mid-decile activity across features, or may average 

some high-devile features with low-decile features. However, as a result, some participants 

contribute more features than others. To consider whether the reduced autocorrelation values 

are upheld across participants, the dashed black line in each plot shows the mean decile 

value per participant, averaged across all features and lists. Consistent with the results across 

features, the results across participants also suggest that items from primacy positions do 

not exhibit greater autocorrelation, rather the earliest serial positions have the greatest mean 

decile value.

In addition to examining properties of feature vectors themselves, we also examined how 

neural similarity by study lag (i.e. Figure A1B) may be influenced by differences in serial 

positions of the feature vectors. Figure B3A shows neural similarity in control lists divided 

by serial position, and reveals that neural similarity decreases with absolute lag at all serial 

positions. Figure B3B shows a similar pattern for items within the same event in two-task 

lists. For these items, approximately 12% of serial position/lag pairs do not follow the 

expected pattern of decrease in neural similarity as a function of absolute lag. This is not 

surprising given that not as many serial positions contribute at each lag, both because there 

are fewer two-task lists than control lists and because we only include two items at a lag if 

they are studied in the same event. Further, because feature vectors were calculated from the 

control lists, this may also lead to noisier neural similarity in two-task lists. Nonetheless, if 

there were any strong effects of serial position on lag, going in opposition to the expected 

result of similarity decreasing with lag, we would expect these differences to be more 

pronounced in the control lists, where it is more likely that items from nonprimacy positions 

would contribute less noisy data to the similarity values. Thus, we take this set of results to 

be qualitatively consistent with CMR’s prediction that neural similarity decreases with lag, 

irrespective of serial position.

In addition, in two-task lists we recalculated neural similarity at study excluding items from 

the first event, thus greatly reducing the influence of early list items with greater effects 

of differential neural activity. Even with this exclusion, neural similarity was significantly 

greater for neighboring items with the same event than different events (Figure B5A; M = 

0.007, SD = 0.048, t(169) = 1.98, CI = [0.0000, 0.0144],p = 0.0495,d = 0.044).

Another impact of serial position effects may manifest from differences in recall probability, 

as recall is more likely for items from earlier and later serial positions (Kahana, 2012; 

Murdock, 1962, Figure A2). Further, in analyses of recall by lag, not all serial positions 

are possible at all lags, raising a concern that some serial positions may contribute to some 

lags more than others. For the ERS analysis in control lists, we verified that this analysis 

reflects a fair representation across serial positions by calculating the mean number of items 

contributing to each lag and serial position in Figure 2D. Figure B4 shows the mean number 
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of serial positions contributing to each lag, whether the transition was from that serial 

position as a recalled item (left) or to that serial position as a studied item (right). Transitions 

are somewhat less likely from recency positions, but this is less surprising given that we 

exclude the first three output positions, and immediate free recall generally begins with these 

recency items (Healey & Kahana, 2014; Howard & Kahana, 1999).

In two-task lists, we alleviated concerns that primacy items may dominate recall effects by 

recalculating the critical significant findings in two-task lists but excluding transitions to or 

from items in the first event of each list. With this exclusion, the lag-CRPs were qualitatively 

similar to those including items from the first event, with greater recall probability for 

transitions to a same-event neighbor, whether from a preboundary item (Figure B5B) 

or from a boundary item (Figure B5C). Although the control lag-CRP is less intuitive 

to calculate for this analysis because there are no first event items in control lists, we 

nonetheless interpret the relatively similar numbers and qualitative pattern of results as 

evidence that items from the first event did not drive this effect in two-task lists.

Figure B1. Neural similarity of feature vectors for item pairs from adjacent serial position 
numbers and the same task in control lists, as a function of list-lags.
Data are averaged across all possible values of i and i +1 (1 and 2, 2 and 3, ..., 15 and 16) 

for item pairs in control lists studied with the same task (size task, animacy task, or no task). 

Neural similarity of these item pairs is plotted as a function of list-lag, where list-lag=0 

reflects 2 items from the same list, list-lag=1 reflects 2 items from successive lists such as 

lists 3 and 4. Consistent with properties of temporal context but inconsistent with properties 

of positional codes, neural similarity decreases as a function of list-lag. Error bars represent 

Loftus and Masson (1994) 95% confidence intervals.
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Figure B2. Histogram of feature value differences contributing to each feature vector.
A. Examples of feature vector values for two control lists. B. The absolute value of the 

difference of differences, rescaled from 0 to 1. These feature value lists were chosen to be 

representative of more or less autocorrelation in primacy positions (light line and dark line, 

respectively). C. Histogram of normalized (i.e. absolute value and rescaled) difference of 

differences for feature vectors across lists, at each set of serial position values. These values 

were averaged across feature values across lists and participants. Dashed black lines indicate 

the mean across feature values when averaged by list and participant.
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Figure B3. Neural similarity during study as a function of lag, divided by serial position.
Error bars represent ±1 standard error of the mean. A. Control lists. B. Items studied with 

the same task in two-task lists.

Figure B4. Number of serial positions contributing to ERS values at each lag in control lists 
(Figure 2D).
Left: Counts of the ERS values contributing to each lag at each serial position of the recalled 

item. Right: Counts of the ERS values contributing to each lag at each serial position of the 

encoded item.
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Figure B5. Analyses in two-task lists excluding items from the first event.
A. Neural similarity at study. Collapsed across preboundary and boundary items, neural 

similarity is greater between two neighboring items within the same event than two items 

across different events, even when excluding items from the first event in each list (see 

also Figure 3). Error bars represent ±1 standard error of the mean. * p < .05. B, C. Recall 
transitions in two-task lists. Even when excluding items from the first event, participants 

are more likely to recall items not separated by an event boundary, and more likely to be 

within the same event (darker teal lines) than items separated by an event boundary and 

from a different event (lighter orange lines), whether from a preboundary item (B) or from 

a boundary item (C). For more distant items with darker teal lines, items may be from the 

following event. Cond. Resp. Prob. = Conditional response probability. Error bars represent 

Loftus and Masson (1994) 95% confidence intervals. See also Figure 5. In all panels, dashed 

lines indicate the values when items from the first event are included in the analysis.

Appendix C: Time window of context reinstatement

We evaluated which time window would reflect the strongest context reinstatement based 

on negative ERS lags. In 100 ms increments, we evaluated time windows beginning 

from −1000 ms to −500 ms relative to the participant’s recall vocalization, ranging in 

duration from 300 ms to 800 ms. We found that context reinstatement was strongest for 

the recall time window of −1000 to −600 ms, and used this time window in all analyses. 

Although choosing among several time windows may seem to present a selection bias, 

the purpose of time window selection was not to identify the existence of the effect of 

context reinstatement. Based on Manning et al. (2011), we sought to replicate context 

reinstatement in scalp EEG. Due to differences in recording techniques, we anticipated 

that the time window might differ between scalp and intracranial EEG. We chose such 

a time window to then evaluate how event boundaries in two-task lists impact feature 

vectors with properties of temporal context. Further, because we examined time windows 

with overlapping timepoints, and because the data at each timepoint incorporates the same 

electrodes, there was a cluster of significant t-values for time windows with overlapping 

timepoints to the time window with the strongest effect of context reinstatement. Although 

we chose the time window based on negative lags, there was a cluster around this window 

for positive lags as well (Figure C1).
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In addition to examining which time window exhibited the greatest effect out of all 

considered windows, we also determined the significance of the selected time window when 

compared to a null distribution. For each subject and time window, we calculated the two 

ERS values which were used in our determination of context reinstatement: (1) lag=−1; (2) 

the average of lags −3, −4, −5. For each subject, we shuffled the lag labels of the ERS values 

at each time window, and calculated the maximum t value across all windows. We did this 

for 1000 shuffles of the ERS values, thus acquiring a null distribution of 1000 t values. The 

actual t value fell on the null distribution with one-tailed p = .031, suggesting that context 

reinstatement is greater than expected by chance across time windows.

Figure C1. Size of the effect of neural similarity by lag, at each evaluated time window.
Dashed boxes correspond to the time window used in all analyses.
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Public Significance Statement

Our internal, subjective representation of an experience is not always an accurate 

depiction of what actually occurred. This article examines two types of representations 

which are susceptible to inaccuracy: memory for events and the perception of time. When 

there is a salient change in the environment, this can cause memory for information 

prior to the change to be more weakly associated to information occurring after the 

change. The salient change can also lead to the perception that more time has passed. 

However, it is less clear if temporal information directly influences memory, or plays 

a more passive role. We examined a direct link between the role of salient changes, 

temporal perception and memory. Subjects studied words and then had to recall the 

words from memory. To measure temporal perception, we examined brain activity while 

subjects performed these tasks. When there was a change study task, color and font 

of the words, this led to a larger update in subjects’ representation of time. Brain 

activity of temporal representations when subjects studied a word were reinstated when 

subjects recalled the word from memory, including the larger updates after changes. 

These changes also influenced the order in which subjects recalled words from studied 

lists. The results suggest that temporal information plays a primary role in updating and 

organizing memories.
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Context

The first author (LL) came up with the main ideas for this work during her postdoctoral 

fellowship with the senior author (LD), who has several recent articles examining 

interactions between event segmentation and memory performance. The perspective of 

the first author was inspired by her prior published articles using the retrieved context 

model framework to account for free recall phenomena. The middle author (KH) had 

recently analyzed EEG correlates of context reinstatement, and also had published 

articles with the retrieved context model framework. The first authors’ main ideas were 

developed, refined and framed conceptually thanks to the other two authors.
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Figure 1. Calculating a neural measure of temporal context.
Based on the core assumptions of retrieved context models, the temporal context state 

of a studied item should (1) be a slowly changing representation of temporal context 

from earlier studied items; (2) be reinstated if the item is recalled. A. We first calculated 

oscillatory power from electroencephalography (EEG) activity recorded for each studied 

item or recalled item in control lists. In the upper right panel, the 42 electrodes included in 

the event vectors are circled in dark gray on the electrode map. L = left, P = posterior, R = 

right, A = anterior. B. By applying PCA, we selected features accounting for a significant 

amount of variance in the EEG recordings. C. To meet the first criterion of a slowly 

changing representation, we next determined which of the PCA features were autocorrelated 

across studied items. D. To verify the second criterion of a neural measure of temporal 

context, we next needed to examine this neural signature at recall. Thus, having established 

a slowly changing neural signature from study of selected PCA features, we then applied 

those same feature vectors from study events to the recall events. E. We assessed whether 

a studied item’s feature vectors were reinstated when the item was recalled, by calculating 

the encoding-retrieval similarity (ERS) between each recalled item’s temporal context and 

temporal context states from study. Retrieved context models predict that the similarity 

between a recalled item’s retrieved temporal context and temporal contexts at study should 

be greater for items studied nearby in time, or smaller absolute lag, to the study position of 

the recalled item (see also Figure 2C,D).
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Figure 2. Behavioral and neural correlates of temporal context reinstatement in control lists.
A. Predictions of the context maintenance and retrieval (CMR) model of recall transitions 

in control lists. The probability of making transitions between successive recalls is plotted 

as a function of lag, or difference in the serial positions of the successively recalled items. 

These response probabilities are determined conditional on which lags are available for 

recall. B. Conditional response probability as a function of lag in the behavioral data. C. 

Encoding-retrieval similarity (ERS) between the temporal context state of a recalled item 

and the temporal contexts of its neighbors during study. Lag refers to the distance in serial 

position between two items from study (see Figure 1E). CMR predicts that temporal context 

states will be more similar between the recalled item and neighboring items from study. 

D. CMR’s predictions are upheld when measuring the neural measure of temporal context 

in participants’ data. Cond. Resp. Prob. = Conditional response probability. Error bars 

represent Loftus and Masson (1994) 95% confidence intervals.
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Figure 3. Disruption of temporal context by event boundaries during study.
A. In two-task lists, participants perform one of two encoding tasks with each presented 

word (size task or animacy task); a sequence of words with the same task is assumed to 

comprise an event, and the change in task is assumed to form an event boundary. Here the 

sample items are shown to calculate neural similarity for the neighbors of a preboundary 

item, as one of its neighbors (the preceding item) was presented within the same event 

(Within), and its other neighbor (the following item) was presented across a different event 

(Across). Task text is for illustrative purposes only; to participants this was implicit from 

the color, font and case of the word. B. Collapsed across preboundary and boundary items, 

CMR predicts that neural similarity is greater between two neighboring items within the 

same event than two items across different events. C. Collapsed across preboundary and 

boundary items, neural similarity is greater between two neighboring items within the same 

event than two items across different events. Error bars represent ±1 standard error of the 

mean. * p < .05.
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Figure 4. Encoding-retrieval similarity (ERS) in two-task lists.
A. Calculation of ERS of the current state of context after recall of a preboundary item 

with its associated neighbors at study: both the preceding neighbor presented with the same 

task, and thus within the same event (Within), and with its subsequent neighbor across a 

different event (Across). Task text is for illustrative purposes only; to participants this was 

implicit from the color, font and case of the word. B. CMR predicts that the retrieval of 

an item bordering an event boundary (e.g. ‘plum’ in A) leads to retrieval of that item’s 

temporal context states from study, including the disruption to temporal context caused by 

the event boundary. Thus, the current state of temporal context—which incorporates the 

item’s retrieved temporal context—should be more similar to the context of adjacent studied 

item within the same event (e.g. ‘mop’) than the adjacent studied item from a different 

event (e.g. ‘sand’). However, the difference by event relationship is more subtle than during 

study (compare with 3B). C. Mean ERS in the behavioral data was not significant by event 

relationship. Error bars represent ±1 standard error of the mean. D. Participants exhibiting 

greater disruption to temporal context during study also exhibit a greater reinstatement of 

disruption in temporal context during recall. ~ p = .06 (one-tailed).
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Figure 5. Recall transitions in two-task lists.
A. The context maintenance and retrieval (CMR) model predicts that transitions from a 

preboundary item are more likely in the forward direction, which are more likely to be 

other items within the same event (darker teal lines) than to items in the following event 

(lighter orange lines), in contrast to the established bias to make forward transitions (see 

Figure 2B). B. CMR predicts that transitions from a boundary item are more likely in the 

forward direction, which are more likely to be items in the same event (darker teal lines) 

than in the backward direction, which are more likely to be items from the preceding event 

(lighter orange lines), leading to an exaggerated tendency to make forward transitions. C,D. 
Consistent with CMR predictions, participants are more likely to recall items not separated 

by an event boundary, and more likely to be within the same event (darker teal lines) than 

items separated by an event boundary and from a different event (lighter orange lines). For 

more distant items with darker teal lines, items may be from the following event. Cond. 
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Resp. Prob. = Conditional response probability. Error bars represent Loftus and Masson 

(1994) 95% confidence intervals.
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Figure 6. Influence of event boundaries on neural and behavioral measures of temporal context.
In this correlation plot, each dot corresponds to a participant. The x-axis reflects the neural 
measure of event boundary modulation on temporal context; the y-axis reflects a behavioral 
measure of event boundary modulation on temporal context (see text for details). The top 
and bottom panels show for two participants the encoding-retrieval similarity (ERS) at 
recall, used for calculating the x-axis, and conditional response probability (Cond. Resp. 
Prob.) as a function of lag, used for calculating the y-axis. Top panel: This participant has 
a high ERS difference at recall and a high temporal modulation score. Bottom panel: This 
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participant has a low ERS difference at recall and a low temporal modulation score, as 
recall transitions are similar irrespective of whether the transition is from a preboundary item 
(bottom middle panel) or a boundary item (bottom right panel). * p < .05 (one-tailed).
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