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STRUCTURED ABSTRACT

Objective: To determine if THC discontinuation mitigates THC-associated changes in male 

reproductive health using a rhesus macaque model of daily THC edible consumption.

Design: Research animal study.

Setting: Research institute environment.

Patient(s): Adult male rhesus macaques (8–10 years of age; n=6).

Intervention(s): Chronic daily THC edible administration at medically and recreationally 

relevant contemporary doses followed by cessation of THC

Main Outcome Measure(s): Testicular volume, serum male hormones, semen parameters, 

sperm DNA fragmentation, seminal fluid proteomics, and whole genome bisulfite sequencing 

(WGBS) of sperm DNA

Result(s): Chronic THC use resulted in significant testicular atrophy, increased gonadotropins, 

decreased serum sex steroids, changes in seminal fluid proteome, and increased DNA 

fragmentation with partial recovery following THC discontinuation. For every 1mg/7kg/day 

increase in THC dosing, there was a significant decrease in total testicular volume bilaterally 

by 12.6 cm3 (95% CI 10.6–14.5, p<0.001), resulting in a 59% decrease in volume. With THC 

abstinence, total testicular volume increased to 73% of its original volume. Similarly, with THC 

exposure there were significant decreases in mean total testosterone (p=0.002) and estradiol 

(p<0.001), and a significant increase in follicle stimulating hormone (FSH) (p=0.010). With 

increasing THC dose, there was a significant decrease in liquid semen ejaculate volume (p=0.032) 

and weight of coagulum (p=0.042); but no other significant changes to other semen parameters 

were present. After discontinuing THC, there was a significant rise in total serum testosterone 

by 1.3 ng/ml (95%CI: 0.1–2.4, p=0.038) and estradiol by 2.9 pg/ml (95%CI: 0.4–5.4, p=0.025), 

and FSH decreased significantly by 0.06 ng/ml (95%CI: 0.01–0.11, p=0.025). Seminal fluid 

proteome analysis revealed differential expression of proteins enriched for processes related to 

cellular secretion, immune response, and fibrinolysis. WGBS identified 23,558 CpGs differentially 

methylated in heavy-THC versus pre-THC sperm, with partial restoration of methylation after 

discontinuation of THC. Genes associated with altered differentially methylated regions (DMRs) 

were enriched for those involved in nervous system development and function.

Conclusion(s): This is the first study demonstrating that discontinuation of chronic THC use in 

rhesus macaques partially restores adverse impacts to male reproductive health, THC-associated 

sperm DMRs in genes important for development, and expression of proteins important for male 

fertility.

GRAPHICAL ABSTRACT
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Capsule:

Discontinuing THC partially restores THC-associated impacts to male reproductive health and 

differential methylation in genes involved in development.

Keywords

male fertility; cannabis; marijuana; THC; delta-9-tetrahydrocannabinol

INTRODUCTION

Cannabis is the most commonly used psychoactive drug among reproductive age men in 

the United States and worldwide (1), which is extremely concerning given safety data is 

substantially lacking and cannabis users are often unaware of the potential adverse effects on 

fertility. Currently, the American Society of Reproductive Medicine discourages the use of 

cannabis in patients intending to conceive because the full impact on reproductive health has 

not been clearly established (2). Published studies examining the effect of cannabis exposure 

on male fertility and future offspring are conflicting. Most human studies are limited by 

small sample sizes, self-reporting, and co-use of other drugs (3). Rodent studies have largely 

focused on the effects of acute THC exposure, which was often delivered via intraperitoneal 

injection or oral gavage, not representative of typical human use (4, 5).

To overcome some of the limitations in prior studies, our group used a novel rhesus 

macaque model and demonstrated that chronic delta-9-tetrahydrocannabinol (THC) edible 

consumption results in testicular and epididymal atrophy, increased gonadotropin release, 

and decreased serum sex steroid concentrations suggestive of primary testicular failure 

(6). However, whether these effects are permanent or temporary remains unknown. A 

rhesus macaque model of chronic THC edible consumption (6, 7) is highly relevant and 

translatable to human use as edibles are one of the most popular forms of current cannabis 
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use among young adult males (8, 9). Rhesus macaques and humans exhibit similar plasma 

disposition of THC, ~64 day spermatogenic cycle, physiologic, genetic, anatomic, and 

endocrine properties, all together suggesting that observations in rhesus macaques may be 

translated from bench to bedside in humans (10, 11).

Our group has also recently uncovered a highly concerning series of deleterious effects of 

cannabis exposure on sperm DNA methylation (12, 13). We reported that cannabis exposure 

in a small cohort of humans and rats was associated with widespread altered sperm DNA 

methylation (13). Genes affected by cannabis use were involved in early development, 

suggesting that preconception paternal cannabis use can impact long-term health in offspring 

(13). However, associated confounding variables such as route of administration and potency 

of the cannabis used were not determined in men, and administration of THC by oral gavage 

in rodents were not adjusted for in the interpretation of these results.

Using our rhesus macaque model, this study focuses on the impact of chronic THC use on 

sperm DNA methylation as a mechanism linking paternal cannabis use to reproductive and 

subsequent offspring health. Our study also examines the benefit of discontinuing THC on 

male fertility and the sperm epigenome after chronic use. This is the first study to provide 

a deeper understanding of the role and contributions of preconception THC use on male 

reproductive health and sperm epigenetics in a human-relevant, rhesus macaque model. 

Results from this study will help guide patient counseling and inform public health policies 

focused on cannabis use in the future as more states legalize cannabis use.

MATERIALS AND METHODS

Study Design

Our group has previously published on the effects of THC exposure in the NHP (12). 

This study focuses on extending our prior assessments of THC-associated effects on male 

fertility to include the seminal fluid proteome, sperm DNA integrity, and sperm epigenome 

in addition to determining the impact of discontinuing daily THC use in the same cohort 

of sexually mature, adult male rhesus macaques (Macaca mulatta) (n=6) ages 8–10 years 

old and weighing 9.3–12.7kg, with prior proven paternity. All procedures were approved by 

the Oregon National Primate Research Center (ONPRC) Institutional Animal Care and Use 

Committee (IACUC) and conformed to all applicable regulations (IP0001389).

The animals were socially-housed and maintained on a standard chow diet (LabDiet 5000, 

Purina Mills, St. Louis, Missouri, USA) with a daily cookie containing THC (THC edible), 

made using research-grade THC obtained directly from the National Institute on Drug 

Abuse (NIDA) Drug Supply Program as previously published (12, 14). Animals were all 

fed the same diet of fresh chow and produce enrichment, and only water was available 

ad libitum. All animals were slowly titrated up to 2.5mg/7kg/day of THC with a dose 

increase every 70 days (the NHP sperm life cycle is ~64 days) over approximately a 7-month 

time period to model published medical marijuana acclimation recommendations of 20–

30mg/day for a 68kg adult (15, 16). Specifically, animals were initially maintained on a dose 

of 0.5mg/7kg/day of THC for days 1 to 70, 1mg/7kg/day (moderate-THC dose) for days 

71–140, and 2.5mg/7kg/day (heavy-THC dose) for days 141 to 210. To minimize potential 

Hedges et al. Page 4

Fertil Steril. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



confounders and inter-animal variability, we utilized a longitudinal, single-case experimental 

design, where each male served as its own control during the study.

To determine peak THC concentrations with each increase in THC dosage, blood was 

sampled (2mL) at each dose adjustment time point during THC induction, three hours 

(17) following edible consumption. Immediately prior to each dosing increase and every 

70 days after THC was discontinued, blood sampling, animal weight, scrotal ultrasound, 

and semen analysis were performed as previously published (12). A testicular biopsy 

was performed pre-THC, heavy-THC, and post-THC discontinuation. Seminal fluid was 

isolated from semen samples for proteomic analysis, and sperm genomic DNA was extracted 

from collected semen samples for DNA fragmentation analysis and whole genome bisulfite 

sequencing (WGBS) as described in the Supplemental Materials. All additional details and 

methods are included in the Supplemental Materials section.

RESULTS

Study Sample characteristics

A cohort of 6 male rhesus macaques (Macaca mulatta) of reproductive age (mean of 

9.1 years, SD=0.6) with prior proven paternity and no history of known significant 

environmental exposures or drug exposure, including THC, were used in the study 

as previously described (12). During the THC induction period, average plasma THC 

concentrations increased by 2.54 ng/mol for each mg/7kg/day increase in THC (95% CI: 

1.35–3.73 ng/mol, p<0.001) as previously published (Figure 1A) (12). Peak THC levels at 

the highest dosing regimen were within the expected reported contemporary range (e.g., 

5–8ng/mL) reported in humans 3 hours following a similar oral THC dose (17, 18). The 

average baseline weight of all animals was 11.6kg (SD=1.4) pre-THC exposure, 11.9kg 

(SD=1.3) at the highest THC dose, and back to baseline at 11.6kg (SD=2.1) after 140 days 

of THC abstinence (Table 1).

THC use results in primary testicular failure with partial recovery following abstinence

For every 1mg/7kg/day increase in THC dosing, there was a significant decrease in total 

testicular volume bilaterally by 12.6 cm3 (95% CI 10.6–14.5, p<0.001), resulting in a 

59% decrease in volume after 280 days of THC use (approximately 4 spermatogenic 

cycles) (Figure 1B). A similar decrease was also observed in the left epididymal head 

width by 0.16 cm (95% CI: 0.13–0.18, p<0.001) and right epididymal head width by 0.15 

cm (95% CI: 0.12–0.18, p<0.001), resulting in a 55% and 51% decrease in epididymal 

volume respectively (Table 1). No scrotal masses or varicoceles were noted on ultrasound or 

physical examination. On histologic exam, testicular volume loss appeared to be secondary 

to a reduction in seminiferous tubule diameter by an average of 51.3 µm (p<0.001) and 

decreased germ cell layers in all animals (Figure 1C).

Immunohistochemistry using the vascular endothelia marker erythroblast transformation-

specific (ETS)-related gene (ERG) showed no significant difference in testicular tissue 

capillary density from THC exposure; there was an average of 10–10.5 blood vessels per 

high-powered-field at baseline (p=0.929), with THC exposure (p=0.668), and after THC was 
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discontinued (p=0.798) (Supplemental Figure 1). With every 70 days of THC abstinence, 

total testicular volume increased significantly by 9.1 cm3 (95% CI 6.8–11.5, p<0.001) 

to 73% of its original volume by 140 days (Figure 1B). After discontinuation of THC, 

there was a significant increase in both left epididymal volume by 0.06cm3 (95% CI: 0.04–

0.09, p<0.001) and right epididymal volume by 0.06cm3 (95% CI: 0.03–0.09, p<0.001) to 

approximately 60% of the original volume bilaterally at 140 days of THC abstinence (Table 

1).

Similarly, with THC exposure there were significant decreases in mean total testosterone 

(p=0.002), intratesticular testosterone (17-OHP, p=0.002), and estradiol (p<0.001), and 

a significant increase in follicle stimulating hormone (FSH) (p=0.010). There was no 

statistically significant change in luteinizing hormone (LH) (p=0.111), prolactin (p=0.364), 

and albumin concentration (p=0.383). With increasing THC dose, there was a significant 

decrease in liquid semen ejaculate volume (p=0.032) and weight of coagulum (p=0.042); 

but no other significant changes to other semen parameters were present including sperm 

concentration (p=0.135), total sperm count (p=0.331), motility (p=0.504) (Table 1) and 

morphology (p=0.438). After discontinuation of THC, there was a significant rise in total 

serum testosterone by 1.3 ng/ml (95%CI: 0.1–2.4, p=0.038) and estradiol by 2.9 pg/ml 

(95%CI: 0.4–5.4, p=0.025), and FSH decreased significantly by 0.06 ng/ml (95%CI: 0.01–

0.11, p=0.025). There were no other significant changes to male reproductive hormones 

and semen parameters, including liquid semen ejaculate volume, after THC discontinuation 

(Table 1).

THC exposure alters sperm DNA integrity with improvement after discontinuation

Average pre-THC sperm DNA fragmentation was 4.2% and within the normal range of 

Oregon National Primate Research Center (ONPRC) Assisted Reproductive Core male 

rhesus macaques (0.1–8.9%). All males had a THC-associated increase in sperm DNA 

fragmentation with an average 2.5-fold change at the moderate-THC dose and a 3.4-fold 

change at the heavy-THC dose. DNA-fragmentation improved toward pre-THC levels in half 

of the subjects after 70 days of THC cessation and in all males (n=6) after 140 days of THC 

abstinence.

Rhesus macaque and human seminal fluid proteins share high homology

Proteomic analysis of seminal plasma resulted in 1,395 quantifiable proteins (Figure 2A) in 

the tandem mass tag (TMT) experiment for the full set of samples (two 18-plex TMTpro 

kits). The 1,395 monkey protein sequences were aligned against a human canonical protein 

sequence set (20,588 proteins, UniProt v2022.01) to find reciprocal best matches, using 

BLAST (basic local alignment search tool; https://github.com/pwilmart/PAW_BLAST). 

The average percent identity was 88.6% (SD=14.9%). All rhesus macaque proteins were 

matched to human proteins with 99.4% of the rhesus macaque proteins (1,386) exceeding 

an identity cutoff of 44.3% (average minus 3 standard deviations). The 1,386 proteins 

accounted for 99.8% of the total measured TMT reporter ion intensity. The 10 highest 

expressed proteins in seminal fluid are shown in Supplemental Table 1.
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Seminal plasma proteins are associated with THC exposure and correlated with 
phenotypes

Weighted gene co-expression network analysis (WGCNA) was used to identify clusters 

of co-expressed proteins among all 1,395 quantifiable proteins in seminal fluid (19). 

The “green” module had the strongest correlation with THC concentration (r=−0.72; 

p=1e-05; Figure 2B) and was highly enriched for “binding of sperm to zona pellucida” 

and “epididymis tissue expression,” and contained several proteins previously identified 

as candidate biomarkers for male infertility and oxidative stress in seminal plasma 

(Supplemental Table 2) (20, 21). Several other modules were significantly correlated 

with sperm concentration, morphology, and other measures of reproductive health (Figure 

2B). We performed pairwise analysis between treatment groups to detect differentially 

expressed proteins (DEP)s. Eight DEPs were detected with a false discovery rate (FDR) 

significance p<0.1 in any comparison. Thus, we focused downstream analyses on nominally 

significant DEPs. A total of 80 proteins were nominally differentially expressed with 

either dose of THC (mod- or heavy-) relative to pre-THC, with a larger number of DEPs 

and greater effect sizes observed with the moderate THC dose (Supplemental Table 3). 

Ingenuity Pathway Analysis (IPA) analysis revealed that THC exposure was associated with 

dysregulation of canonical pathways related to coagulation, axonal guidance, and acute 

phase response signaling (Supplemental Table 4; Figure 2C). STRING protein interaction 

analysis also highlighted enrichment of biological processes related to cellular secretion, 

immune response, fibrinolysis, and response to stimulus (Supplemental Table 5). Baseline 

expression in 60 of the 80 proteins dysregulated by THC exposure were restored after THC 

discontinuation for 140 days. The top restored DEPs were products of MMP9, CHIT1, 

FGA, FGG, and FGB genes (Figure 2D – top row), while products of AHNAK, LGALS7, 

and ACOT6 were not restored following THC-discontinuation (Figure 2D – bottom row). 
Additionally, proteins relevant to male fertility such as products of HSPA5 and HERC4 
showed a trend for dose-associated dysregulation with THC exposure that was not restored 

(Figure 2D – bottom row).

THC exposure is associated with differential methylation of sperm DNA

Sperm DNA extractions yielded >15,000 ng of genomic DNA per sample with high-quality 

(A260/A280 = 1.88–1.95). Whole genome bisulfite sequencing (WGBS) of the rhesus sperm 

DNA revealed a global pattern of hypermethylation (~80%; Supplemental Figure 2A), which 

is similar to previous reports in primates, pig, and cattle sperm (22–24). Principal component 

analysis of the unfiltered WGBS data revealed significant correlation of PC1 and PC2 

with total sperm count, weight of coagulum, and measures of motility and morphology 

(Supplemental Figure 2B). We analyzed for differentially methylated CpGs (DMCs) and 

differentially methylated regions (DMRs) for each pairwise comparison of treatment groups 

(Supplemental Table 6). The relative frequency and methylation profiles of DMCs and 

annotated genes were highly similar to the DMR results (Supplemental Table 7), therefore 

we focus on DMRs and nearest genes for downstream analysis of functional enrichment. 

Overall, methylation levels increased with heavy-THC relative to pre-THC. Following the 

THC washout period, the mean level of methylation across DMRs was lower in post-THC 
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sperm relative to heavy-THC exposed sperm while the profile of moderate-THC suggested 

dose-dependent hypermethylation with THC exposure (Figure 3A).

Methylation changes with THC in rhesus sperm are consistent with effects of cannabis in 
humans

We tested for significant overlap of genes annotated to DMRs in our THC-exposed rhesus 

macaques with genes annotated to DMCs in our prior study of sperm from 18 cannabis users 

and 24 non-users using WGBS (25). The top 10K human cannabis DMCs annotated to 7,224 

unique genes (rhesus homologs = 4,053 genes). Of these homologs, 1,138 overlapped with 

pre-THC versus heavy-THC DMR genes in this study, significantly more than expected by 

chance (p=1.7e-13; Figure 3B – left). Pre-THC vs post-THC rhesus DMRs were similarly 

enriched for genes annotated to DMCs post-cannabis discontinuation in humans (n=1,197 

overlap; p=3.3e-08; Figure 3B – right) (25).

Discontinuation of THC in rhesus macaques restores methylation in a subset of DMRs

Out of 7,627 DMRs between pre-THC and heavy-THC, 1,613 DMRs overlapped DMRs in 

heavy-THC versus post-THC sperm samples and demonstrated an overall pattern of reversal 

post-THC toward the level of methylation pre-THC (Figure 3C – left). A similar number 

(1,601) of pre-THC versus heavy-THC DMRs overlapped with pre-THC versus post-THC 

DMRs, that did not significantly return to baseline levels after the THC washout period 

(Figure 3C – right).

Chronic THC use alters methylation in genes related to nervous system development and 
function

We next examined the potential functional relevance of genes annotated to DMRs following 

THC exposure. Among the pre-THC versus heavy-THC DMRs, the top canonical pathways 

associated with THC were the “synaptogenesis signaling pathway”, “signaling by Rho 

family GTPases”, and “3-phosphoinositide biosynthesis” (Supplemental Table 8). Top 

canonical pathways enriched among DMRs restored post-THC discontinuation included 

several terms related to nervous system signaling such as the “BEX2 (brain-expressed 

X-linked 2) signaling pathway”, “Ephrin receptor signaling”, and the “synaptogenesis 

signaling pathway”. We also observed large activity scores in the “HIPPO signaling”, 

“AMPK signaling”, and “sperm motility” canonical pathways. The non-restored DMRs 

were similarly enriched for genes in the “synaptogenesis signaling pathway”, as well as the 

“PPAR Signaling” canonical pathway.

Exposure to THC is associated with altered DNA methylation at loci enriched for candidate 
autism spectrum disorder (ASD) genes

We mapped candidate autism spectrum disorder (ASD) genes from the Simons Foundation 

Autism Research Initiative (SFARI) database to homologs in rhesus macaques (26). Of 

964 candidate ASD gene homologs, 348 were annotated to pre-THC versus heavy-THC 

sperm DMRs (hypergeometric test p=1.8e-19; Figure 3D – left). Furthermore, 208 out of 

these 348 genes were near DMRs between heavy-THC and post-THC sperm, suggesting 

potential reversal of methylation in some ASD candidate genes following THC abstinence. 
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We also observed significant enrichment of pre-THC versus heavy-THC DMR genes in 

genes previously identified as differentially methylated in sperm from fathers of children 

with autism versus those without (Figure 3D – right; p=3.6e-12) (27).

DISCUSSION

This is the first study to examine the impact of chronic THC use on measures of 

reproductive health in a translational rhesus macaque model and whether discontinuation 

of THC mitigates these effects. Chronic THC use resulted in significant testicular atrophy, 

increased gonadotropins, decreased serum sex steroids, and increased DNA fragmentation, 

suggestive of primary testicular failure. Discontinuation of THC resulted in partial recovery 

of testicular volume, sex steroids and sperm DNA integrity. The underlying mechanism for 

the observed testicular effects is in part secondary to reduced seminiferous tubule diameter 

and germ cell layers. However, it does not appear to be secondary to decreased vascularity as 

capillary density was maintained during THC exposure.

We performed proteomic analysis of collected seminal fluid to better understand the 

molecular mechanisms underlying the impact of THC exposure on male reproductive 

health. Proteins in the seminal fluid are involved in sperm protection (28), capacitation 

(29), acrosome reaction, and sperm-egg binding and fertilization (30). Given the increasing 

prevalence of assisted reproductive technologies (ART) and limited diagnostic tools to 

assess male infertility, there is a growing focus on proteomic analysis of the seminal fluid 

to potentially identify specific protein biomarkers for infertility, and as a prediction of 

ART success (31). Analysis of the seminal fluid proteome revealed differential expression 

of 80 proteins following any THC exposure, of which 60 were restored following 

THC discontinuation. Among the top DEPs, CHIT1 has been previously associated with 

oligozoospermia (low sperm count) (32), and MMP9 with sperm concentration (33) and 

motility (34). We also observed a trend for dose-dependent effect of THC exposure on 

several proteins relevant to male fertility that were not restored post-THC. For example, 

HSPA5, heat shock protein 5, is widely expressed in male reproductive tissues (35) and is 

decreased in patients with idiopathic asthenospermia (reduced sperm motility) (36). Loss 

of the ubiquitin ligase HERC4 in mice is associated with decreased sperm maturation 

and motility, resulting in reduced fertility (37). Additionally, several proteins related to 

“fibrinolytic” activity were increased with THC exposure, which may increase seminal 

clotting and ultimately affect fertility (38). This finding is supported by our observation 

of decreased liquid fraction and increased concentration of sperm per volume of seminal 

fluid following THC consumption. We also found dysregulation of pathways related to 

cellular stress and immune-related signaling which is similar to a prior study focused on the 

impact of oxidative stress on the seminal fluid proteome (39). THC dose was significantly 

correlated with the WGNCA “green” module, which contained several proteins previously 

reported as candidate seminal plasma biomarkers related to male fertility and oxidative 

stress such as TEX101 (Testis-Expressed Protein 101) (Supplemental Table 2) (20, 21).

Chronic THC exposure in rhesus macaques was associated with altered methylation in 

genes involved in neurodevelopment and ASD. WGBS identified 30,464 CpG sites with 

significantly different DNA methylation in heavy-THC-exposed sperm versus pre-THC-
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exposed sperm (p<0.00001; delta>0.1), and discontinuation of THC restored methylation in 

a subset of loci toward pre-THC exposure levels. Genes annotated to DMRs (Supplemental 

Table 6) following THC exposure were enriched in genes involved in nervous system 

development and function including brain-derived neurotropic factor (BDNF), several 

members of the cadherin family, ephrin receptor family, glutamate receptor genes, and 

multiple synapsin genes. In addition, DMRs were enriched for genes involved in sperm 

motility (e.g., adenylate cyclase 10) and endocannabinoid signaling canonical pathways 

(e.g., several calcium voltage-gated channel subunit genes). Additionally, there was overlap 

of candidate ASD genes with genes that were differentially methylated following THC 

exposure in our study. These results from rhesus macaques are similar to prior studies (40) in 

rats and humans and suggests the need for better understanding the contributions of paternal 

cannabis use to offspring neurodevelopment given emerging literature demonstrating a 

positive association between prenatal cannabis exposure and increased ASD incidence in 

offspring (41, 42).

Similar to our findings, a prior study of 18 cannabis users and 24 cannabis non-users 

in humans found significantly different DNA methylation in sperm between groups (43). 

Genes associated with altered CpG sites were enriched with those involved in development, 

including cardiogenesis and neurodevelopment. When cannabis was discontinued for one 

spermatogenic cycle, many of the alterations in sperm DNA methylation between groups 

were restored. The partial mitigation of DNA methylation changes observed after cannabis 

abstinence may be because the sperm in the ejaculate after one spermatogenic cycle 

represent a mixture of sperm formed after the cannabis use was stopped in addition to 

sperm formed prior to cannabis discontinuation that has not cleared. However, our rhesus 

macaque study had a longer period of THC abstinence, approximately two spermatogenic 

cycles, and similarly reported an amelioration of cannabis-associated methylation changes in 

sperm, but not full resolution. Thus, the residual persistent methylation following cannabis 

and THC abstinence observed in humans and our rhesus macaque study respectively may 

reflect alterations that originated in the spermatogonia.

The current lack of understanding regarding the effects of cannabis on male fertility is due 

in part to the paucity of relevant preclinical models with strong translation to human health. 

Our study demonstrated the translational strength of the rhesus macaque model to study 

the impact of cannabis on male reproductive health and the sperm epigenome. This study 

demonstrated that seminal fluid proteome homology was 99.4% between humans and rhesus 

macaques, and an overlap of genes annotated to DMRs in rhesus macaques following THC 

with published gene lists annotated to DMCs between human cannabis users and control 

males. In addition, we found similar functional enrichment in this rhesus macaque study 

with exposure and after THC abstinence compared to a prior human study of cannabis users 

versus non-users (43). Top categories in both species were in terms associated with nervous 

system development and cardiovascular system development.

Our study has many strengths; it is the first study examining the impact of THC on the 

sperm epigenome in the rhesus macaque and reveals methylation loci impacting genes 

in sperm involved in potential transmission of neurobehavioral and health outcomes to 

future offspring. Our translational rhesus macaque model also allowed for standardization 
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of subject variability, THC exposure and experimental manipulation, aspects not achievable 

or ethical in humans, to elucidate direct biological consequences of chronic cannabis use 

while controlling for potential confounders. Moreover, this model avoids the confounding 

effects of polysubstance use, different modes of cannabis delivery, and reliance on patient 

self-reporting, all of which have plagued human studies(44, 45). In addition, the use of 

THC edibles ensured rigor and reproducibility by allowing exposure to precisely measured 

THC without confounding from cannabis smoke. Limitations of this study include the small 

animal cohort size, which was addressed by using a single-case longitudinal experimental 

design, where each male served as its own control during the study to minimize inter-animal 

variability. Although non-sedated collaborative semen sample collection was performed 

early in the morning to try to avoid self-ejaculation prior, it is possible that we were not 

always successful in doing so and that can impact the semen parameter and sperm count 

in the collected sample. Future studies are planned to increase the animal cohort size, 

over a longer time interval in order to glean more information relating to chronic THC 

use. Moreover, we plan to expand our studies to include other THC delivery modalities 

(e.g., vaping and smoking) and to assess the impact on offspring outcomes, including 

neurodevelopment.

CONCLUSIONS

In summary, chronic THC use adversely impacts male reproductive health and alters 

methylation of genes related to nervous system development and function, including those 

linked to ASD that may impact long term offspring outcomes in a translational rhesus 

macaque model. Discontinuation of THC for two spermatogenic cycles resulted in partially 

restored reproductive health parameters and methylation in only a subset of DMRs. Our 

study’s findings are the first to provide a comprehensive understanding of the benefit and 

minimum duration of abstinence needed after chronic THC use. These data can be translated 

directly to the clinical setting to guide healthcare providers when counseling patients and 

couples regarding cannabis use prior to attempting to conceive.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. (A) Study design overview.
Adult male rhesus macaques (n=6) were used. Prior to THC induction, baseline semen 

collection, scrotal ultrasound (US) and blood and urine sampling were performed. 

THC induction occurred over ~30 weeks (~7 months) per published medical marijuana 

acclimation guidelines. The nonhuman primate (NHP) spermatogenic cycle is ~64 days (~10 

weeks), so the THC dose was increased every 10 weeks to accommodate 1 cycle at each 

THC dose until the highest THC dose was reached (2.5mg/7kg/day, equivalent to a heavy 

human medical cannabis dose). At the end of each THC dosing period and after THC was 

discontinued, all males underwent serial plasma and semen collection in addition to scrotal 

US. Testicular sperm extraction (TESE) was performed for histologic assessment at baseline 

(pre-THC), during THC induction (heavy-THC), and after THC was discontinued for 140 

days. (B) Total testicular volume significantly decreases with increasing THC dosing 
with partial recovery of total testicular volume after discontinuing THC. Individual 

(symbols) and average fixed effect (lines) testicular volume (cm3) in response to increasing 

oral THC dosage (0 to 2.5 mg/7kg/day) resulted in a 59% decrease in volume after 210 days. 

THC was then discontinued over 140 days with partial recovery to 73% of the original 

testicular volume in 6 rhesus macaques (p<0.001). (C) Reduced seminiferous tubule 
diameter and decreased germ cell layers with THC exposure. Representative rhesus 

macaque testicular histopathology from the same animal pre-THC exposure (a,c) and after 

Hedges et al. Page 16

Fertil Steril. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



THC exposure (b,d). Seminiferous tubules with reduced diameter and decreased germ cell 

layers as indicated by the asterisks (*), were observed in all animals. Scale bar for a,b = 200 

µm, for c,d =20µm.
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Figure 2. 
(A) Heatmap represents all 1,395 quantifiable proteins with mean per group log 

transformed and centered. Red color indicates higher mean expression and blue indicates 

lower expression relative to mean of all groups. (B) Seminal fluid proteome module-trait 
relationships. WGCNA was used to find correlation networks of co-expressed proteins. 

Each module (x-axis) containing multiple correlated proteins was reduced to a single 

eigenvalue (the first principal component) and then correlated with anatomical, seminal, 

hormonal, and dosing measurements (y-axis). The more positively correlated the module 

and the trait, the more red the square; the more negatively correlated, the more blue (* 

unadjusted p<0.05). (C) IPA merged network for proteins differentially expressed with 

either dose of THC (red= increased expression, blue = decreased expression) overlaid with 

top 3 most represented canonical pathways (CP). Orphan (disconnected) proteins were 

removed for visual clarity. (D) Top differentially expressed seminal fluid proteins with 
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THC exposure. Boxplots represent all proteins with FDR p-value <=0.1 with either dose 

of THC (mod- or heavy-) relative to pre-THC. The top row contains proteins restored 

post-THC and the bottom row contains proteins not-restored, including 2 proteins with 

nominal dose-dependent association with THC exposure.
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Figure 3. 
(A) Distribution of mean methylation across DMRs. (B) THC-exposed rhesus vs. 
human cannabis users. Rhesus pre-THC vs. heavy-THC DMRs which overlap genes 

nearest DMCs in human cannabis users vs control (Left). Post-THC DMR genes in rhesus 

macaques overlap with Post-cannabis DMC genes in humans (Right). (C) Identification 
of DMRs pre-THC versus heavy-THC restored with THC washout (Left) and persistent 

DMRs (Right). Heatmaps represent the log transformed and mean centered average 

methylation values per DMR which intersect DMRs between pre-THC and heavy-THC. 

Hierarchical clustering demonstrates overall similarity in means between groups. (D) 
Significant overlap of genes annotated to THC DMRs with candidate autism genes. 
Venn diagrams showing the number of genes that are differentially methylated in sperm 

after heavy-THC versus pre-THC which overlap (Left) genes included on the SFARI autism 
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candidate list with homologs in rhesus macaques, and (Right) genes with DMRs in sperm 

from fathers of children with autism versus without (27).
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Table 1:
Average weight, testicular anatomy, semen characteristics, and hormone levels (± 
standard deviation).

Characteristics of 6 male rhesus macaques during 3 doses of oral THC (0 to 2.5 mg/7kg/day), and following 

70 and 140 days of THC discontinuation. Change with 1 mg/7kg/day increase in THC dose as well as change 

per 70 days of discontinuation was calculated (with 95% confidence intervals and associated p-values), from a 

random intercept mixed effects model with linear spline at point of THC discontinuation.

Characteristic Mean ± standard deviation at each time point Marginal slopes from mixed effects models

0mg/7kg/
day THC 
(pre-
THC)

1 
mg/7kg/da
y THC 
(mod-
THC)

2.5 
mg/7kg/da
y THC 
(heavy-
THC)

70 days 
post-
THC

140 days 
post-
THC

Change 
per 1 
mg/7kg
/day 
THC 
dose

95% 
CI

p-
value

Change 
per 70 
days 
post-
THC

95% 
CI

p-
value

Weight (kg) 11.6±1.4 11.7±1.2 11.9±1.3 12.1±2.1 11.6±2.1 0.2 −0.2, 
0.5 0.323 −0.1 −0.5, 

0.3 0.696

Right 
epididymal 
head volume 
(cm3)

0.70±0.11 0.37±0.05 0.34±0.06 0.38±0.03 0.42±0.04 −0.15 −0.18, 
−0.12

< 
0.001 0.06 0.03, 

0.09
< 
0.001

Left 
epididymal 
head volume 
(cm3)

0.71±0.09 0.37±0.07 0.32±0.03 0.39±0.03 0.41±0.03 −0.16 −0.18, 
−0.13

< 
0.001 0.06 0.04, 

0.09
< 
0.001

Right 
testicular 
volume (cm3)

27.3±5.5 15.1±4.9 10.2±2.1 16.1±3.6 19.5±3.4 −6.7 −7.8, 
−5.7

< 
0.001 4.9 3.6, 

6.3
< 
0.001

Left testicular 
volume (cm3)

25.9±5.1 13.9±4.9 11.9±3.9 15.1±3.5 19.1±4.6 −5.8 −6.9, 
−4.8

< 
0.001 4.2 2.9, 

5.5
< 
0.001

Total testicular 
volume (cm3)

53.2±10.2 29.0±9.7 22.0±5.5 31.1±7.0 38.7±7.7 −12.6 −14.5, 
−10.6

< 
0.001 9.1 6.8, 

11.5
< 
0.001

Weight of 
coagulum (g) 0.80±0.31 0.47±0.13 0.54±0.16 0.55±0.21 0.72±0.50 −0.12 −0.24, 

0.00 0.042 0.12 −0.02, 
0.26 0.105

Liquid fraction 
volume (ml) 0.45±0.14 0.26±0.16 0.32±0.18 0.30±0.14 0.33±0.13 −0.06 −0.12, 

−0.01 0.032 0.03 −0.04, 
0.10 0.426

Sperm conc. 
(million/ml) 795±326 1483±1005 1388±1464 1175±873 1188±757 241 −75, 

558 0.135 −171 −556, 
213 0.382

Total sperm 
count (million) 338±135 274±166 269±189 347±230 348±202 −24 −73, 

25 0.331 46 −14, 
105 0.133

Percent 
motility 88.9±6.2 86.3±8.4 87.0±7.9 86.9±10.4 86.5±6.6 −0.8 −3.3, 

1.6 0.504 0.1 −2.9, 
3.1 0.950

Total 
testosterone 
(ng/ml)

5.76±3.72 3.68±3.27 1.96±1.64 3.26±1.60 4.67±2.17 −1.5 −2.5, 
−0.5 0.002 1.3 0.1, 

2.4 0.038

Estradiol 
(pg/ml) 16.3±3.8 6.7±2.6 6.0±1.7 6.8±3.0 10.7±9.3 −4.5 −6.6, 

−2.4
< 
0.001 2.9 0.4, 

5.4 0.025

Prolactin 
(ng/ml) 12.3±7.5 19.3±10.5 30.7±21.2 19.0±15.9 50.6±56.8 4.5 −5.2, 

14.1 0.364 10.0 −1.6, 
21.7 0.092

Inhibin 
(pg/ml) 1015±148 1048±479 1062±210 861±353 901±169 4 −101, 

109 0.936 −87 −214, 
40 0.181

Albumin 
(mg/ml) 53.0±19.9 51.5±23.3 51.6±20.3 26.5±7.4 28.2±7.4 −2.2 −7.2, 

2.8 0.383 −12.3 −18.3, 
−6.2

< 
0.001
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Characteristic Mean ± standard deviation at each time point Marginal slopes from mixed effects models

0mg/7kg/
day THC 
(pre-
THC)

1 
mg/7kg/da
y THC 
(mod-
THC)

2.5 
mg/7kg/da
y THC 
(heavy-
THC)

70 days 
post-
THC

140 days 
post-
THC

Change 
per 1 
mg/7kg
/day 
THC 
dose

95% 
CI

p-
value

Change 
per 70 
days 
post-
THC

95% 
CI

p-
value

17-OHP 
(ng/ml) 1.47±0.28 1.09±0.34 0.93±0.37 1.17±0.52 1.16±0.59 −0.20 −0.32, 

−0.08 0.002 0.12 −0.03, 
0.27 0.109

LH (ng/ml) 0.69±0.18 0.92±0.38 1.10±0.35 0.85±0.39 0.98±0.60 0.14 −0.03, 
0.31 0.111 −0.06 −0.27, 

0.14 0.557

FSH (ng/ml) 0.17±0.06 0.24±0.13 0.33±0.18 0.22±0.10 0.20±0.10 0.06 0.01, 
0.10 0.010 −0.06 −0.11, 

−0.01 0.025
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