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Abstract

We present an updated version of the Predicting Protein-Protein Interactions (PrePPI) webserver 

which predicts PPIs on a proteome-wide scale. PrePPI combines structural and non-structural 

clues within a Bayesian framework to compute a likelihood ratio (LR) for essentially every 

possible pair of proteins in a proteome; the current database is for the human interactome. The 

structural modeling (SM) clue is derived from template-based modeling and its application on a 

proteome-wide scale is enabled by a unique scoring function used to evaluate a putative complex. 

The updated version of PrePPI leverages AlphaFold structures that are parsed into individual 

domains. As has been demonstrated in earlier applications, PrePPI performs extremely well as 

measured by receiver operating characteristic curves derived from testing on E. coli and human 

protein-protein interaction (PPI) databases. A PrePPI database of ~1.3 million human PPIs can 

be queried with a webserver application that comprises multiple functionalities for examining 

query proteins, template complexes, 3D models for predicted complexes, and related features 

(https://honiglab.c2b2.columbia.edu/PrePPI). PrePPI is a state-of-the-art resource that offers an 

unprecedented structure-informed view of the human interactome.
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Introduction

The identification of proteins that interact with one another is a challenging problem of 

central importance in fundamental biology and in medicine. Protein-protein interactions 
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(PPIs) is a widely used term which has multiple meanings. Two proteins can interact 

with one another directly either by forming a binary physical complex or by being 

in physical contact in the context of a multi-protein complex. Indirect interactions can 

include two proteins that are part of a complex, but are not in physical contact, or that 

are part of a pathway or network that mediates their interaction. Multiple experimental 

and computational tools are available to detect or predict PPIs, and their results are 

compiled in multiple databases. Here we report a new version of our Predicting Protein-

Protein Interactions (PrePPI) database [1, 2], describe its unique features, and compare its 

performance to that of other databases. We also place PrePPI’s prediction algorithm in the 

context of recent structure-based, co-evolution, and deep learning-based developments in the 

prediction of PPIs.

The key element of the PrePPI algorithm, which is summarized in Figure 1, is proteome-

wide template-based modeling of PPIs, both direct and indirect. Not accounting for splice 

variants and posttranslational modifications, there are ~200 million possible pairwise 

combinations of human proteins. However, since we consider full proteins as well as their 

individual domains, we need to examine ~4.55 billion pairwise interactions and, since 

we make multiple interaction models for each pair, the number of pairwise combinations 

evaluated is in the 10s of billions (see Methods). PrePPI’s ability to consider such a large 

number of potential PPIs is enabled by an efficient scoring function which is based on 

the similarity of the modeled interface to the interface of a known complex in the Protein 

Data Bank (PDB) [3]. We highlight these points because it is important to distinguish our 

goals from standard template-based modeling. Further, we are not necessarily trying to 

produce an accurate model of the complex as might be judged, for example, in the CAPRI 

(Critical Assessment of PRediction of Interactions) experiment [4] – although obviously 

a better model will produce a more reliable prediction. Rather, our hypothesis is that, in 

the derivation of a structural modeling score, our models are good enough to provide a 

clue that two proteins form a physical complex. Thus, a model that would score poorly 

according to CAPRI metrics might be reliable enough to provide a yes or no prediction 

as to whether two proteins interact and, in addition, produce a low-resolution structural 

pose for the interaction. As discussed below, PrePPI uses non-structural information as well. 

For example, if two proteins are co-expressed and have a good structural modeling (SM) 

score, the likelihood of an interaction, as given in PrePPI by a naïve Bayesian network, will 

increase. A PPI with low SM score but high non-structural score suggests that the interaction 

is indirect.

Testing and validating computational predictions is a complicated challenge since 

experimental databases themselves contain sources of uncertainty and the degree of overlap 

between them is still quite low in spite of the proliferation of observations from high-

throughput screens. Moreover, they are often based on different definitions of PPIs. Mass 

spectrometry-derived databases (e.g. Bioplex 3.0 [5]) focus explicitly on multi-protein 

complexes [6] while Y2H-based databases (e.g. HuRI [7]) focus on binary interactions. 

Among derived databases, the widely used STRING database [8] has a category for 

physical interactions but does not distinguish binary interactions from those in multi-protein 

complexes whereas databases such as APID [9] and HINT [10] include both direct and 

indirect interactions. As depicted in Table 1, overlap between these various databases is 
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limited (see Methods for a description of each database). Of note, Interactome 3D which 

contains PDB structures and high quality homology models is well represented in most 

of the databases but, the HINT high-quality literature-curated database (HINT HQ-LC) 

contains the highest percentage of Interactome3D structures.

In earlier versions of PrePPI [1, 2], training was done on yeast PPIs and testing was done 

on human interactions, with the true positive dataset comprising PPIs with at least two 

literature references. No attempt was made at the time to train on datasets of binary physical 

interactions since PrePPI predicts both direct and indirect interactions. Here we have taken 

a more refined approach, training the structural modeling component of PrePPI on HINT 

HQ-LC [10].

In order to evaluate PrePPI’s structure-based algorithm, we have used Escherichia coli K-12 

(here E. coli) as a test organism and compared predictions from PrePPI’s structural modeling 

component to predictions from the threading component of Threpp [11]. Technology closely 

related to Threpp powers the PEPPI server [12] which, like PrePPI, uses Bayesian statistics 

to integrate structural and non-structural information. But in contrast to the PrePPI, the 

PEPPI webserver allows a user to input only two protein sequences at a time while, as 

described below, the PrePPI database of human PPIs contains about 200 million entries with 

the highest confidence predictions (~1.3M) appearing in the online application that can be 

queried in multiple ways including, for example, inputting a single protein and outputting all 

predicted binding partners.

Compared to previous versions of PrePPI, in addition to improved training, features of 

the current version include the replacement of homology models with models from the 

AlphaFold Protein Structure Database [13] leading to increased structural coverage of 

the proteome, separate training of the structural modeling and non-structural components, 

a refined definition of PDB template complexes [3], the implementation of a more 

accurate algorithm PredUs 2.0 for predicting interfacial residues [14], and a website with 

expanded functionality. We believe that PrePPI is a unique resource that generates novel 

hypotheses for the existence of PPIs, both direct and indirect. Moreover, given the ongoing 

developments in the use of deep learning-based approaches to predict the structure of 

binary complexes, PrePPI predictions can be used as a starting point for the construction of 

accurate structural models.

Results

Testing on experimental databases

E. coli: We have chosen to test the SM score on E. coli, in part for comparison with 

Threpp [11] and in part to assess the applicability of our human-trained Bayesian network 

(see below) to another organism. PrePPI for E. coli was trained on human HINT HQ-LC 

[10] (see Methods). Table 2A presents area under the ROC curve (AUROC) values for the 

structural modeling component of PrePPI (PrePPI-SM) and the threading component of 

Threpp (Threpp-Threading) [11, 12] for E. coli evaluated on three datasets: E. coli HINT 

HQ-LC, Interactome3D, and GS-Threpp [15], the gold standard data set of 763 PPIs on 

which Threpp was previously tested [11]. Both methods yield good results when tested 
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on HINT HQ-LC (AUROC values 0.88 and 0.81 for PrePPI-SM and Threpp-Threading, 

respectively) and Interactome3D (AUROC values 0.95 and 0.85) but performance degrades 

(AUROC values 0.67 and 0.65) on GS-Threpp. PrePPI-SM performs quite well on HINT 

HQ-LC on which it was trained and performance improves on Interactome3D which is 

comprised effectively of PDB complexes or close homologs [16]. As can be seen in Table 

1A, HINT HQ-LC has a large intersection with Interactome3D (65%). The slight difference 

in performance may arise if some of the interactions in HINT HQ-LC are not readily 

homology-modeled. Overall, the PrePPI-SM results are somewhat better than those obtained 

with Threpp-Threading but it is reassuring that two different structure-based methods yield 

very similar performance and, in particular, that a proteome-wide method such as PrePPI is 

of comparable accuracy to a method that uses a more complex and computationally intensive 

scoring function to evaluate structural models.

Human: Table 2B presents AUROC values for PrePPI-SM and PrePPI-Total, where the 

latter corresponds to the predicted score with all sources of evidence (Figure 1), for testing 

on HINT HQ-LC and the high confidence (HC) set we assembled in 2016, PrePPI-2016 [2]. 

PrePPI-SM performs very well on HINT HQ-LC (AUC = 0.83) but performance degrades 

on PrePPI-2016 (AUC = 0.73). We attribute the difference to the fact that HINT HQ-LC 

was designed to encompass experimentally observed direct PPIs and, thus, has significant 

overlap (56%) with Interactome3D [16] (Table 1B) while PrePPI-2016 contains many 

indirect interactions (19% overlap with Interactome3D). Consistent with this explanation, 

the difference in performance between the use of just structural clues or the combination 

of structural and non-structural clues for testing on HINT HQ-LC (AUROC = 0.83 for 

PrePPI-SM and 0.77 for PrePPI-Total) is small, whereas the AUROC for testing on the 

2016 HC set decreases from 0.89 for PrePPI-Total to 0.73 for PrePPI-SM, indicating that 

PrePPI-Total successfully captures both structural and non-structural evidence.

Table S1 contains AUROC values for PrePPI-Total tested on a number of PPI databases. 

The values vary over a wide range which appears to reflect underlying differences in the 

databases as delineated in Table 1. As summarized in Methods, HURI [7], HINT HQ-Binary 

[10] and APID Level 2 [9] contain many Y2H results, STRING-Physical [17] contains many 

direct and indirect physical interactions while BioGRID-MV [18] infers PPIs from a large 

set of experimental methods. HINT HQ-LC is derived from binary interactions that have 

at least two literature references and, in that sense, is most closely related to PrePPI-2016. 

Agreement between PrePPI and HURI is quite limited (see Luck et al. [7]) for a discussion 

of HURI’s overlap with other databases). Of course, it is impossible to know how many 

predicted PPIs that do not appear in any database are actually true positives. Indeed PrePPI’s 

goal is to discover PPIs that do not appear in known databases. Based on experimental tests 

and applications summarized in the Discussion, PrePPI has already proved to be a reliable 

source of novel PPIs.

To place PrePPI predictions in the context of deep learning approaches, we compared PrePPI 

performance to that of D-SCRIPT [19], a proteome-wide method for predicting physical 

interactions between two proteins given just their sequences. Similar to PrePPI, D-SCRIPT 

was trained on human PPIs and then predicts PPIs for both human and E. coli, but training 

and testing were performed with PPIs from the STRING database [17] whereas PrePPI used 
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HINT HQ-LC [10] (see comparisons in Table 1A and B). In spite of the differences in 

training and testing sets, the performance, as judged by AUROC values, is similar for both 

E. coli (PrePPI-SM: 0.88, D-SCRIPT: 0.86) and human (PrePPI-SM: 0.83, D-SCRIPT: 0.83) 

PPIs. Given the low overlap between the HINT HQ-LC and STRING-Physical databases, 

the strong performance of both methods suggests they are highly complementary, not only in 

methodological terms but also in the type of information they encompass.

The PrePPI database: The full PrePPI database contains predictions for ~200 million 

PPIs. Even though interaction models are evaluated for a protein and its constituent domains, 

only the highest scoring interaction for a given protein pair is included in the database. 

Hence, the set of 200 million PPIs corresponds to near total coverage of all possible 

interactions among 20K proteins. The online database contains about 1.3M human PPIs 

of which about 370K are likely direct physical interactons. PPIs that appear in the online 

database either are associated with an FPR < 0.005 (LR > 379) or have the maximum 

value of LR(SM) or LR(protein-peptide) > 100. Our experience has been that interactions 

that meet this latter criterion constitute high-confidence physical interactions and, indeed, 

are associated with an FPR < 0.001 when tested, with 10-fold cross-validation, on the 

structure-rich HINT HQ-LC database.

PrePPI website (https://honiglab.c2b2.columbia.edu/PrePPI/):

When a user inputs a UniProt ID or gene name for a query protein, the website returns 

several features of the protein and its interactors: 1) the names and functional information 

for the query protein derived from UniProt; 2) the sequence of the full-length query protein 

as well as its domains, all of which can be viewed in a protein-centric structure viewer; 

3) a list of PrePPI-predicted interactors of the query protein and associated scores for the 

features incorporated in the PrePPI algorithm, and, if they exist for a given PPI, links 

to external databases that compile interactions based on experiments and literature; 4) an 

interaction-centric structure viewer that shows the 3D model for a given PPI and, depending 

on selections by the user, the template PDB complex and the structure superposition of the 

query structures on the template (Figure 1); 5) functional annotations for the query protein, 

derived from gene set enrichment analysis of the protein’s interactors ranked according 

to the PrePPI-Total score [2]; 6) annotations of the full-length query protein sequence for 

disordered regions [20]; and 7) annotations of the full-length query protein sequence for 

interfacial residues as predicted by PredUs 2.0 [14] that is used in the PrePPI SM scoring 

function (Figure 1).

Discussion

The PrePPI database was first reported in 2012 [1] and updated in 2016 [2]. Its unique 

features include a fast structure-based scoring function that enables proteome-wide protein-

protein interface evaluation and the integration of structural and non-structural clues for an 

interaction. The current version of PrePPI has been improved in a number of ways: 1) Most 

notably, our in-house homology model database has been replaced with structures from 

the AlphaFold Protein Structure Database [13] for individual proteins and their domains as 

annotated by the Conserved Domain Database (CDD) [21]. As explained in Methods, use of 
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the AF/CDD database requires the scoring 10s of billions of interaction models. This scoring 

takes about a day using ~2000 CPU processors. 2) The training of structure-based versus 

non-structural clues is performed separately. Specifically, the structure-informed predictions 

are trained with the HINT HQ-LC database [10] while non-structural features are derived as 

implemented previously [2] and trained on databases with a predominance of non-structural 

information. 3) The method to extract non-crystallographic protein-protein interfaces from 

the PDB has been revised. 4) A more accurate algorithm, PredUs 2.0, was implemented 

for predicting interfacial residues on protein surfaces [14]. 5) New website features are as 

described above.

We are not aware of any structure-informed database comparable in scope to PrePPI. 

Many of its predictions have not been previously observed since use of 3D structure 

information, especially in matching protein structures to PPI template complexes from the 

PDB, identifies many interactions that would be undetectable with sequence-based methods. 

PrePPI performance is comparable to that of high-throughput experimental methods [1, 

2]. Moreover, experimental validation has already confirmed the reliability of many novel 

predictions: 1) In the original PrePPI paper [1], 17 out of 21 predictions were confirmed 

with co-IP assays; 2) In our study of virus/human interactions with the P-HIPSTer database, 

which is based on the PrePPI pipeline [22], PrePPI predictions yielded a 76% precision as 

judged by co-IP experiments; 3) PrePPI is a central feature in the OncoSig algorithm that 

generated a lung cancer adenocarcinoma (LUAD) signaling PPI network for KRAS that 

recapitulated published KRAS biology and identified novel proteins synthetic lethal with an 

oncogenic mutated form of KRAS that is constitutively activated, 18 of 21 of which were 

validated in 3D spheroid models for LUAD [23]. Thus, based on results in a wide range of 

contexts, PrePPI predictions are associated with a precision of ~75-80%.

Of course, not all PrePPI predictions are correct but, as highlighted in the previous 

paragraph, they appear sufficiently accurate to generate hypotheses that drive biological 

discovery. Moreover, for direct binary PPIs, a model that appears in the database can 

be used as a basis for lower throughput approaches such as protein-protein docking or 

deep learning algorithms such as AlphaFold multimer [24] which likely generate models 

that are more accurate than those in PrePPI. PrePPI predictions for non-direct interactions 

also provide valuable information by identifying pairs of proteins that might be present 

in multi-protein complexes and, moreover, PrePPI predictions can be used to identify all 

proteins that are in physical contact in such a complex [2]. PrePPI predictions can also be 

used in the construction of PPI networks that comprise both direct and indirect interactions 

and, when combined with features based on context-specific gene expression or knockout 

screens, can provide insight into dysregulation of cellular signaling as demonstrated with the 

KRAS-centered OncoSig network for LUAD [23].

Given the continuous developments in structure determination and sequence analysis, 

PrePPI will continue to evolve and to incorporate new technologies. One possibility is 

to leverage the proteome-wide, complementary approaches of PrePPI and D-SCRIPT [19] 

and integrate the interface predictions from both as features in an enhanced PPI prediction 

algorithm. More computationally intensive methods such as ECLAIR [25] can be used to 

filter PrePPI predictions thus improving their accuracy. While such methodological advances 
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are contemplated and potentially implemented, the current version of PrePPI will be applied 

to multiple proteomes and to cross-species interactions as implemented in our P-HIPSTer 

database [22]. In summary, we believe that PrePPI constitutes a unique resource that will 

continue to find applications in multiple areas of biomedical science.

Methods

Training the SM score

Extracting biological interfaces from the PDB: All possible PDB complexes, 

regardless of source organism, are considered. The quaternary structure of a PDB file 

frequently does not represent the biologically relevant quaternary structure [26] but will be 

represented by one of the “biological assemblies” contained in the PDB file. The biological 

assemblies are specified in the “REMARK 350” lines of the PDB file and contain a set of 

geometric transformations (“BIOMT” records). A given biological assembly is constructed 

by applying the transformations defined for that assembly to the set of chains in the PDB 

file. To define template interface contacts, we construct three-dimensional models of each 

biological assembly using the associated transformations. A contact between any pair of 

chains in a biological assembly occurs when two residues from the first chain and two from 

the second are within 6 Å of each other. The union of these contacts from all biological 

assemblies for each pair of chains defines the interface for those chains and is used to 

evaluate structure-based predictions as described in the following sections. ~200K PDB 

structures, each of which contain, on average, several bioassemblies, are used to construct 

interfaces.

Model Building: Sequences for the human and E. coli K12 proteomes are taken from the 

UniProt defined reference proteomes with one representative protein per gene (Proteome 

IDs UP000005640 and UP000000625, respectively) [27]. As we recently described [28], 

each full-length sequence is broken up into individual domains corresponding to those 

defined in the CDD [21]. Three-dimensional models for each full-length protein are taken 

from the AlphaFold Protein Structure Database [13] with models for individual domains 

extracted from the model of the full-length protein. This generates a models database for 

75,643 domains from 19,797 human proteins corresponding to 95,440 distinct structural data 

files and about 4.55 billion pairs for which an interaction is evaluated. Additionally 12,120 

domain and full-length sequences for 4,285 E. coli proteins.

Interaction Model Construction: Sequences for every protein chain in the PDB are 

downloaded from the PDB web site [3]. The sequences are clustered at a sequence identity 

cutoff of 60% using the program CD-HIT [29] to form PDB sequence clusters, and a 

representative for each cluster is defined as the longest sequence in the cluster. For a 

given query protein, the sequences for its associated models are matched to PDB sequence 

clusters and then structurally aligned to the PDB structure for the representative of the 

corresponding cluster. The quality of the structure alignment is scored using the Protein 

Structural Distance (PSD) calculated using the program ska [30]. Of note, in practice, ska 

alignments involve protein structures with at least three secondary structure elements so that, 

beyond PrePPI’s use of sequence orthology as an evidence source, PrePPI typically does 
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not predict interactions involving a single α-helix to a structured domain. If a query model 

aligns with a PSD<0.6 to the structures of representative sequence of the PDB cluster, the 

query model is further aligned to all of the member structures. PDB structures with PSD<0.6 

are kept as structural neighbors of the query model. Whenever the structures or structural 

neighbors of two query proteins appear together in a PDB complex (as defined above), 

we call this complex a “template” for an interaction of the query proteins. In practice, 

we never create a three-dimensional interaction model, rather the structure-based sequence 

alignments are used to derive properties of the interaction: the quality of the alignment 

itself; the extent that residues of the query proteins align to interfacial residues in the 

template; and the extent to which residues predicted to be interfacial in the query proteins 

align to interfacial residues in the template [1]. Predicted interfacial residues are obtained 

from our program PredUs 2.0 [14]. This scoring avoids the need to explicitly calculate 

pairwise properties while preserving context-specific information for the template complex 

and enables rapid evaluation of interaction models from among billions of possible pairwise 

query combinations.

Given that the full length protein and multiple domains are used for each protein and 

multiple models are tested for each of the 95K human query sequences, 10s of billions 

of interaction models must be evaluated. Each model is evaluated using a scoring function 

derived from a Bayesian network based on features as summarized above and reported 

previously [2]. Training of the Bayesian network is based on training sets as described 

below. For a given protein pair, the highest scoring interaction, whether it is between two full 

length proteins or between two domains, is chosen for that PPI, leading to about 200 million 

scored predictions.

True positive data sets: The most obvious training set for direct interactions is the PDB 

[3] it contains a relatively limited number of entries for complexes in a given proteome 

and redundancies further limit this number. Instead, we have preferred to use the HINT 

high-quality literature-curated database, HINT HQ-LC [10], which appears to be the best 

source for direct physical interactions and currently has 16K entries for human and 1,753 for 

E. coli.

We have used a number of databases to calculate ROC curves. The size of these databses and 

the overlap between them appears in Table 1. They include:

Interactome3D [16]:  PDB structures and easily constructed homology models.

HINT high-quality literature-curated (HINT HQ-LC) [10]:  Binary PPIs with at least 

two literature references.

APID Level 2 [9]:  Interactions proven by at least 1 binary method.

STRING-Physical [8]:  Direct and indirect PPIs in the same complex with experimental 

evidence.
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BioGRID-MV [18]:  PPIs curated from both high-throughput datasets and individual 

focused studies that are validated by multiple experiments.

HURI [7]:  Binary PPIs validated by three variations of the Y2H assay.

Overall, the lack of overlap among different databases highlights questions about how they 

are used/chosen in the training of computational methods, especially for those focused on 

direct interactions. Our decision to train structural clues on a different true positive set than 

used for non-structural clues is an attempt to address this issue. Both for human and E. coli, 
HINT HQ-LC has significant overlap with Interactome3D consistent with its focus on direct 

interactions.

True negative data set: The negative set used in training and testing consists of all 

possible human PPIs minus the union of PPIs that appear at any level of confidence in 

the databases listed in the previous section. The treatment of every interaction for which 

there is no evidence as a true negative obviously diminishes apparent performance. But 

our experience has been that, as opposed to precision/recall curves, ROC curves are not 

significantly affected by the size of the negative set. We have confirmed this behavior by 

changing the size of the negative set to be 10 times the size of the positive set and found 

that this has essentially no effect on the various ROC curve statistics. Specifically, the values 

in Table S1 are identical using either negative set. In addition, Figure S2 shows complete 

overlap between between ROC curves using both negative sets as tested on two different 

data sets

Training non-structural clues:

As reported previously, in addition to structural evidence, PrePPI uses a number of non-

structural clues including partner redundancy, GO annotation, sequence orthology, and 

phylogenetic profile. Details about the calculation and training of non-structural clues are 

described in our 2016 publication [2] and will not be repeated here. Briefly, the true positive 

set was taken from multiple databases with the requirement that a PPI be identified in two 

independent literature references and no attempt was made to distinguish direct physical 

from non-direct interactions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by the National Institute of Health (grant R35-GM139585, U54-CA209997, BH; grant 
T32-GM008224, T32-GM145440, SJT).

REFERENCES

[1]. Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, et al. Structure-based prediction 
of protein-protein interactions on a genome-wide scale. Nature. 2012;490:556–60. [PubMed: 
23023127] 

Petrey et al. Page 9

J Mol Biol. Author manuscript; available in PMC 2023 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[2]. Garzon JI, Deng L, Murray D, Shapira S, Petrey D, Honig B. A computational interactome and 
functional annotation for the human proteome. Elife. 2016;5.

[3]. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. 
Nucleic Acids Res. 2000;28:235–42. [PubMed: 10592235] 

[4]. Lensink MF, Brysbaert G, Mauri T, Nadzirin N, Velankar S, Chaleil RAG, et al. Prediction of 
protein assemblies, the next frontier: The CASP14-CAPRI experiment. Proteins. 2021;89:1800–
23. [PubMed: 34453465] 

[5]. Huttlin EL, Bruckner RJ, Navarrete-Perea J, Cannon JR, Baltier K, Gebreab F, et al. Dual 
proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell. 
2021;184:3022–40 e28. [PubMed: 33961781] 

[6]. Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, et al. The BioPlex Network: A 
Systematic Exploration of the Human Interactome. Cell. 2015;162:425–40. [PubMed: 26186194] 

[7]. Luck K, Kim DK, Lambourne L, Spirohn K, Begg BE, Bian W, et al. A reference map of the 
human binary protein interactome. Nature. 2020;580:402–8. [PubMed: 32296183] 

[8]. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database 
in 2021: customizable protein-protein networks, and functional characterization of user-uploaded 
gene/measurement sets. Nucleic Acids Res. 2021;49:D605–D12. [PubMed: 33237311] 

[9]. Alonso-Lopez D, Campos-Laborie FJ, Gutierrez MA, Lambourne L, Calderwood MA, Vidal M, 
et al. APID database: redefining protein-protein interaction experimental evidences and binary 
interactomes. Database (Oxford). 2019;2019.

[10]. Das J, Yu H. HINT: High-quality protein interactomes and their applications in understanding 
human disease. BMC Syst Biol. 2012;6:92. [PubMed: 22846459] 

[11]. Gong W, Guerler A, Zhang C, Warner E, Li C, Zhang Y. Integrating Multimeric Threading 
With High-throughput Experiments for Structural Interactome of Escherichia coli. J Mol Biol. 
2021;433:166944. [PubMed: 33741411] 

[12]. Bell EW, Schwartz JH, Freddolino PL, Zhang Y. PEPPI: Whole-proteome Protein-protein 
Interaction Prediction through Structure and Sequence Similarity, Functional Association, and 
Machine Learning. J Mol Biol. 2022;434:167530. [PubMed: 35662463] 

[13]. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate 
protein structure prediction with AlphaFold. Nature. 2021;596:583–9. [PubMed: 34265844] 

[14]. Hwang H, Petrey D, Honig B. A hybrid method for protein-protein interface prediction. Protein 
Sci. 2016;25:159–65. [PubMed: 26178156] 

[15]. Hu P, Janga SC, Babu M, Diaz-Mejia JJ, Butland G, Yang W, et al. Global functional atlas 
of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol. 2009;7:e96. 
[PubMed: 19402753] 

[16]. Mosca R, Ceol A, Aloy P. Interactome3D: adding structural details to protein networks. Nat 
Methods. 2013;10:47–53. [PubMed: 23399932] 

[17]. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: 
protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 
2013;41:D808–15. [PubMed: 23203871] 

[18]. Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, et al. The BioGRID 
interaction database: 2019 update. Nucleic Acids Res. 2019;47:D529–D41. [PubMed: 30476227] 

[19]. Sledzieski S, Singh R, Cowen L, Berger B. D-SCRIPT translates genome to phenome with 
sequence-based, structure-aware, genome-scale predictions of protein-protein interactions. Cell 
Syst. 2021;12:969–82 e6. [PubMed: 34536380] 

[20]. Dosztanyi Z. Prediction of protein disorder based on IUPred. Protein Sci. 2018;27:331–40. 
[PubMed: 29076577] 

[21]. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: 
a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 
2011;39:D225–9. [PubMed: 21109532] 

[22]. Lasso G, Mayer SV, Winkelmann ER, Chu T, Elliot O, Patino-Galindo JA, et al. A Structure-
Informed Atlas of Human-Virus Interactions. Cell. 2019;178:1526–41 e16. [PubMed: 31474372] 

Petrey et al. Page 10

J Mol Biol. Author manuscript; available in PMC 2023 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[23]. Broyde J, Simpson DR, Murray D, Paull EO, Chu BW, Tagore S, et al. Oncoprotein-
specific molecular interaction maps (SigMaps) for cancer network analyses. Nat Biotechnol. 
2021;39:215–24. [PubMed: 32929263] 

[24]. Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, et al. Protein complex 
prediction with AlphaFold-Multimer. bioRxiv. 2022:2021.10.04.463034.

[25]. Meyer MJ, Beltran JF, Liang S, Fragoza R, Rumack A, Liang J, et al. Interactome INSIDER: 
a structural interactome browser for genomic studies. Nat Methods. 2018;15:107–14. [PubMed: 
29355848] 

[26]. Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol 
Biol. 2007;372:774–97. [PubMed: 17681537] 

[27]. UniProt C. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2022.

[28]. Trudeau SJ, Hwang H, Mathur D, Begum K, Petrey D, Murray D, et al. PrePCI: A structure- 
and chemical similarity-informed database of predicted protein compound interactions. bioRxiv. 
2022:2022.09.17.508184.

[29]. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation 
sequencing data. Bioinformatics. 2012;28:3150–2. [PubMed: 23060610] 

[30]. Yang AS, Honig B. An integrated approach to the analysis and modeling of protein sequences 
and structures. I. Protein structural alignment and a quantitative measure for protein structural 
distance. J Mol Biol. 2000;301:665–78. [PubMed: 10966776] 

[31]. Cheng H, Schaeffer RD, Liao Y, Kinch LN, Pei J, Shi S, Kim BH, Grishin NV ECOD: An 
evolutionary classification of protein domains. PLoS Comput Biol 2014;10:e1003926 [PubMed: 
25474468] 

Petrey et al. Page 11

J Mol Biol. Author manuscript; available in PMC 2023 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
PrePPI’s structural modeling (SM) pipeline: Structures for query proteins, QA and QB, are 

taken from the AlphaFold Protein Structure Database [13] and parsed into domains with 

definitions from the Conserved Domain Database (CDD) [22]. Structural neighbors in the 

PDB [3] for full length protein and domain structures are obtained from the ska structural 

alignment program [31]. If structural neighbors of two query proteins appear together in a 

PDB complex, this structure defines a template, NA1:NB3, used to create a structure-based 

sequence alignment with which an interface for the query proteins, QA:QB, is evaluated 
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based on the overlap of the query and template residues [1]. The interaction is then scored 

based on a number of features [1, 2] and trained on the HINT HQ-LC database [10], as the 

positive set, and a negative set described in Methods to produce a fully connected Bayesian 

network used to evaluate the model.
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