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Single-cell transcriptomics and epigenomics
unravel the role of monocytes in neuro-
blastoma bone marrow metastasis

Irfete S. Fetahu 1,10 , Wolfgang Esser-Skala2,10, Rohit Dnyansagar2,10,
Samuel Sindelar2, Fikret Rifatbegovic 1, Andrea Bileck 3,4, Lukas Skos 3,
Eva Bozsaky 1, Daria Lazic1, Lisa Shaw 5, Marcus Tötzl 1, Dora Tarlungeanu1,
Marie Bernkopf 1, Magdalena Rados1, Wolfgang Weninger5,
Eleni M. Tomazou 1, Christoph Bock 6,7, Christopher Gerner 3,4,
Ruth Ladenstein 8,9, Matthias Farlik 5, Nikolaus Fortelny 2,11 &
Sabine Taschner-Mandl 1,11

Metastasis is the major cause of cancer-related deaths. Neuroblastoma (NB), a
childhood tumor has been molecularly defined at the primary cancer site,
however, the bone marrow (BM) as the metastatic niche of NB is poorly
characterized. Here we perform single-cell transcriptomic and epigenomic
profiling of BM aspirates from 11 subjects spanning three major NB subtypes
and compare these to five age-matched and metastasis-free BM, followed by
in-depth single cell analyses of tissue diversity and cell-cell interactions, as well
as functional validation. We show that cellular plasticity of NB tumor cells is
conserved upon metastasis and tumor cell type composition is NB subtype-
dependent. NB cells signal to the BM microenvironment, rewiring via macro-
phage mgration inhibitory factor and midkine signaling specifically mono-
cytes, which exhibit M1 and M2 features, are marked by activation of pro- and
anti-inflammatory programs, and express tumor-promoting factors, reminis-
cent of tumor-associated macrophages. The interactions and pathways char-
acterized in our study provide the basis for therapeutic approaches that target
tumor-to-microenvironment interactions.

Neuroblastoma (NB) accounts for 15% of childhood cancer-related
deaths, where >90% of metastatic stage (stage M) NB tumors dis-
seminate to the bone marrow (BM), which acts as a site for disease
relapse and progression1–4. Genetic NB tumor heterogeneity and

plasticity have been suggested to contribute to differentiation or
metastasis and relapse, serving as intrinsic oncogenic drivers5–8. Main
genetic factors involved in disease onset and progression include
amplification of MYCN (MNA), mutation of TP53, amplification or
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mutation of ALK and other Ras/MAPK pathway genes, and dysregula-
tion of telomere maintenance via rearrangements of TERT or alter-
native lengthening of telomeres (ALT), which is often associated with
mutated or truncated ATRX (ATRXmut)9–14. However, recent whole-
genome sequencing studies have identified a scarcity of recurrent
somatic alterations15, but show that a subgroup of metastatic NB is
rather defined by large segmental chromosomal aberrations16 (herein
referred to as sporadic).

Numerous studies in recent years17–23 have focused in defining cell
types and lineage trajectories of the developing adrenal medulla,
aiming to uncover the cell of origin in NB, which arises from neural
crest (NC)-derived sympatho-adrenal progenitor cells at different
stages during embryonic development of the sympathetic nervous

system24. Although themajority of tumor cells in primary NB resemble
healthy sympathoblasts, especially in untreated and low-risk
tumors19,21, some tumor cells in pretreated and high-risk cases have
shown enriched signatures of chromaffin cells and their progenitors,
i.e., Schwann cell precursors (SCP), but also of mesenchymal and NC-
like cells, suggesting that their abundance and differentiation state is
associated with prognosis21. Immune cells within the tumor micro-
environment have been shown to carry either tumor promoting or
suppressing activities. Studies of primary NB tumors found increased
levels of T-, NK, and dendritic cells in the tumor microenvironment of
low-risk NB25–27 compared to high-risk NB28,29. Previous studies apply-
ing tissue imaging and bulk transcriptomics link myelocytes with
inflammatory signatures30–35. A comprehensive characterization of the
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immune microenvironment and crosstalk with tumor cells at the
metastatic site remains elusive.

Recently, the use of single-cell technologies have emerged as
powerful tools to comprehensively characterize cellular states within
healthy and diseased tissues36. These approaches have been applied to
characterize the tumor heterogeneity, along with the tumor micro-
environment, of primary NB tumors19–21,37, and the composition of
adult human BM in normal and disease settings has been investigated,
e.g., in leukemia and bonemetastases in prostate cancer38–42. However,
such approaches have yet to be deployed across different NB sub-
groups, i.e., MNA, ATRXmut, and sporadic at the BM, the metastatic
niche of NB. Here, we apply single-cell ATAC-sequencing (scATAC-seq)
and single-cell RNA-sequencing (scRNA-seq) across consensus NB
subgroups in tandem with proteomics and functional assays to: (i)
study differences in cellular plasticity acrossNB subtypes inmetastatic
and primary tumors, (ii) investigate interactions between tumor cells
and the BM microenvironment, and (iii) unravel metastasis-induced
alterations in the BM.

We find that NB subgroups determine cell type composition, and
that tumor phenotype is conserved uponmetastasis. NB cells primarily
interact with myeloid cells, which present with M1 and M2 features,
indicated by aberrant pro- and anti-inflammatory core TF regulatory
loops, pro-differentiation, and reduction of cell cycle genes as well as
expression of tumor-promoting factors. Collectively, these data pro-
vide insights into the molecular and cellular architecture of NB across
all subgroups, as well as with the potential to inform future studies
aimed at improving patient outcomes.

Results
The single-cell atlas of neuroblastoma bone marrow metastasis
We integrated genome-wide scRNA-seq and scATAC-seq profiling in
BM samples originating from benign tumors (n = 5) without BM
metastases (ganglioblastoma and ganglioneuroma), herein defined as
controls, and 11 samples acrossmetastatic NB subtypes:MNA, ATRXmut,
and sporadic (lacking either alteration) (Fig. 1a). Each tumor sample
was molecularly and cytogenetically characterized (Supplementary
Table 1), substantiating subtype classification. scRNA-seq yielded a
total of 80,789 single cells with amedianof 1278 genes/cell (Fig. 1b and
Supplementary Data 1). Following integration and clustering of the
scRNA-seq data (Supplementary Fig. 1a), cells were classified using five
reference datasets (Fig. 1c). This yielded seven major cell types, com-
prised of various types of immune cells: T-cells, NK-cells, B-cells,
myeloid cells, and plasmacytoid dendritic cells, followed by erythroid
cells and stem cells, which were supported by expression of canonical

marker genes (Fig. 1d)43–47. Additionally, we identified a cluster of NB
cells, which was (i) classified as neurons, (ii) expressed key NB
markers48,49, and (iii) was absent in control samples (Fig. 1b–d). An
unspecified cell cluster consistingof 22 cellswasdefined as “other” and
was excluded from further analysis (Fig. 1b). To further confirm the
demarcation betweenmicroenvironment and tumor cells, we used two
complementary strategies. First, we calculated the tumor infiltration
rates based on the evaluation of tumor markers GD2 and L1CAM by
flow cytometry (see gating strategy Supplementary Fig. 1b), which
were in concordance with the scRNA-seq data assignments (Supple-
mentary Fig. 1c and Supplementary Table 1). Second, we inferred copy
number variants (CNVs) based on scRNA-seq data, which were present
in NB cells (Supplementary Fig. 1d) and absent in non-NB cells (Sup-
plementary Fig. 1e). The scRNA-seq-based CNV calls were validated
using bulk tumor profiling by SNP-arrays (Fig. 1e, Supplementary
Data 2), further corroborating our tumor cell assignment.

The cellular landscape of neuroblastoma cells in the bone mar-
row metastatic niche
Previous studies in primary tumors have described two transcriptional
profiles of NB cells, a committed (nor-) adrenergic and an undiffer-
entiated mesenchymal/neural crest-like (NCC-like) cell type48,49. Our
data show that metastatic NB cells are primarily defined by a nora-
drenergic and, to some extent, also an adrenergic signature, albeit the
expression of these markers was variable across patients (Fig. 2a,
Supplementary Fig. 2a). However, in our sample sets, at the resolution
of this study, we did not detect NB cells with a pronounced
mesenchymal or NCC-like signature, given that the top 5% of cells with
the highest mesenchymal or NCC-like signature score lacked NB-
typical marker genes and were present in non-NB cell clusters (Sup-
plementary Fig. 2a–c). Moreover, comparison of metastatic NB cells to
adrenal medulla revealed that MNA tumors primarily consist of cells
resembling neuroblasts, cycling neuroblasts, and bridge cells. In con-
trast, non-MNA tumors were characterized by the presence of late
neuroblasts and chromaffin cells (Fig. 2b). Leveraging published
scRNA-seq data of primary tumors20, we show that BM metastases
display tumor cell phenotypes comparable to the primary site, which
were reported in21 (Fig. 2b, Supplementary Fig. 2d). Correlation ana-
lysis of gene expression in primary and metastatic NB showed that
MNA tumors cluster together, irrespective of the tumor site. ATRXmut

and sporadic subtypes, form a separate cluster compared to MNA
tumors, further substantiating their divergent biology. Moreover, they
are marked by transcriptional differences between primary and
metastatic tumors (Fig. 2c, Supplementary Fig. 2e). Together, our data
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show that phenotypic plasticity is conserved upon metastasis and
differs in MNA patients compared to ATRXmut and sporadic NB sub-
types, the latter two showing more pronounced transcriptional chan-
ges in the metastatic niche compared to the primary site.

Interaction of neuroblastoma cells with the bone marrow
microenvironment
To elucidate the crosstalk and communication pathways between NB
and BM cell communities, we next inferred interactions between pairs
of cells based on gene expression of annotated receptor-ligand pairs50.
This revealed that NB cells express ligands, which are recognized by
myeloid cells, and to a lesser extent by NK cells and plasmacytoid
dendritic cells, suggesting adirect communication fromNBcells to BM

cells, while communication from the microenvironment towards NB
cells was marginal (Fig. 3a). Next, employing curated annotations for
ligand-receptor pairs, we identified the principal communication
pathways, whichweremidkine (MK),macrophagemigration inhibitory
factor (MIF), and pleiotrophin (PTN), and defined the molecules
mediating interactions of NB cells to themicroenvironment (Fig. 3b, c,
Supplementary Data 3). In the MIF pathway, NB and stem cells are the
main sources ofMIF andpredominantly communicate via this pathway
with stem cells, myeloid, B-cells, and plasmacytoid dendritic cells, and
to a lesser extent with NK and T-cells (Fig. 3d). Similarly, in the MK
pathway, NB cells predominately drive communicationwith erythroid,
stem cells, and NK-cells, followed by plasmacytoid dendritic cells and
myeloid cells, and to a lesser extent with B and T-cells (Fig. 3e).
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Furthermore, our data show that while tumor-derived MIF mostly acts
in a paracrinemanner on the BMmicroenvironment,MK also acts in an
autocrine fashion on NB cells (Fig. 3d, e, Supplementary Fig. 3a, b). We
observed a dominant crosstalk between NB and myeloid cells, where
MIF signaling was mainly mediated by CXCR4, CD44, and CD74
(Fig. 3b, c, f), whereas MK signaling was primarily mediated through
theMDK-NCL andMDK-LRP1pairs (Fig. 3b, c, g). BothMIF andMKwere
also upregulated onprotein level inNB tumors and cell lines compared
to controls, and receptor expression was high on resting and activated
monocytes (Fig. 3h, i). To experimentally test the interactions of NB
with myeloid cells, we measured secreted levels of MIF and MK pro-
teins in the supernatants of NB cell lines, peripheral blood mono-
nuclear cells (PBMCs), and co-cultures ofNB cellswith PBMCs, either in
direct contact or through a trans-well membrane. Levels of MIF were
comparable between NB cell lines and PBMC controls, however, direct
co-culturing resulted in elevated levels ofMIF protein secretion, which
was cell-cell contact-dependent (Fig. 3j). Levels of MK were higher in
NB co-cultures compared to the PBMC cultures alone (Fig. 3j).
Expression of cell surface receptors, CD44, CD74, CXCR4, LRP1, and
NCL was determined by flow cytometry in CD14+ CD16+ and
CD14−CD16+myeloid cells, aswell asGD2+NBcells. All receptorswere
high in the CD14+ CD16+ PBMC population and were marked with
significant differences between control group (PBMCs) and co-
cultured settings (direct and trans-well) (Fig. 3k). The expression of
these receptors was low or absent in the CD14− CD16+ population and
did not show significant differences in co-cultures (Fig. 3k). Expression
of CXCR4 and NCL was the highest in NB cells only (CD45− GD2+)
compared to all other populations, which is in line with previous
reports51,52. Moreover, the expression of CD44 and LRP1 was higher in
co-cultured cells compared to control cells (Fig. 3k). Together, our
data suggest that NB cells interact primarily with CD14+ CD16+ mye-
loid cells in the BM niche through paracrine MK and MIF, and these
interactions are mediated by CD44, CD74, CXCR4 and LRP1, NCL
receptors, respectively.

Immune cell dynamics in patients with bonemarrowmetastatic
neuroblastoma
To assess the impact of NB tumor infiltration on the BM micro-
environment, we next investigated the composition of the BM micro-
environment inMNA, ATRXmut, and sporadic NB compared to controls.
First, we assessed changes in cell type abundances, which revealed an
enrichment inT- andNKcells, and adepletionof B- andmyeloid cells in
NB metastases compared to controls. Other cell types displayed mar-
ginal differences between NB patients and controls (Fig. 4a, Supple-
mentary Fig. 4a). Second, gene expression analysis revealed an overall
downregulation of gene expression in metastatic NB compared to
controls, which was evident in all cell types, except myeloid cells
(Supplementary Fig. 4b, Supplementary Data 4). Correlation analysis

showed that throughout the different BM microenvironment cell
communities similar changes occur in ATRXmut and sporadic NB sub-
types versus control, while microenvironment cells in the MNA sub-
type are distinct (Fig. 4b), a pattern reminiscent of the correlations
observed in metastatic NB cells (Fig. 2c). Gene set enrichment analysis
revealed enrichment for several inflammation-associated pathways,
including TNFα and INFγ signaling, and upregulation of related genes
e.g.,NFKB1, IL1B, SOD2,HLA-A, andHLA-DR in all subgroups (Fig. 4c, d).
These changes occurred predominantly in B- and myeloid cells and
represent typical M1-like features. In contrast, E2F and MYC targets,
regulating cell cycle and proliferation, and their associated genes, e.g.,
PCNA, MKI67, and CDK4 were depleted/downregulated. Moreover,
myeloid cells were characterized by hypoxia and epithelial to
mesenchymal transition signatures (Fig. 4c, d, Supplementary Fig. 4c,
Supplementary Data 5), indicative of an M2-like phenotype53, which
conveys early tumor progression, invasiveness, and resistance to
chemotherapy54. Further investigation of myeloid subsets by sub-
clustering into CD14+ classical and CD16+ non-classical monocytes,
myeloid dendritic cells, and other myeloid cells revealed that the
above-described pathways displayed similar trends across myeloid
subtypes (Supplementary Fig. 5a–c, Supplementary Data 6). The dif-
ferences between control and NB, as well as within NB subtypes, were
most significant in CD14+ CD16−monocytes, marked by expression of
typical M1 (CXCL2) and M2 (CD163, TIMP1, and EREG) markers, how-
ever, lacked expression of key macrophage markers (Supplementary
Fig. 5b–f, Supplementary Data 7). Proteome data from primary
monocytes and cell lines exhibitingM1 andM2 phenotypes, confirmed
that BM metastasis-associated monocytes display M1 (elevated levels
of NFKB1, IL1B, SOD2) and M2 (low levels of PCNA, MCM5) features
(Fig. 4e, Supplementary Fig. 5f). Further characterizationof patient BM
metastases compared to control BM using multiplex imaging showed
higher levels of CD14 (TLR4 binding LPS) and the β1 integrin CD29,
mediating invasion in monocytes (Fig. 4f). Interestingly, we noted that
protein levels ofMHC class I and IImembers (HLA-A andHLA-DR) were
lower when NB-cells were present (Fig. 4g). Cultivation experiments of
NB cells with PBMCs demonstrated that in the CD45+ population,
monocytes in direct co-cultures with NB cells were marked by high
secretion of inflammatory M1 cytokines, INFγ, TNFα, IL-1β and M2
cytokines, IL-10 and TGFβ as well as a CD163+CD86dim phenotype, in
line with M2-like cultures (stimulated with IL-4 and IL-10). This was in
stark contrast toM1-like cultures (stimulatedwith IFNγ and LPS),which
exhibited a predominantly CD163dimCD86high phenotype. Further-
more, monocytes co-cultured through a trans-well with NB cells dis-
played an increase in the fraction of CD14+ CD16+ population,
however, again exhibiting an M2-like phenotype as marked by higher
expression of CD163 (Fig. 4h–j). Finally, expression levels ofMHC class
I and II markers show that overall PBMCs co-cultured with NB cells
display similar levels as under M2-like conditions (Fig. 4j). These data

Fig. 3 | Cell-cell communication analysis of the NB tumors with the BM
microenvironment. a Number of ligand-receptor interactions of metastatic NB
cells with the BM microenvironment. b Relative contribution of each ligand-
receptor pair to the overall communication network. c Ligand-receptor pairs and
their relative communication score in each cell type interaction. d, e Relative
importance of each cell type based on the computed four network centrality
measures ofMIF andMK signaling networks, receptively. f, gRNAexpression levels
of ligands and receptors involved in the MIF and MK pathway, respectively, in
individual patients. h–i Label-free protein quantitation of MIF and MK in gang-
lioneuroma (GNM, n = 6 biologically independent samples), primary NB tumors
(NB-TU, n = 3 biologically independent samples), human mesenchymal stem cells
(hMSC, n = 3 independent experiments), and NB cell lines (n = 3 biologically inde-
pendent samples), and of CD44, CD74, LRP1, and NCL in primary monocytes sti-
mulated with LPS (n = 3 independent experiments) and corresponding controls
(n = 3 independent experiments). Data were subjected to two-tailed unpaired Stu-
dent’s t test forMIF (GNM vs. NB-TU, p =0.46 and hMSC vs. NB-CL, p =0.0025) and

MK (GNM vs. NB-TU, p =0.0005 and hMSC vs. NB-CL, p =0.0022) or two-tailed
paired Student’s t test (CD44, p =0.022; CD74, p =0.027; LRP1, p =0.017; NCL,
p =0.23). j Secreted levels of MIF and MK as determined by ELISA in cell culture
supernatants of CLB-Ma (n = 4 independent experiments for PBMCs, n = 5 inde-
pendent experiments for all the other conditions) and CHLA90 (n = 2 independent
experiments for PBMCs, n = 3 independent experiments for all the other condi-
tions). k Mean fluorescence intensity (MFI) of cell surface proteins: CD44, CD74,
CXCR4, LRP1, and intracellular receptor: NCL, as determined by flow cytometry in
NB cells, co-cultured either directly with PBMCs or through a trans-well for 3 days.
Cells were gated for GD2+ CD45−, CD14+ CD16+, and CD14− CD16+ populations
(n = 3 independent experiments). Data (j–k) were subjected to one-way ANOVA and
corrected using Dunnett’s post hoc test for multiple comparisons. Asterisks indi-
cate statically significant changes compared to control (PBMC or CLB-Ma):
*p <0.05, **p <0.01, ***p <0.001. Data are presented as mean ± standard error of
the mean (h–k). Source data are provided as a Source Data file.
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highlight a type of BMmetastasis-associatedmonocyte that is induced
by NB secreted factors and to a lesser extent by cell-cell contact,
promoting tumor inflammation, mitogenic, and invasion signals.

Chromatin landscape and heterogeneity in the neuroblastoma
bone marrow metastatic niche
To investigate the underlying chromatin regulation associated with
exhibited cell type-specific gene expression in BM metastases, we
conducted scATAC-seq in the same matched patient sample set

(n = 16). The assigned cell types in the scATAC-seq data (Fig. 5a) were
concordant with the cell types identified in the scRNA-seq data (Fig. 1b
and Supplementary Fig. 6a). To confirm the cell type assignment of
scATAC-seq data, we investigated the accessibility of cell type-specific
marker sets and lineage-specific transcription factor (TF) motifs in
each cell type (Supplementary Fig. 6b). Integration of both scATAC-
and scRNA-seq data for the genes associatedwith affected pathways in
myeloid cells in NB patients compared to controls (Fig. 4c) revealed
that loss of gene expression for MYC and E2F targets was associated
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withpredominately closed chromatin. Interestingly, gain of expression
of genes associated with TNFα and IFNγ pathways did not always
equate with open chromatin (Fig. 5b, Supplementary Fig. 7a), which
couldbe partly attributed to peak localization. Genomebrowser tracks
of NFKB1 (TNFα pathway) and KDM2B (E2F target) highlight the dif-
ferences in chromatin accessibility between NB patients and controls
in the myeloid compartment (Fig. 5c). We inferred TF activity by motif
enrichment analysis to further stratify how the organization of acces-
sible chromatin in proximal and distal regions cooperatively acts in
tandem with these chromatin-binding proteins. This revealed that
NFκB-p65,whichmediates the actions of TNFα stimulationwas located
in distal, but not proximal promoter regions (Fig. 5d), explaining, to
some extent, the lack of correlation between scRNA-seq and scATAC-
seq data in the TNFα pathway (Fig. 5b). Furthermore, we observed
STAT3 activation, acting downstream of the M2 cytokine IL-10, where
the latter was marked by an upregulation in BM metastases (Supple-
mentary Fig. 7b, c). Similarly, co-culturing of NB cells with PBMCs
resulted in higher levels of secreted IL-10 in both direct and trans-well
conditions compared to NB cells or PBMCs alone (Supplementary
Fig. 7d).High IL-10potentially antagonizes theM1cytokine IFNγ/STAT1
signaling55 and explains the co-occurrenceofM1andM2 features in BM
metastasis-associated monocytes. Moreover, myeloid cells, regardless
of NB subtype, showed accessibility to AP-1 motifs and its dimers
belonging to the Fos (Fos, Fosl2, Fra1/2) and Jun (JunB) families, in both
promoter anddistal regions,whereasNFκB andBach1motifswereonly
accessible in the distal regions. AP-1 is a core TF driving early myeloid
lineage differentiation and deregulated expression has been reported
in a host of malignancies56. Motifs of other key TFs involved in reg-
ulation of myelopoiesis and differentiation of myeloid cells, such as
PU.1 and interferon response factors, e.g., IRF156 were marked by
repressive chromatin, in both proximal and distal regions (Fig. 5d). TF
footprinting analysis also confirmed enrichment of occupied regions
by these TF inmyeloid cells of NBmetastases compared to control BM
(Fig. 5e), suggesting reprogramming of bone marrow monocytes via
key TF modules of myeloid lineage commitment and monocyte acti-
vation. Furthermore, network analysis links these key TF modules to
open chromatin regions in genes associated with M2 polarization,
tumor growth, and metastasis, including IL-10, TIMP1, and EREG
(Supplementary Figs. 8–10). Thus, integration of scATAC-seq with
scRNA-seq links epigenetically regulated myelo-monocytic lineage
commitment and polarization with transcriptional changes resulting
from external signals provided by and through tumor cells.

Discussion
We present a single cell transcriptome and paired chromatin accessi-
bility atlas of human BM metastases in NB. We find that while muta-
tional status discriminates between healthy and cancerous cells in all
NB subtypes, gene expression distinguishes primary tumors from
metastasis in ATRXmut and sporadic NB subtypes, whereas this differ-
ence is marginal in MNA tumors. Moreover, metastatic tumors were

associated with a distortion of the immune component in the BM,
particularly of myeloid cells. NB cells signal to myeloid cells through
MK and MIF pathways and promote an inflammatory environment,
conveying a tumor-associated monocyte phenotype that is attributed
to the rewiring of key signaling/transcription factor modules of mye-
loid lineage commitment and monocyte polarization (Fig. 6). Collec-
tively, these data provide insights into the molecular and cellular
architecture of NB across all subgroups and provide the basis for a
therapeutic approach targeting tumor – myeloid cell interaction.

Investigations of the cellular origin in primary NB revealed that in
low-risk NB tumor cells resemble normal sympathoblasts, whereas
high-risk NB is marked by the presence of chromaffin-like cells and
their progenitors (Schwann cell precursors), as well as the presence of
cells with mesenchymal signatures19–21,23. Our analyses in adrenal
medulla, primary NB tumors, and BM metastases, identified neuro-
blasts, cycling neuroblasts, and bridge cells as cellular correlates in
MNA tumors, whereas non-MNA tumors were defined by the presence
of late neuroblasts and chromaffin-like cells. This suggests thatNBcells
retain their phenotypic features upon metastasis, and that cell type
composition is primarily determined by the NB subtype. Tran-
scriptionally and epigenetically, NB cells are defined as undiffer-
entiated mesenchymal cells and committed adrenergic cells48,49.
Plasticity from an adrenergic to a more undifferentiated and resistant
mesenchymal or NCC-like phenotype was observed under therapy
in vitro, and in addition, the latter was enriched in pretreated and
relapse primary tumors48,49. Our data show primarily a noradrenergic
and adrenergic profile, and apart from chromaffin-like and SCP gene
signatures, we did not detect a pronouncedmesenchymal or NCC-like
gene signature inmetastaticNB cells, albeit thesewerepresent inother
cell types. Recent studies reported the presence of cells with
mesenchymal-like gene signatures in a minor subset of peripheral
neuroblastic tumors and patient-derived xenograft mouse models57,58.
Future studies will have to show whether these cellular transitions are
dependent on cell intrinsic or other extrinsic factors and investigate
their clinical relevance.

Myeloid cell infiltration has been reported in various tumors and
is associated with poor clinical outcome59, but reports in NB are dis-
cordant regarding their role in patient prognosis. Previous studies in
NB showed that an increased infiltration ofmacrophages was inversely
correlated with poor clinical outcome30–34. However, a recent study
investigating the myeloid cell population heterogeneity in primary NB
employing scRNA-seq demonstrated a positive correlation of various
myeloid cell populations with pro-inflammatory cell states, and
improved patient survival37. These recent advancements in our
understanding of the tumor microenvironment in primary NB have
paved theway for the development of anti-GD2 immunotherapy that is
currently administered along with the conventional treatment in high-
risk NB60–62. Here, we report a decreased presence of the myeloid cells
at the metastatic niche, which was independent of NB subgroups.
Interactions of tumor cells with the BM microenvironment involve

Fig. 4 | Cellular composition of NB-infiltrated BM. a Cell type abundance in NB
subtypes (n = 4, 2 and 5 patients for MYCN amplified, ATRXmut, and sporadic,
respectively) compared to control (n = 5 patients). b Correlation analysis of gene
expression changes between NB patients and controls for BM microenvironment
cell types in NB subtypes. c Gene set enrichment analysis using MSigDB Hallmark
2020 database with genes sorted according to their log-fold change of expression
relative to the control group. p-values are based on an adaptive multi-level split
Monte-Carlo scheme as implemented in the R package fgsea. d Expression of
exemplary genes in our patient cohort for the top two enriched/depleted pathways
identified in c. e Label-free protein quantitation of targets identified in d in U937
cells (n = 3 independent experiments). f, g Protein expression in monocytes and
macrophages derived from multiplex images of neuroblastoma BM samples with
no (control, C, n = 3 patients) and high (>200 cells, n = 5 patients) NB cell infiltra-
tion. Scale bar, 45 µm. Wilcoxon–Mann–Whitney with FDR-corrected p-values: ns

not significant, **p ≤0.01, ***p ≤0.001. h Secreted levels of M1 and M2 markers in
co-cultured NB cells with PBMCs (n = 2 independent experiments). iRepresentative
FACS plots of NB cells and CD45+ populations in co-cultured NB cells and PBMCs,
and controls, alongwith PBMCs induced to acquire anM1orM2phenotypeatday3.
j Percentage (%) of cells expressing the M1 marker, CD86 or the M2marker, CD163
in CD45+, CD14+CD16+, andCD14dimCD16dimpopulations aswell as % andMFI of
MHC class I and II markers (n = 3 independent experiments). Dots show the raw
data (a, g) and boxes display the median value and 25 and 75% quartiles; the
whiskers are extended to the most extreme value inside the 1.5-fold interquartile
range. Data were subjected to two-tailed paired Student’s t test (e) or one-way
ANOVA (j, compared to control: PBMC or CLB-Ma), and corrected using Dunnett’s
post hoc test for multiple comparisons. Asterisks indicate statically significant
changes, *p <0.05, **p <0.01, ***p < 0.001. Data are presented as mean ± standard
error of the mean (j). Source data are provided as a Source Data file.
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Fig. 5 | Single cell regulatory landscape of NB-infiltrated BM. aUMAPprojection
of scATAC-seq profiles of NB and BM cell types. Dots indicate individual cells,
whereas colors indicate cell type identity. b Scatterplot of scRNA-seq and scATAC-
seq log fold changes for genes in TNFα pathways and E2F targets. c Representative
sequencing tracks for the NFKB1 and KDM2B loci show distinct pseudo-bulk ATAC-
seq peaks in the NB subtypes compared to controls. The ATAC-seq data have been
normalized with Signac60 and the scale on the y-axis was chosen for optimal
visualization of peaks for each sample.dDot plot depicting odds ratio and adjusted

p-value (calculated with hyper-geometric statistical test implemented in HOMER)
of motif enrichment in promoter and distal regions between NB subtypes (n = 4, 2
and 5 patients for MYCN amplified, ATRXmut, and sporadic, respectively) compared
to control samples (n = 5 patients). eDifferences in active binding of individual TFs
between NB subtypes inferred with footprinting analysis, where the confidence
interval represents variations between the patients of the group. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-39210-0

Nature Communications |         (2023) 14:3620 8



preferred communication with myeloid cells through the MIF/CD44/
CD74/CXCR4 and MK/LRP1/NCL axes. Monocytes present M1 and M2
features indicated by aberrant pro- and anti-inflammatory core TF
regulatory loops, pro-differentiation, and reduction of cell cycle genes
aswell as expression of tumor- andmetastasis-promoting factors, such
as TIMP1 and EREG63,64 (Fig. 6). The role of MK has been described in
physiological conditions, such as development and reproduction, as
well as in pathological conditions like melanoma, where its over-
expression leads to immunotherapy resistance by promoting

immunosuppressive myeloid cell differentiation as well as recruiting
myeloid cells to the tumor site65. Similarly, MIF has been implicated in
governing both inflammatory and tumor promoting functions in
tumor-associated macrophages. In addition, MIF expression was
higher in poorly differentiated NB, which led to increased MYCN
expression in these tumors66,67. The receptors identified in this study
have been under intense investigations in recent years as emerging
therapeutics targets in various tumors. Indeed, small molecule inhi-
bitors and antibodies against MIF and anti-CD74 antibody-drug-
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Fig. 6 | Schematic illustration of the main findings and conclusions. The figure depicts interactions between NB and myeloid cells in the bone marrow compartment,
which are mediated through the MIF (Macrophage Migration Inhibitory Factor) and MK (Midkine) pathways. M, MYCN amplified; A, ATRXmut; S, sporadic.
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conjugates are currently in phase I trials in autoimmune diseases and
leukemia68.

In conclusion, our work provides a cellular atlas of NB across all
subgroups that defines the cellular states underlying each NB sub-
group, disentangling determinants of intra- and inter-tumoral hetero-
geneity. Importantly, the ligand/receptors pairs identified in our study
play pleiotropic roles in normal and disease settings and offer mole-
cular targets for a therapeutic opportunity by disrupting tumor-to-
microenvironment communication or monocyte polarization in the
BM metastatic niche.

Methods
Human material
All patient material (Supplementary Table 1) used in this study was
obtained from the CCRI Biobank after written informed consent was
obtained for the use of left-over samples for research, including
genetic analysis, from patients and/or their parents/guardians/legal
representatives. Inclusion criteria: male and female patients aged 0 to
18 years with clinically, histologically, and biologically confirmed high-
risk neuroblastoma with bone marrow metastasis or gang-
lioneuroblastomaor ganglioneuromawith nodetectable bonemarrow
metastasis. Ethical approval for the CCRI Biobank and use of bone
marrow aspirates and clinical data was obtained from the local insti-
tutional review board of the Medical University of Vienna (EK1216/
2018, EK1853/2016). Peripheral blood of healthy donors was collected
after obtaining informed written consent and approval of the local
institutional reviewboardof theMedicalUniversity of Vienna (EK 1150/
2015). Patients were not compensated for study participation. Patients’
sex was recorded, but not used to disaggregate the data, due to the
limited number of patients and lack of statistical power. Gender was
not assessed since NB is an early childhood tumor. Fresh bonemarrow
aspirates were collected in heparin or EDTA blood collection tubes at
the time of diagnosis. Mononuclear cells were isolated by density
gradient centrifugation as described previously4 and cryopreserved in
liquid nitrogen. Due to the limited sample size of biological materials
collected from patients these materials are not available to be shared.
The NB cell line, CLB-Ma was kindly provided by Dr. Valerie Combaret
(Centre Leon Berard, France) and CHLA90 by the Children’s Oncology
Group Cell Line and Xenograft Repository and their identity was ver-
ified by SNParray or genome-wide sequencing analysis. The U937 cell
line has been obtained from ATCC and authenticated using STR pro-
filing. Cell lines routinely tested negative for the presence of myco-
plasma, which was performed using a mycoplasma detection kit
(MycoAlert, Lonza).

Fluorescence-activated cell sorting (FACS) for scRNA-seq and
scATAC-seq
Mononuclear cells of bone marrow aspirates were thawed and then
resuspended inRPMImediumcontainingDNAse I (Roche), followedby
a wash with cold 0.1% bovine serum albumin (BSA, Sigma) in phos-
phate buffered saline (PBS). Cells were then stained with the following
antibodies (Supplementary Table 2): CD34, CD45, GD2 (kindly pro-
vided by Prof. Handgretinger, University of Tübingen), and L1CAM
(CD171) in PBS/BSA 0.1% for 10min at 4 °C. Finally, cells were stained
with DAPI (Sigma) for 5min at 4 °C and were passed through a 70 µm
cell strainer into FACS tubes in PBS/BSA 0.1%. Acquisition and sorting
of live cells were performed with FACSAria and the DIVA Software
version 8.0 (Becton Dickinson). Sorted single cells were split into
halves and were taken forward for scATAC-seq and scRNA-seq
processing.

Single-cell ATAC-sequencing nuclei isolation and library
preparation
Nuclei isolation from bone marrow single cells was performed
according to a 10xGenomics, Inc. protocol (CG000212). Briefly, cells in

PBS/BSA 0.1% buffer were centrifuged for 5min at 4 °C, followed by
incubation with 0.1x lysis buffer for 3min on ice. Cells were then
washed with cold 1x wash buffer and resuspended in diluted nuclei
buffer to generate a nuclei stock concentration corresponding to
10,000 targeted nuclei recovery. Nuclei transposition and down-
stream library generationwere performed using ChromiumSingle Cell
ATACReagent Kits User Guide v1.1 (10x Genomics, Inc.) following their
recommended protocol. Quality and concentration of libraries were
determined by TapeStation (Agilent Technologies) and Qubit Fluoro-
metric Quantification (Thermo Fisher Scientific). Samples were then
normalized, pooled together, and sequenced (2x50bp) in NovaSeq
(Illumina).

Single-cell RNA-sequencing library preparation
Bone marrow single cells were taken forward for library generation
using the Chromium Next GEM Single Cell 3ʹ Reagent Kits v3.1 (10x
Genomics, Inc.) following their recommended protocol. In brief,
10,000 cells were used as input for the Gel Beads in-Emulsion (GEM)
generation, where cDNA is generated and barcoded, followedby cDNA
amplification and library construction. Quality and concentration of
libraries were determined by TapeStation (Agilent Technologies) and
Qubit Fluorometric Quantification (Thermo Fisher Scientific). Samples
were then normalized, pooled together, and sequenced (2x50bp) in
NovaSeq (Illumina).

Copy number profiling by high-density single nucleotide poly-
morphism array (SNPa)
SNPa (Cytoscan HD, Thermo Fisher Scientific) data were generated
during clinical molecular diagnostics from the corresponding primary
tumor or, if available, the bonemarrow sample that was processed for
scRNA-seq. Metastatic tumor cells in the bone marrow were enriched
by MACS sorting for GD2 as described previously4. DNA was extracted
from purified bone marrow metastatic NB cells or fresh frozen tumor
pieces and 50–200ng DNA was used for SNPa analysis as described
before4. Data analysis and CEL files were processed using ChAS 4.3
(Thermo Fisher Scientific). Copy number (log2 ratio) and bi-allele fre-
quency trackswerevisualized andpredicted genomic segments (gains,
losses, copy number) were manually curated using the IGV browser
and plug-in VARAN-GIE69. TDF files were converted to BEDGRAPH
format using IGV v2.9.4, and the logrr values in the latter files were
directly plotted.

Proteome data generation and analysis
We leveraged published data sets by7,70 and re-analyzed the pro-
teomics data of ganglioneuroma (GNM), primary NB tumors (NB-TU)
and NB cell lines (NB-CL) as well as of human mesenchymal stem cells
(hMSC). For the proteomic analysis of control and activated primary
monocytes, peripheral bloodmononuclear cells (PBMC) were isolated
following Ficoll-Paque protocol from fresh blood of healthy donors.
Next, washed PBMCswere subjected tomagnetic-activated cell sorting
using a positive selection kit (CD14 microbeads MACS, Miltenyi) to
isolate the monocyte fraction following the recommended protocol.
Monocyte population puritywasdetermined to be >92% through FACS
using a monoclonal antibody against human CD14 (clone 61D3, PerCP
conjugated, Thermo Fisher Scientific). Monocytes were cultured in
IMDM medium (GE Healthcare) supplemented with 10% fetal calf
serum (GE Healthcare), 10ug/mL gentamycin (Sigma Aldrich), and
1.25ug/mL amphotericin B (Sigma Aldrich). To induce inflammatory
response, monocytes were treated with 100 ng/mL LPS (Lipopoly-
saccharides from Escherichia coli 055:B5, γ-irradiated, Sigma-Aldrich)
for 24 h. Isolation of cytoplasmic proteins, subsequent enzymatic
protein digestion, as well as LC-MS analysis was performed as descri-
bed before71. In brief, for the LC-MS/MS analysis of peptide samples
derived from control and activated primary human monocytes, a
DionexUltiMate 3000NanoLC systemwasused,whichwascoupled to
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a Q Exactive Orbitrapmass spectrometer, equipped with a NanoSpray
ion source (Thermo Fisher Scientific, Austria). Dried peptides were
reconstituted in 5 µl 30% formic acid, containing the following syn-
thetic peptides: Glu1-fibrinopeptide B, EGVNDNEEGFFSAR; M28,
TTPAVLDSDGSYFLYSK; HK0, VLETKSLYVR; HK1, and VLETK(ε-AC)
SLYVR were employed as quality controls. Samples were then further
diluted with 40 µl mobile phase A. To preconcentrate the sample,
peptides were loaded on a C18 2 cm× 100μm precolumn following
separation using a 50 cm× 75μm PepMap100 analytical column
(Thermo Fisher Scientific). The flow rate was set at 300 nl/min and the
injection volumewas 10μl. To achieve gradient elution of the peptides
we increased the mobile phase B (79.9% acetonitrile, 20% H2O, 0.1%
formic acid) from 8% to 40%, with a total chromatographic run time of
135min, which included washing and equilibration. Mass spectro-
metric resolution on the MS1 level was set to 70,000 (at m/z = 200)
with a scan range from 400 to 1400m/z. The 12 most abundant pep-
tide ions were selected for fragmentation at 30% normalized collision
energy and analyzed in the Orbitrap at a resolution of 17,500 (at
m/z = 200)71.

To obtain M1- and M2-like macrophages, U937 cell line was cul-
tured in RPMI medium (1X with L-Glutamine; Thermo Fischer Scien-
tific) supplemented with 1% Penicillin/Streptomycin (Sigma-Aldrich)
and 10% Fetal Calf Serum (FCS, Sigma-Aldrich). Induction of anM1-like
phenotype was achieved by adding first 100 ng/mL Phorbol 12-
myristate 13-acetate (PMA≥ 99%, Sigma-Aldrich) for 48 h, followed
by the addition of 100ng/mL LPS (Lipopolysaccharides from Escher-
ichia coli 055:B5, γ-irradiated, Sigma-Aldrich) for additional 48 h. In
contrast, M2-like macrophage differentiation of U937 cells was
achieved by first adding 100 ng/mLPMA for 24 h. Afterwards, 50ng/mL
M-CSF (ImmunoTools) were added to the culture media for a total of
144 h. Cells were then incubated in fresh media containing 20 ng/mL
IL-4 (ImmunoTools) for another 24 h. After differentiation,M1- andM2-
like macrophages were washed twice with PBS and further incubated
with 3mL of serum free RPMI for 4 h. Thereafter, supernatants were
precipitated using 12mL cold EtOH (abs. 99%, −20 °C; AustroAlco) and
cells were lysed in 200 µL of 4% SDC buffer containing 100mM Tris-
HCl (pH 8.5), immediately heat-treated at 95 °C for 5min, and ultra-
sonicated. All samples were stored at −20 °C until further processing.
For enzymatic protein digestion, an adapted version of the EasyPhos
workflow was applied72. Briefly, 20 µg of protein was reduced and
alkylated simultaneously using 100mM TCEP and 400mM 2-CAM,
respectively, before a Trypsin/Lys-C mixture (1:100 Enzyme to Sub-
strate ratio)was added for 18 h at 37 °C. For desalting, peptide solution
was first dried to approximately 20 µL, mixed with loading buffer
containing 1% TFA in isopropanol and loaded on SDB-RPS StageTips.
After washing thoroughly, peptides were eluted with 60% ACN and
0.005% ammonium hydroxide solution, dried and stored at −20 °C
until LC-MS analyses. LC-MS analysis and data processing was per-
formed as described previously73. In brief, we used a Dionex UltiMate
3000Nano LC system (ThermoFisher Scientific) coupled to a timsTOF
Pro mass spectrometer (Bruker), equipped with a captive spray ion
source run at 1600V. Dried peptides containing four synthetic pep-
tides [Glu1-fibrinopeptide B, EGVNDNEEGFFSAR; M28, TTPAVLDSDG-
SYFLYSK; HK0, VLETKSLYVR; HK1, VLETK(ε-AC)SLYVR] were
processed as described above. 5 µl of this peptide solution were con-
centrated on a pre-column (2 cm× 75μm C18 Pepmap100, Thermo
Fisher Scientific) at a flow rate of 10μl/min using mobile phase A
(99.9% H2O, 0.1% FA). The subsequent chromatographic separation
was achieved on an analytical column (25 cm× 75 µm, 25 cm Aurora
Series emitter column, IonOpticks) by applying a flow rate of
300nL/min and using a gradient of 7% to 40% mobile phase B (79.9%
ACN, 20%H2O, 0.1% FA) over 95min, resulting in a total LC run time of
135min, including washing and equilibration steps. The timsTOF Pro
mass spectrometer was operated in the Parallel Accumulation-Serial
Fragmentation (PASEF) mode. Trapped ion mobility separation was

achieved by applying a 1/k0 scan range from 0.60 to 1.60V.s/cm2,
resulting in a ramp time of 166ms. All experiments were performed
with 10 PASEF MS/MS scans per cycle, leading to a total cycle time of
1.88 s. MS and MS/MS spectra were recorded using a scan range (m/z)
from 100 to 170071.

Multiplex immunofluorescence imaging and marker
quantification
Differential expression analysis was performed on multiplex imaging-
based single-cell data35 of monocytes and macrophages derived from
neuroblastoma bone marrow samples. Briefly, multi-epitope ligand
cartography is based on repetitive cycles of antibody staining and
photobleaching. After system start, four fields of view are selected and
calibration (brightfield and darkframe) images are acquired. Prior to
every staining and photo-bleaching cycle with the acquisition of the
corresponding fluorescence tag and post-bleaching image, the slide is
washed with PBS and a phase-contrast image is taken. Camera (Apo-
geeKX4, Apogee Instruments) and light source maintain the same
position; the motor-controlled xy stage of the inverted fluorescence
microscope (Leica DMIRE2, Leica Microsystems; x20 air lens; numer-
ical aperture, 0.7) moves in between fields of view. Images with a
resolution of 2018 × 2018 pixels are acquired, with one pixel corre-
sponding to 0.45 µm at a 20× magnification. Protein expression,
represented by the mean of the 20% highest pixel intensities was
comparedbetween cells derived from sampleswithout andwith tumor
infiltration using the Wilcoxon–Mann–Whitney test with FDR correc-
tion. Data analysis and visualization was performed in python v3.9.1274

using statannot v0.2.3 (https://github.com/webermarcolivier/
statannot) and seaborn v0.11.2 packages75, respectively.

Co-culturing of NB cell lines with PBMCs
Here we employed two different NB cell lines: CLB-Ma (MYCN ampli-
fied) and CHLA90 (ATRXdel). CLB-Ma cells were maintained under
regular culturing conditions in RPMI medium (Thermo Fisher Scien-
tific), supplemented with 1% Penicillin/Streptomycin (Thermo Fisher
Scientific), 1.2% Sodium Pyruvate (PAN-Biotech), 2.8% HEPES Buffer
(PAN-Biotech), and 10% FCS (Sigma-Aldrich). CHLA90 cell line was
cultured in IMDM (Thermo Fisher Scientific) medium supplemented
with 1% Penicillin/Streptomycin (Thermo Fisher Scientific), 1.2%
SodiumPyruvate (PAN-Biotech), 2.8%HEPESBuffer (PAN-Biotech), 10%
FCS (Sigma-Aldrich), and 0.001% ITS (Insulin-Transferrin-Selenium,
Thermo Fisher Scientific). PBMCs were isolated using a density gra-
dient medium (Lymphoprep, StemCell Technologies) from fresh
blood of healthy donors. Briefly, the blood samples were diluted with
PBS (1:1) and then layered on top of the density gradient medium,
followedby centrifugation at 800× g for 25min at 22 °Cwith breakoff.
The middle layer containing the mononuclear cell fraction was care-
fully collected andwashed twicewith PBS at 300 × g for 10min at 4 °C.
After discarding the supernatant, cells were resuspended in RPMI or
IMDMmedia, respectively, andwere immediately taken forward for co-
culturing experiments. NB cells were plated directly on the culturing
dishes, followed by the addition of the PBMCs either in direct contact
with NB cells or on trans-wells (6-well cell culture inserts, PET, 0.4 um,
cellQart, Sterlitech) placed above NB cells, along with the respective
controls, PBMCs and NB cells alone, and incubated for 72 h. To sti-
mulate anM1 or M2 phenotype, PBMCs were incubated for 72 h either
with INFγ (103U/mL, PeproTech, cat#300-02) and LPS (100ng/mL,
Thermo Fisher Scientific, cat#00-4976-93) or IL-4 (20ng/mL, Miltenyi,
cat#130-093-922) and IL-10 (10 ng/mL, Miltenyi, cat#130-093-947),
respectively.

Receptor and MHC class I&II flow cytometry panels
Co-cultured cells as well as corresponding controls were harvested
using Accutase (PAN-Biotech), washed once with cold PBS/BSA 0.1%
(FACS buffer), resuspended in FACS buffer and Brilliant Stain Buffer
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Plus (BD Biosciences), and then taken forward for FACS staining. For
the receptor panel, cells were first incubated with the following
extracellular antibodies: CD14, CD16, CD44, CD45, CD74, CD86, CD184
(CXCR4), CD163, GD2, and LRP1 (Supplementary Table 2) for 15min at
4 °C. After a wash with FACS buffer, cells were fixed using Cytofix/
Cytoperm (BD Biosciences) for 20min at 4 °C, washed twice with 1x
Perm/Wash (BDBiosciences), and then incubatedwith the intracellular
antibody, NCL for 15min at 4 °C. After two washes in 1x Perm/Wash,
cells were resuspended in FACS buffer and analyzed immediately in
FACS Symphony (BD Biosciences). For the MHC class I&II panel, cells
were incubated with: CD14, CD16, CD45, CD171 (L1CAM), GD2, HLA-
ABC, and HLA-DR (Supplementary Table 2) for 15min at 4 °C, washed
once with FACS buffer, and fixed using Cytofix/Cytoperm (BD Bios-
ciences) for 20min at 4 °C. Cells were washed twice with FACS buffer
and immediately analyzed in FACS Symphony.

Determination of cytokines and ligands by ELISA
The concentrations of IL-10 (cat#ab185986), MIF (cat#ab100594), and
MK (cat#ab193761) were determined in undiluted cell culture super-
natants of co-cultured cells and their controls by ELISA, all from
Abcam. Samples were processed in duplicates following the manu-
facturer’s instructions and measured in an analyte-dependent absor-
bance at 450nm (reference wavelength: 570 nm), 2–5min after
addition of the stop solution with EnSpire Multimode Plate Reader
(PerkinElmer). Standard curves were generated in parallel for each
assay. Data were calculated by subtracting the signal from blank con-
trols as well as the signal from the media control only.

Determination of cytokines by multiplex proteome array
A multiplex proteome array (RayBiotech, cat#GS640) was used to
determine the concentration of various secreted cytokines using
undiluted cell culture supernatants of the co-cultured cells and cor-
responding controls according to themanufacturer’s protocol. Briefly,
100 µl of sample was loaded into each well and incubated for 2 h at
room temperature, followed by washes with buffers I and II. Samples
where then incubated with a biotinylated antibody cocktail for 2 h at
room temperature, washed with buffers I&II, and incubated with a Cy3
equivalent dye-streptavidin conjugated overnight at 4 °C. Samples
were washed with buffers I&II, air dried, and acquired using GenePix
4000B microarray scanner (VWR). Data were calculated by normal-
izing the signal for each protein to the average positive control signal.

Single-cell (sc)RNA-seq analysis
Unless otherwise stated, all analyses were conducted in R (v4.0.5)76.
Figures were plotted with ggplot2 (v3.3.3)77 and ComplexHeatmap
(v2.6.2)78.

Preprocessing and quality control of scRNA-seq data. Transcript
counts were obtained by processing FASTQ files with Cell Ranger
(v3.0.2, 10x Genomics, Inc.) using GRCh38 [https://www.ncbi.nlm.nih.
gov/assembly/GCF_000001405.39] as the reference genome, which
yielded an initial dataset comprising of 106,864 cells. Detailed infor-
mation on sequencing results is provided in Supplementary Data 1.
Only cells matching the following criteria (as calculated by Seurat
v4.0.079) were included for downstream analyses: >200 and <500
features, as well as <10% reads mapped to mitochondrial genes.
Moreover, doublets with a binary classification-based doublet score
>0.8 (as calculated by scds v1.6.080) were discarded. Eventually, quality
control filtering yielded a final dataset consisting of 80,789 cells. Cell-
free mRNA contamination was removed via SoupX (v1.5.0)81.

Dimensional reduction and clustering of scRNA-seq data. Raw
counts were log- and size factor-normalized and scaled, followed by
dimensional reduction via principal component analysis, as imple-
mented in monocle3 (v0.2.3.0)82. Principal components were

subsequently used as input for batch correction by matching mutual
nearest neighbors, employing the function ‘reducedMNN’ in batchelor
(v1.6.2)83. The Uniform Manifold Approximation and Projection
(UMAP) method for dimensional reduction (uwot, v0.1.10)84 was
applied to the resulting batch-corrected principal component scores.
Finally, Leiden clustering85 was performed on UMAP coordinates.
These steps were conducted via the monocle3 functions ‘align_cds,’
‘reduce_dimension,’ and ‘cluster_cells.’

Cell type classification of scRNA-seq data. Cells were classified via
SingleR (v1.4.1)86, using fine-grained labels in the following five refer-
ence datasets provided by celldex (v1.0.0): Human primary cell atlas87,
Blueprint/ENCODE88,89, Database of Immune Cell Expression90,
Novershtern hematopoietic data91, and Monaco immune data92. Fol-
lowing this initial classification of individual cells, all cells in a cluster
were annotated with a single cell type, which was determined by a
majority vote on cell ontology identifiers associated with the cell type
labels in each cluster (Fig. 1c, Supplementary Fig. 5a).

Copy number variation calling from scRNA-seq data. Copy number
variations (CNVs) were inferred from scRNA-seq data via infercnv
(v1.6.0)93. To this end, non-NB cells were labeled as normal reference
cells. The baseline expression in normal cellswas then subtracted from
both the tumor cells as well as the normal cells, yielding residual
expression values. For this calculation, a dynamic threshold for noise
filtering was applied (arguments ‘denoise = TRUE’ and ‘sd_amplifier =
1.5’ for infercnv’s ‘run’ function; Supplementary Fig. 1d, e). Subse-
quently, copy number alteration regions were predicted via a six-state
Hidden Markov Model (arguments ‘HMM=TRUE’ and ‘HMM_type = “

ie6”’). For each region, its posterior probability of alteration status was
determined by a Bayesian network latent mixture model (argument
‘BayesMaxPNormal = 0.5’; Fig. 1e, Supplementary Data 2). Regions
whose posterior probability of being in a normal state exceeded 0.5
were discarded.

Assignment of gene signature scores in scRNA-seq data. Gene sig-
nature scores (Supplementary Fig. 2a, b) were calculated from raw
counts based on the Mann–Whitney U statistic, as implemented in
Ucell (v1.0.0)94. Adrenergic and mesenchymal signatures were
obtained from Supplementary Table 2 in van Groningen et al.49, while
noradrenergic and neural crest cell-like signatures were taken from
Fig. 1h in Boeva et al.48.

Comparison to adrenal medullary cells in scRNA-seq data. Simi-
larity of NB cells to adrenal medulla cells (Fig. 2b, Supplementary
Fig. 2d)wasdetermined via SingleR (v1.4.1), using adrenalmedulla data
downloaded from https://adrenal.kitz-heidelberg.de/developmental_
programs_NB_viz/21 as reference dataset. Differentially expressed
genes between pairs of labels were detected by the Wilcoxon ranked
sum test (argument ‘de.method = “wilcox”’).

Correlationof pseudobulk scRNA-seqdata. Gene expressionprofiles
of primary and metastatic tumor cells (Fig. 2c and Supplementary
Fig. 2e)were comparedby (1) selectingNB cells in all samples thatwere
annotated as high-risk in the dataset by Dong et al.20 and all NB cells in
our dataset; (2) performing scaling normalization within each dataset
employing the function ‘multiBatchNorm’ in batchelor (v1.6.2)83, and
combining the datasets; (3) modeling per-gene variance and selecting
all highly variable genes using the functions ‘modelGeneVar’ and
‘getTopHVGs’ in scran (v1.18.5); (4) aggregating raw counts at the
sample level via the function ‘aggregateData’ in muscat (v1.4.0)95 to
obtain pseudobulk data; and (5) calculating Pearson correlation
coefficients rij (R function ‘cor’) and using these coefficients as dis-
tances 1 − rij for hierarchical clustering (R function
‘hclust(method= “complete”)’).
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Analysis of cell-cell interactions in scRNA-seq data. Cell-cell inter-
actions (Fig. 3a–e, SupplementaryFig. 3a, b)were inferred fromscRNA-
seq data via CellChat (v1.1.0)50, obtaining human ligand-receptor
interactions from the CellChatDB database.

Cell type abundances in scRNA-seq data. Changes of cell type
abundances in samples fromNBpatients compared to control samples
(Supplementary Fig. 4a) were determined by testing whether the
fractional abundance of a cell type in a patient was greater than the
fraction of this cell type in the control samples. Fisher’s exact test (R
function ‘fisher.test’) was used to obtain odds ratios and p-values.
Multiple test correction was performed using the
Benjamini–Hochberg method (R function ‘p.adjust’).

Differential gene expression and gene set enrichment analysis in
scRNA-seqdata. Genes thatweredifferentially expressedbetween the
control group and each of the NB groups or between MNA and non-
MNA tumors (Supplementary Data 4 and 7) were determined by fitting
gene-wise negative binomial mixed models using large-sample
approximation via the nebula package (v1.1.7)96 in R. Within nebula,
patients were modeled as random effects, and the tumor infiltration
was added as a fixed effect to correct for differences in tumor infil-
tration. Log-fold changes of genes that were expressed in at least 5% of
cells of the compared groups were subjected to gene set enrichment
analysis (Fig. 4c, Supplementary Fig. 5c, Supplementary Fig. 7b, and
Supplementary Data 5 and 6) as implemented in fgsea (v1.16.0)97 in R,
which estimates p-values using an adaptive multi-level split Monte-
Carlo scheme and calculated corrected p-values using the
Benjamini–Hochberg method. Gene sets comprised MSigDB_Hall-
mark_2020 and TRRUST_Transcription_Factors_2019, which were
downloaded from Enrichr98. Genes were ranked according to their log-
fold change of expression relative to the reference group. Moreover,
log-fold changes in each cell type and sample were compared by cal-
culating Pearson correlation coefficients rij (R function ‘cor’) and using
these coefficients as distances 1 − rij for hierarchical clustering (R
function ‘hclust(method = “complete”)’ as reported in Supplemen-
tary Fig. 4b.

Single-cell (sc)ATAC-seq analysis
Preprocessing and quality control of scATAC-seq data. Initial pro-
cessing of individual samples was performed using Cell Ranger ATAC
1.2.0 pipeline (10x Genomics, Inc.) and aggregated with Cell Ranger
ATAC Aggregator. Detection of open chromatin region (OCR) was
conducted with Cell Ranger ATAC. The initial preprocessing and fil-
tering of scATAC-seq data was done with Signac99. According to stan-
dard recommendations, cells with 500–25000 fragments in peak
regions and at least 25% of reads in peak region, nucleosome signal
score less than 3, and TSS enrichment score greater than 1 were
retained for further analysis (Supplementary Fig. 11a–e). This quality
control filtering yielded 71,857 cells, which were used for subsequent
analysis (Supplementary Data 8).

Normalization, imputation, and dimensionality reduction of
scATAC-seq data. Normalization of the data was donewith the Signac
method of term frequency - inverse document frequency (TF-IDF)
methodwith default settings. To account for the sparsity of the dataset
and inherent signal loss in scATACseq experiments, we performed a
non-negative matrix factorization (NMF) using coordinate descent
algorithm with scOpen that imputes accessibility scores. Next,
dimensionality reduction was performed using TF-IDF+NMF imple-
mented in scOpen100, and clustering was performed using Signac’s
FindNeighbors and FindClusters functions.

Cell type classification of scATAC-seq data. To classify cell types in
scATAC-seq data, a gene-activity matrix was inferred combining

open chromatin region 2 kb upstream of the TSS99. The R
package Ucell94 was used to calculate gene signatures for each cell
using the gene activity matrix and cell markers from PanglaoDB47,
and a study describing the bone marrow niche Baryawno et al.
2019101.

Analyses of differential open chromatin regions betweencell types
in scATAC-seq. The differential open chromatin regions for each cell
type were identified with Signac function FindMarkers. The default
parameter of min.pct (minimum percent of cells to consider) was
changed to 0.05 from0.1, considering the sparse nature of scATACseq
data. The LR (logistic regression) test was used to test for the sig-
nificance and perform multiple test corrections. Only regions with
adjusted p-value ≤0.05 were further considered for the motif analysis
as per Signac vignette titled ‘Motif analysis with Signac’ (https://
satijalab.org/signac/articles/motif_vignette.html)99 with combined
motif frequency matrix included in JASPAR2020102.

Analyses of differential open chromatin regions between NB
patient groups in scATAC-seq. The differentially accessible regions
between the microenvironment in NB patient groups and controls
were identified by fitting region-wise negative binomial mixed model
using nebula (v1.1.7)96 in R, followed by multiple test correction. The
resulting differentially accessible regions were filtered for adjusted p-
value ≤0.05 and log2FC = 1. Annotations to the differential open
chromatin regions were added with R packages TxDb.Hsa-
piens.UCSC.hg38.knownGene, org.Hs.eg.db, ChIPseeker103. The open
and close chromatin regions from each comparison were then sepa-
rately subjected to motif analysis with findMotifsGenome.pl script
from the HOMER package (version v3.0)104, which includes multiple
test correction. Only promoter regions were considered for motif
analysis (promoter region is defined as regions ±300 bp from the TSS).
From the motifs identified by the HOMER script only motifs with an
adjusted p-value < 0.05 and log_odds_ratio >05 were considered sig-
nificant and are shown in Fig. 5d.

Transcription factor footprinting. To identify the TFs bound to DNA
at the time of enzymatic cleavage we adapted footprinting analysis
with HINT-ATAC105. For each NB subtype, we combined reads from the
single cells for each cell-type cluster separately and created pseudo-
bulk ATAC-seq libraries. All footprint-supported motifs from the JAS-
PAR database were used for footprint analysis.

Integration of scRNA-seq and scATAC-seq. We applied GLUE
algorithm (Graph Linked Unified Embeddings), which uses peak
and gene proximity correlation within linear genome as prior
knowledge to integrate our scATAC-seq and scRNA-seq data
(Similar to priors in Bayesian analysis to get regulatory
inference)106. We imported scRNA-seq and scATAC-seq data in the
anndata format and filtered the dataset to features found in at least
3 cells. GLUE was run on scATAC-seq data with 100 components and
15 iterations. To map peaks to genes, we only used promoter peaks
as annotated by Gencode gencode.v40.chr_patch_hapl_scaff.anno-
tation.gtf.gz. Once the links between peaks and genes were estab-
lished, the embeddings from scRNA-seq were assigned to scATAC-
seq to deal with the sparseness of the scATAC-seq data. The cosine
similarity between the embeddings was used to evaluate the peak-
gene association strength. Neighbors of scRNA-seq and scATAC-
seq data were calculated using the cosine similarity between
embeddings. The p-values for the peak-gene associations were
obtained by comparing with a null distribution of shuffled
embeddings. The UMAPs of data integration are shown in Supple-
mentary Fig. 11f, g. Employing GLUE embeddings we then inferred
the gene regulatory network within myeloid cells (Supplementary
Figs. 8–10).
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw scRNA-seq and scATAC-seq data have been deposited in EGA and
are accessible through accession number EGAS00001006106. The
data are available under restricted access due to data privacy laws and
access can beobtainedby contacting theData AccessCommittee. Data
deposited at EGA will be made available to researchers for non-
commercial use only upon request and without a time limit. Count
matrices have been deposited in NCBI’s Gene ExpressionOmnibus and
are accessible through GEO SuperSeries GSE216176. The MELC multi-
plex imaging and single-cell data of our neuroblastoma cohort is
available at https://doi.org/10.5281/zenodo.6621045107. SNPa data and
R objects are available from https://doi.org/10.5281/zenodo.
7707614108. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium (http://www.
proteomexchange.org/) via the PRIDE partner repository
(PXD036979 and PXD036972). Source data are provided with
this paper.

Code availability
Code for performing the analyses and generating all figures is available
from GitHub (https://github.com/csbg/neuroblastoma) and has been
archived to Zenodo (https://doi.org/10.5281/zenodo.7867892)109.
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