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Abstract
In Kazakhstan, there is insufficient data on genetic epilepsy, which has its own clinical and management implications. Thus, 
this study aimed to use whole genome sequencing to identify and evaluate genetic variants and genetic structure of early onset 
epilepsy in the Kazakhstani pediatric population. In this study, for the first time in Kazakhstan, whole genome sequencing 
was carried out among epilepsy diagnosed children. The study involved 20 pediatric patients with early onset epilepsy and 
no established cause of the disease during the July–December, 2021. The average age at enrolment was 34.5 months, with a 
mean age at seizure onset of 6 months. Six patients (30%) were male, and 7 were familial cases. We identified pathogenic and 
likely pathogenic variants in 14 (70%) cases, among them, 6 novel disease gene variants (KCNQ2, CASK, WWOX, MT-CO3, 
GRIN2D, and SLC12A5). Other genes associated with the disease were SCN1A (x2), SLC2A1, ARX, CACNA1B, PCDH19, 
KCNT1, and CHRNA2. Identification of the genetic causes in 70% of cases confirms the general structure of the etiology of 
early onset epilepsy and the necessity of using NGS in diagnostics. Moreover, the study describes new genotype-phenotypic 
correlations in genetic epilepsy. Despite certain limitations of the study, it can be concluded that the genetic etiology of 
pediatric epilepsy in Kazakhstan is very broad and requires further research.
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Introduction

Epilepsy is one of the most common neurological disorders, 
which affects people of all ages, races, social classes, and 
geographic locations. Epilepsy is a chronic disease of the 
brain characterized by a persistent predisposition to the 
onset of epileptic seizures with neurobiological, cognitive, 
psychological, and social consequences [1, 2]. In a 

systematic review and meta-analysis of incidence studies, 
the pooled incidence of epilepsy was 61.4 per 100,000 
person-years, with an overall prevalence of 7.60 per 1000 
population; incidence was higher in low/middle-income 
countries than in high-income countries. Moreover, the 
incidence of epilepsy is higher in the youngest and oldest 
age groups, with a rate of 86 per 100,000 per year in the first 
year of life [3]. Despite a decrease in the prevalence of the 
disease from 1990 to 2016, epilepsy remains an important 
cause of disability and death [4].

In the pediatric population, epilepsy is a common 
neurological disorder affecting approximately 0.5 to 
1% of children [5]. According to Jaxybayeva et al. [6] in 
Kazakhstan, as of October 2020, epilepsy was diagnosed 
in 15,769 children (aged 0 to 18). Among 450 (32% of 
total hospitalizations) patients with epilepsy hospitalized 
in the Department of Pediatric Neurology of the National 
Scientific Center for Maternal and Child Health of 
“University Medical Center”; Corporate Found (CF) 
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between 2013 and 2014, 170 of them were diagnosed 
with epileptic encephalopathy [7]. Early onset epilepsy is 
associated with poor long-term psychosocial outcomes, and 
the effects persist into adulthood. People with childhood-
onset epilepsy have higher unemployment rates, lower 
educational attainment, and lower socioeconomic status 
[5, 8, 9]. According to Lepessova and Myrzaliyeva [10], a 
high prevalence of epilepsy was observed in regions with 
unfavorable environmental conditions, which emphasizes 
the socio-ecological component in the epidemiology of this 
disease among the pediatric population of Kazakhstan.

Epilepsy is considered a multifactorial disease. The 
genetic basis of some forms of epilepsy has been put forward 
for decades and was confirmed by gene mapping and the 
identification of specific mutations associated with epilepsy 
syndromes in the 1990s [11–14]. Available data suggests 
that 70–80% of epilepsy cases have a genetic cause, with the 
remaining 20–30% associated with acquired conditions such 
as ischemia, brain injury, tumors, and autoimmune diseases 
[13, 15]. A review by Wang et al. [16] identified 977 genes 
associated with epilepsy. At the same time, recent studies 
have found that genetic causes account for approximately 
30% of cases reviewed in the pediatric population [17]. 
For this reason, genetic testing is widely used today in the 
practice by epileptologists [18].

Various genetic methods could potentially be applied 
in the diagnosis of epilepsy. In general, methods such as 
cytogenetic tests, comparative genomic hybridization 
(array-CGH), and multiplex ligase-dependent amplification 
(MLPA) make it possible to diagnose about 10% of pediatric 
epilepsies and 5% of epileptic encephalopathies [19, 20], 
since most epilepsies are associated with mutations in 
individual genes. Currently, traditional Sanger sequencing, 
which allows direct determination of the nucleotide sequence 
of a region of a single gene, has been replaced by next-
generation sequencing (NGS), which allows simultaneous 
sequencing of many genes at a relatively low cost [21, 22]. 
Cohort study conducted in Munich, Germany between 2013 
and 2017 indicates that NGS allowed physicians to change 
the clinical management of 63% of patients with epilepsy 
[23]. Continuing decline in sequencing costs, the use of 
WGS is an effective strategy for the clinical diagnosis of 
early onset epileptic encephalopathy [24]. Another group 
of researchers from the USA and the UK described two new 
genes KCNT1 and PIGQ that are pathogenic in Ohtahara 
syndrome using the WGS method [25].

The first data on whole-genome sequencing in the Kazakh 
population was published by Akilzhanova et al. [26]. Later, 
a study conducted among 350 children with early epilep-
tic encephalopathies accompanied by intellectual retarda-
tion showed the need for additional funding in healthcare 
aimed at genetic research of patients with epilepsy; thus, 
only 15 (4.3%) study participants were able to undergo NGS 

in the other countries due to financial possibilities, among 
which 12 (80%) had various genetic mutations and variants 
associated with the etiology of the disease and resistance to 
therapy [7].

Thus, this study aims to identify and evaluate genetic var-
iants based on whole-genome sequencing in children with 
early epilepsy in Kazakhstan.

Materials and Methods

Study design — retrospective single-center study.

Ethical Issues

The study was approved by the local commission on bioeth-
ics of the “UMC” CF, an extract from Protocol No. 1 dated 
06/29/2021.

Study Participants

The study involved a total of 20 children from unrelated 
marriages with epilepsy of no known cause and early onset 
of the disease (according to criteria if the International League 
Against Epilepsy), hospitalized in the Department of Pediatric 
Neurology of the National Scientific Center for Maternal and 
Child Health of the CF “UMC” from July to December 2021, 
and meeting the following inclusion criteria:

•The onset of a seizures before the age of 3 years;
•The presence of epileptiform discharges on electroen-

cephalography (EEG);
•The absence of structural changes in magnetic resonance 

imaging of the brain (MRI), which may be the cause of 
epilepsy;

•Delayed psychomotor development and/or the presence 
of resistance to antiepileptic drugs and/or the presence of 
severe epileptic encephalopathy;

•Absence of anomalies found in previous genetic studies 
(karyotyping);

The criterion for exclusion from the study is the diagnosis 
in patients before or during the study period of epilepsy 
with an etiology that could explain the epileptic syndrome. 
Examples of such etiologies are the brain and meningeal 
infections, neonatal hypoxic-ischemic encephalopathy, 
neoplasms, a history of moderate to severe brain injury, and 
autoimmune diseases affecting the nervous system.

Whole‑Genome Sequencing

Genomic DNA was extracted from whole blood samples 
using the PromegaTM kit (USA) according to the manufac-
turer’s protocols. DNA libraries were prepared from 300 ng of 
genomic DNA using Illumina DNA PCR-Free Library Prep, 
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Tagmentation protocol, with the IDT Indexes for Illumina 
DNA/RNA UD Set A. DNA libraries were validated using 
the Qubit  ssDNA  Assay on the Qubit Fluorometer according 
to the standard kit protocol. Sequencing was performed on the 
NovaSeq 6000 high throughput platform using the NovaSeq 
6000 S4 Reagent Kit v1.5 (300 cycles) at the National Labora-
tory Astana.

Raw Data Preprocessing and Bioinformatics Analysis

Raw data files obtained from the Illumina NovaSeq sequencing 
platform in binary base call (bcl) format were converted to the 
fastq file format using the bcl2fastq tool. The quality of the 
generated sequences has been evaluated using FastQC v.0.11.9 
[27] and MultiQC v.1.12 [28]. Sequencing reads were aligned 
to the human reference genome (NCBI GRCh37, hg19) using 
Burrows–Wheeler Aligner v.0.7.12 [29]. Picard tools v.2.27.4 
used for sorting and marking reads duplicates. Genome 
Analysis Toolkit (GATK) v.3.8 has been used for genomic 
variant calling [30]. Genomic variants were annotated using 
ANNOVAR [31].

Interpretation of Genetic Variants

Identified genetic variants are described following the 
nomenclature guidelines of the Human Genome Variation 
Society (http:// www. hgvs. org/ mutno men). Variant interpretation 
followed the 5-level classification system recommended by the 
American College of Medical Genetics and Genomics and 
the Association for Molecular Pathology (ACMG/AMP) and 
was conducted on the Franklin platform (Franklin by Genoox, 
Genoox, USA). All possible options identified during the study 
were evaluated using a three-stage analysis:

1.Variants filtered by their frequency in population 
control databases;

2.Literature and database review to search for the role 
of each identified variants in the etiology and course of the 
disease;

3.Evaluation of the pathogenicity of all identified variants 
in individual clinical cases.

The following databases are used for variant annotation: 
OMIM, Human Gene Mutation Database (HGMD), and 
ClinVar. The pathogenicity of the variants will be predicted 
using the Polymorphism Phenotyping v2 (PolyPhen-2), 
MutationTaster, and MutationAssessor prediction 
algorithms.

Results

DNAs from total of twenty patients were sequenced on 
Illumina NovaSeq 6000 platform and the total number 
of sequenced base pairs yielded from 68,8 to 202,7 Gb 

with the an average 116 Gb per sample. The mean genome 
coverage for all samples is 35X. On average, 99.15% of 
sequencing reads have been properly mapped on a refer-
ence genome.

Twenty pediatric patients of the Pediatric Neurology 
Department of the “University Medical Center” СF with an 
early onset of epilepsy and an unclear cause of the disease 
were included in the study. Six (30%) of the patients were 
male. The age of study participants at the time of recruit-
ment ranged from 4 months to 13 years, with an average 
age of 34.5 months. Seizure onset ranged from the neona-
tal period to 3 years of age, with an average of 6 months. 
Among the probands, a burdened family history of epilepsy 
was noted in 7 cases.

Of 20 patients recruited in the current study, 7 (35%) 
presented with focal seizures, 5 (25%) with tonic-clonic 
seizures, 5 (25%) with generalized seizures, 2 (10%) with 
polymorphic seizures, and 1 (5%) with myoclonic seizures. 
Five (25%) patients in the cohort developed therapy-resistant 
seizures, among them, 3 patients were resistant to valproate, 
1 — to phenobarbital, and 1 patient was resistance both to 
phenobarbital and carbamazepine. Epileptic encephalopathy 
was diagnosed in 5 patients. Thirteen (65%) patients had 
a psychomotor delay and 10 were diagnosed with speech 
delay.

After the whole genome sequencing, pathogenic and 
likely-pathogenic genetic variants were identified in 14 
(70%) out of 20 cases. Clinical, phenotype, and genotype 
data of 14 patients with genetic etiology of epilepsy are pre-
sented in Tables 1 and 2. Clinical and phenotypic data, as 
well as row data of 6 patients without clinically significant 
variants are presented in supplementary materials.

Among 14 patients with identified pathogenic/likely 
pathogenic genetic variants, a family history of epilepsy 
was in 5 cases (cases # 1 to 5). Clinical, phenotype, and 
genotype data of five cases with family history of epilepsy 
are presented in Table 1; pedigree charts of these cases are 
presented in Fig. 1.

Previously undescribed variants were found in cases 1, 
2, 5, 6, 9, and 10 (KCNQ2, WWOX, SLC12A5, CASK, MT-
CO3, and GRIN2D genes, respectively). Case 1 is a girl, 
aged 2 years at the time of genetic analysis. For the first 
time, convulsions were registered on the second day of life. 
In this patient, the study revealed a pathogenic variant in the 
KCNQ2 gene. This variant was a 46 bp insertion followed by 
a frameshift in the exon 5.

Case 2 is a girl who had her first seizures at the age of 1 
month. During counseling, complaints were of seizures up 
to 30 times a day for 30 s. This patient was found to have 
compound heterozygous variants in the WWOX gene. Both 
genetic variants have not previously been described.

Case 5 is a girl with onset of seizures at 3 years old; how-
ever, epileptic activity on the EEG was noted earlier. The 

https://www.thermofisher.com/order/catalog/product/Q32851
http://www.hgvs.org/mutnomen
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genetic variant in the proband was represented by a missense 
mutation in the SLC12A5 gene in the heterozygous state.

Case 6 is a boy with an onset of seizures at 6 months. Two 
nucleotide substitutions (missense mutations) were found 
in the CASK gene, leading to a change in the amino acid 
sequence at position Phe767Gly.

Case 9 is a girl with no family history of epilepsy and a 
previously undescribed variant in the mitochondrial gene, 
the cytochrome C oxidase 3 (MT-CO3) gene. This girl also 
had excess subcutaneous adipose tissue, opticopathy, and 
partial atrophy of the optic disc. Seizures in this patient were 
managed by the admission of valproate.

Case 10 is a girl whose first seizure was at 7.5 months on 
the background of elevated temperature. This patient had 
previously been screened for microdeletion/microduplication 
syndrome by MLPA which was negative. In this girl, a previ-
ously undescribed and pathogenic variant was identified in 
the GRIN2D gene.

Resistance to at least one of the antiepileptic drugs was 
found in cases 4, 11, 12, and 14. Case 4 had resistance to val-
proate, but seizures were partially controlled by oxcarbazepine. 
Case 11, with a pathogenic variant in the KCNT1 gene, was 

resistant to phenobarbital and carbamazepine, while a partial 
positive response was achieved with topiramate and vigabatrin. 
Case 12 was resistant to phenobarbital as well as to low doses of 
valproate, while seizure relief was achieved by administration 
of 150 mg/day of valproate in combination with levetiracetam 
at a dosage of 100 mg/day. Case 14 initially received leveti-
racetam, but the frequency of seizures was taken into account 
until the onset of status epilepticus. This patient is currently 
receiving a combination of valproate and carbamazepine.

Discussion

The study describes the results of the first whole genome 
sequencing among children with early onset epilepsy in 
Kazakhstan. Pathogenic and likely pathogenic genetic vari-
ants were identified in 70% of cases during the study (14/20). 
This indicator was higher than in previous studies. So, in one 
study, researchers found the presence of clinically significant 
genetic mutations in 20% of patients (among 118 children 
with epilepsy) in Sweden [32]. In other studies from South 
Korea and Scotland, with more detailed inclusion criteria, 

Fig. 1  Pedigree charts of the cases with family epilepsy history (created with BioRe nder. com)

http://biorender.com
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NGS detected genetic abnormalities in 37.8% and 24% of 
patients with early-onset epilepsy, respectively [33, 34]. 
The higher percentage of clinically relevant genetic vari-
ants identified in this study may be explained by the strict 
inclusion criteria and the small sample size.

The following genes have been identified as epilepsy 
etiology: ARX, CACNA1B, CASK, CHRNA2, GRIN2D, 
KCNQ2, KCNT1, MT-CO3, PCDH19, SCN1A (x2), SLC2A1, 
SLC12A5, and WWOX. In an early study, Jaxybayeva et al. 
[6] identified a genetic cause in 80% (12/15) of children with 
early seizures using whole-exome sequencing in Kazakhstan 
(CDKL5 (x3), SCN1A (x2), MECP (x2), STXBP1, UBE3A, 
PCDH19, FOLR1, PNPO). Summing up the results from the 
present and the above mentioned studies, which is accept-
able due to relatively similar inclusion criteria, the overall 
detection rate for the genetic etiology of early-onset epilepsy 
was 74.3% (26/35). And most often clinically significant 
genetic variants have been identified in CDKL5 (x3), SCN1A 
(x3), MECP (x2), and PCDH19 (x2) genes.

KCNQ2-related neonatal-onset developmental and 
epileptic encephalopathy is characterized by mostly 
tonic seizures beginning in the first week of life [35], 
which coincided with the clinical presentation of case 1. 
GLUT1 deficiency syndrome caused by mutations of the 
SLC2A1 gene is characterized by early infantile epilepsy, 
developmental delay, microcephaly, complex movement 
disorders, and various paroxysmal neurological phenomena 
[36, 37], which also corresponds to the indicated case 7. 
This study also expands the understanding of the clinical 
features of mutations in the ARX gene. X-linked infantile 
spasms syndrome, West syndrome, Ohtahara syndrome, 
and myoclonic epilepsy syndromes may be associated with 
ARX gene mutations and characterized by pediatric epilepsy, 
intellectual disability, developmental and speech delay, 
intractable seizures, hypotonia, psychiatric abnormalities, 
brain malformations, and ambiguous genitalia [38–41]. 
Previously described variants associated with MT-CO3 
(COX) gene were represented by the following clinical 
characteristics: MELAS syndrome, rhabdomyolysis, and 
mitochondrial myopathy with lactic acidosis and one 
with Leigh syndrome ([42–46]. In this study, we expand 
the clinical manifestation of the MT-CO3-related Leigh 
syndrome. Moreover, current research confirms and expands 
the genotype-phenotypic correlation of the following 
conditions: PCDH19-related epilepsy [47], GRIN2D-related 
developmental and epileptic encephalopathy [48], KCNT1-
related epilepsy [49], CHRNA2-related autosomal dominant 
sleep-related hypermotor epilepsy [50], SCN1A-related 
epilepsy [51], SLC12A5-related epilepsy [52].

At the same time, case 6 differed from the previously 
described phenotypic manifestations. So, variants in 
the CASK gene were mainly the cause of epilepsy with 
microcephaly, pontine, and cerebellar hypoplasia, and 

typically affect females [53]. The previously described 
genotype-phenotypic correlation of neurological diseases 
associated with variants in the WWOX gene was associ-
ated with spinocerebellar ataxia type 12, early infantile 
epileptic encephalopathy, and autism spectrum disorder 
[54, 55]. In current study, WWOX-related epilepsy was 
characterized by psychomotor retardation, spastic ataxia, 
and encephalopathy of the cerebral hemispheres on the 
MRI picture. Individuals affected by CACNA1B variants 
presented with epileptic encephalopathy, severe neu-
rodevelopmental delay, hyperkinetic movement disorder 
(myoclonus-dystonia syndrome), postnatal microcephaly, 
and hypotony [56, 57]. However, case 6 with compound 
heterozygous variants in CACNA1B had generalized tonic 
seizures, psychomotor, and speech delay.

One of the important results of identifying the etiol-
ogy of epilepsy is the application of precision medicine 
based on genetic testing results. Among the identified 14 
cases of genetic epilepsy, targeted therapy was indicated 
in 8 (57%) cases [22, 58]. The results obtained confirm 
the importance of using genetic diagnostic methods, espe-
cially NGS, for the management of patients with epilepsy.

Undoubtedly, the study was not population-based, 
had a limited number of participants (n=20), and had 
strict inclusion criteria. In this regard, the obtained high 
percentage of detection of genetic etiology does not reflect 
the genetic structure of epilepsy in Kazakhstan. However, 
the inclusion criteria adapted during the study makes 
it possible to determine a cost-effective algorithm for 
diagnosing epilepsy.

Conclusion

The data obtained indicate the high significance of NGS in 
the diagnosis and management of patients with early-onset 
epilepsy. Moreover, the study complements the existing 
knowledge about the genotype-phenotype correlation in 
epilepsy and highlights the need for the introduction and 
expansion of NGS diagnostics in Kazakhstan.
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