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Abstract

The oncogene ERBBZencoding the receptor tyrosine-protein kinase erbB-2 (HER?2) is frequently
overexpressed or amplified and occasionally mutated in a variety of human cancers. The early
discovery of this oncogene, its established oncogenic relevance in diverse cancers, its substantial
expression on surface of cancer cells, and its druggable catalytic activity have made it one

of the most pursued targets in the history of cancer drug development. Initiatives targeting

HER2 provided the early stimulus for several transformational pharmaceutical technologies
including monoclonal antibodies, tyrosine kinase inhibitors, antibody-drug conjugates, and others.
The seismic impact of these efforts has been felt in treatment of many cancers including

breast, gastroesophageal, lung, colorectal and others. This impact continues to broaden with
increasing indications on the horizon and a plethora of novel agents in development. However,
implementation of these therapeutic strategies has been complex. The clinical translation of
every one of these classes of agents has been notable for underperformance or overperformance
characteristics that have informed new lines of research providing deeper insights into the
mechanistic complexities and unrealized opportunities provided by this molecular target. Despite
all the successes to date, the preponderance of scientific evidence indicates that the full potential
of HER2 as a target for cancer therapeutics is far greater than currently realized and numerous
lines of investigation are ongoing to deepen and broaden the scope of impact of HER2 as

a signaling, homing, or immunologic target. In this review, we explore the existing data and
evolving paradigms surrounding this remarkable target for cancer therapy.
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Introduction

ERBBZ, commonly referred to as Human Epidermal Growth Factor Receptor-2 (HER?2),

is a proto-oncogene (chromosome 17g21) that encodes a transmembrane receptor tyrosine
kinase involved in cell growth and differentiation (Figure 1). It was one of the first genes
identified in the 1980’s efforts to discover oncogenes and was quickly shown to have
relevance to diverse human cancers 1:2. What followed was an explosion of scientific
inquiries that validated the role of HERZin carcinogenesis and led to development

of a variety of targeting approaches which have paved the way in transforming drug
development. The oncogenic potential of HER2was evident in the early days of mouse
genetic engineering with several models of HER2-driven mammary tumorigenesis showing
an aggressive and metastatic disease biology 3. As more elegant inducible mouse genetic
models were developed, HER2 was shown to be continuously required throughout the entire
disease process from initiation through advanced metastatic disease, nicely illustrating the
concept of oncogene addiction and the potential of this oncogene as a target for cancer
therapeutics 4. Advances in sequencing technologies brought about the era of widespread
tumor genome sequencing with findings that extended the scope of HER2 amplification to
include substantial subsets of gastric and esophageal cancers as well as smaller subsets

of colon, bladder, endometrial, lung, salivary gland, and other cancers (Figure 2) 7.

These surveys also discovered much smaller subsets of cancers harboring activating HER2
mutations without amplification &. Whether these H/ER2 mutants are dominant tumor-drivers
like HERZ2 amplifications, remains to be determined.

The technology to generate monoclonal antibodies and to humanize them for repeated
administration as therapeutic agents evolved in the late 1980s and HER2 was one of

the first targets explored by this novel pharmaceutical technology °. Trastuzumab, the
anti-HER2 monoclonal antibody (mADb), entered clinical phase in 1992, eventually leading
to a pivotal phase 3 study in HERZ2-amplified metastatic breast cancer, and landmark
studies in HERZ-amplified early-stage breast cancers, paving the way and establishing

the role of mAbs in treatment of human cancers 19-13. As understanding of structure and
function among the HER family receptors evolved in 1990s, these insights were applied to
development of structure-guided mAbs such as pertuzumab to disrupt HER2 dimerization
more effectively with additional, albeit incremental benefits demonstrated in clinical studies
14.15 Technologies to arm these mAbs with cytotoxic agents evolved in late 1990s with
improvements in linker chemistries and HER2 was among the early targets pursued

leading to development of the antibody drug conjugate (ADC) aldo-trastuzumab emtansine
(T-DM1) 16, While the naked HER2 mAbs, trastuzumab or pertuzumab, showed only
limited efficacies and their clinical benefits were mainly manifest in combination regimens
with chemotherapeutics, T-DM1 was found to be highly efficacious in monotherapy with
activities surpassing chemotherapies in treatment refractory tumors with a much more
favorable toxicity profile 17. This remarkable breakthrough fueled efforts to further explore
ADCs leading to development of trastuzumab deruxtecan (DS-8201 or T-Dxd) 8. Exploring
T-Dxd revealed unforeseen findings of non-cross resistance with T-DM1 and much broader
clinical activity in other HERZ-amplified cancers and in cancers with lower expression of
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HER2 19-22 The high efficacy of HER2 ADCs has led to development of a plethora of
ADCs, now in trials.

As technologies to develop selective tyrosine kinase inhibitors (TKIs) evolved, the HER
family of kinases including EGFR and HER2 were among the first targets pursued leading
to many compounds proceeding to clinical testing in HER2-amplified breast cancers. Of
these the pan-HER reversible TKI lapatinib, pan-HER irreversible TKI neratinib, and
HER2-selective reversible TKI tucatinib, have made it to clinical use with many others in
development. TKIs have only modest activities in monotherapy of HERZ-amplified cancers
and their clinical use has been predominantly focused on combination therapies 23:24. In
contrast, the HER2-mutated subtypes of breast and other cancers appear amenable to TKI
monotherapy as shown in the basket neratinib study.2

Mechanics

We now have a good understanding of mechanisms by which HER family of receptors
function. Signals are generated when two receptors from the family come together in a
homo- or hetero-dimerization configuration. The receptor extracellular domains (ECD) are
generally restrained by a closed conformation that is prohibitive to dimerization and it is

the binding of extracellular ligands that exposes an interface that promotes dimerization

26, HER2 is unique in that it lacks this self-restraint or a physiologic ligand, and its ECD

is always poised for dimerization 27. As such the only physiologic restraint built into

HER2? is its low expression which is overwhelmed in cancer cells through amplification and
overexpression. Dimerization leads to phosphorylation of C-terminal tails and consequent
initiation of second messenger signaling pathways 28. A particularly strong relationship
between HER2 and HER3 as dimerization partners is apparent from in vitro signaling assays
29 Many lines of investigation also confirm that HER3 is an important HER2 partner in
HER2 overexpressing tumors 30-32, These structural insights provide ample mechanistic
rationale to inactivate HER2 signaling through ECD targeting antibodies that disrupt
dimerization or through TKIs that inactivate catalytic activity and eliminate phosphorylation.
Yet, the story has turned out to be much more complicated.

The translational research in pursuit of mutationally activated oncogene-driven cancers such
as EGFR- or ALK-mutant lung cancer among others has followed a somewhat direct path
with the rational expectation that the catalytic inactivation of these disease drivers should be
a highly effective treatment strategy. However, the pursuit of amplified HERZ2 as a target has
followed a much more tortuous and unexpected path with many mechanistic complexities
and ambiguities, new insights learned, and new opportunities discovered. It is evident now
that in most cases HER? is activated through massive overexpression rather than mutation
and this makes for a mechanistically more challenging target, something that was not
readily anticipated in 1990s. While in the early days following development of trastuzumab
and pertuzumab it was thought that these mAbs could interfere with HER2 signaling by
eliminating their expression or disrupting dimerization, this was clearly not the case as was
evident in simple /n vitro studies in HER2-amplified cancer cells 3337, Pertuzumab was
specifically developed based on a structure-based design to bind the HER2 dimerization
interface and clearly does inhibit signaling in physiologic cell systems with low HER?2
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expression but fails to do the same in HER2-overexpressing cancer cells 35-38, Similarly, a

variety of rationally designed HER2 or HER3-targeting mAbs, bispecific mAbs, DARPIns,
and other biotherapeutics have shown only limited ability to interfere with HER2-HER2

or HER2-HERS3 signaling in HER2-amplified cancer cells. Experimental models now more
clearly demonstrate the mechanistic futility of these approaches.

The kinase domain interactions in these cancers are driven entirely by massive HER2-
overexpression with no promoting or restraining functions from the ECDs essentially
uncoupling intracellular signaling from the ECDs (Figure 1) 37. Even strategies to add

bulk to the ECDs and prevent receptor proximation leave kinase domain signaling intact

due to conformational flexibilities across the span of these receptors and the curvatures in
the plasma membrane (Figure 1) 37. Although mechanistic studies with trastuzumab failed
to show effective inhibition of HER2 signaling, preclinical and clinical studies do show
measurable anti-tumor effects 1139, This has fueled efforts to understand the mechanistic
basis for the observed /n vivo effects and a large body of work now demonstrates this to have
a substantial immunologic basis. This was initially shown through elegant mouse studies
showing the critical role of host Fc receptor in mediating the /n vivo anti-tumor activity

of trastuzumab and subsequently shown to encompass a wider repertoire of immunologic
activities including innate and adaptive immune functions, memory, and cytokines 40-43.
Capitalizing on these insights, enhancements in the Fc portion of trastuzumab to optimize its
immunologic activities has produced margetuximab with superior clinical activity compared
with trastuzumab 44,

In contrast to mAbs, HER2 targeting TKIs do effectively inactivate HER2 signaling in
cell-based studies in HER2-amplified cancer cells, leading to apoptotic cell death 446, Yet
these agents fail to show substantial activities in patients as monotherapy 4748, Mechanistic
studies highlight limitations in target inactivation, in particular with regards to inactivation
of HER2-HERS3 heterodimer signaling. In HERZ2-amplified cancers HER3 is tightly linked
with downstream PI3K-AKT signaling in a pathway that involves robust compensatory
feedback regulation. As such, inhibition of HER2 with TKIs leads to a compensatory
upregulation of HER3 unleashing a 100-fold reserve in signaling capacity that overpowers
an incomplete inhibition of HER2 kinase and restores HER2-HER3 signaling 49-51. Only
the complete inactivation of HER2 kinase can durably inactivate HER2-HERS3 signaling in
these cancers, and although this is feasible in cell culture models at higher concentrations
of TKIs, it is beyond the therapeutic index of all current TKls 0. High dosing of oral

TKiIs in patients has been studied but limited by a bioavailability ceiling 52. Irreversible
TKIs, such as neratinib, that covalently bind their target have much higher molar potency,
but this comes at a cost of substantial off-target activities, within and outside of the
kinome, significantly limiting therapeutic index 53-56. A rational strategy for increasing
potency would be co-targeting HER2 and HER3, but HER3 is a challenging target for
pharmaceutical inactivation. Its function in HER2-amplified cancers is engaged in a ligand
and ECD-independent manner limiting the efficacy of ECD-targeting mAbs in this disease,
and its kinase domain functions in allostery, not catalysis, and conventional TKIs binding
within its ATP pocket have no effects on its signaling function 37:57. Novel approaches to
target HER3 through degradation are being pursued and may provide breakthroughs in this
arena 2899,
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Although the massive overexpression of HER2 makes it a challenging target for
inactivation, its surface expression provides significant opportunities for targeted delivery of
cytotoxic molecules, radioisotopes, liposomes, nucleic acids, and other moieties designed
to kill cancer cells. In this regard the pursuit of HER2-targeting ADCs has proven
particularly fruitful. In contrast to HER2-targeting mAbs and TKIs which underperformed
expectations as oncogene inhibitors when they entered the clinical arena, HER2 ADCs have
overperformed expectations, and their success has spawned many lines of study to better
understand the mechanistic basis for their activities and fueled substantial investments in
the pharmaceutical sector with many new agents in development. The science underlying
exact mechanisms of activity of ADCs continues to evolve. The key variables appear to be
the linker chemistry, the activity, cell permeability and potency of the cytotoxic payload
molecule, the payload-to-antibody ratio, and the characteristics of the mAb, all of which
contribute to the observed clinical activities of these agents 061, Although the initial

and purest vision for the development of ADCs was for the most precise and protected
delivery of cytotoxic molecules intracellularly to cancer cells, it is now apparent that
reducing the stringency of this vision can potentially increase, not decrease, their therapeutic
index. Using cleavable linkers that more readily release their payloads or cell permeable
cytotoxic agents that diffuse out of cells can lead to exposure beyond the target cells
including non-targeted surrounding cells, a so-called bystander effect, and a measurable
low exposure in the systemic circulation (Figure 1) 62. Clinical exploration of the cleavable
HER2-targeting ADC, T-Dxd, has revealed an unexpected range of activity. The highest
efficacy is still seen in patients with classic “HER2-high” (HER2-overexpressing/amplified)
subtypes of cancers, consistent with the original and simplest concept of ADCs as agents
for precise tumor-targeted cytotoxic delivery 19-21, However, pursuing an assumption that
cancers with lower expression of HER2 may also afford a therapeutic index by mechanisms
involving heterogenous expression and bystander effects, significant clinical efficacy was
also observed in breast cancers with “HER2-low” expression (IHC 1+ or 2+) 22, Further
exploration has shown no lower cutoff for this quantitative biomarker with efficacy spanning
the entire spectrum from 0 - 2+ expression and across the hormone receptor status in breast
cancer 1963, This wide range of activity is also seen in HER2-mutant lung cancers wherein,
there is no correlation of activity with tumor HER2 expression 4. The observed broad and
marker-independent clinical activities of T-Dxd have upended the mechanistic hypotheses
regarding the mode of action of ADCs. Tumor-specific targeted delivery of cytotoxic
payloads related to high expressing and bystander effect in lower expressing cancers can
only partially account for this observed broad range of activity and the mechanistic basis
remains to be determined. Traditionally, mechanism of action forms the starting point

for development of rationally designed therapeutics. But clinical development of T-Dxd
and similar ADCs has clearly exited this mechanistic orbit and their clinical exploration
continues in an open space until a ceiling is encountered, while mechanistic studies will
have to follow to fill this ever-enlarging knowledge gap.

The newly discovered broad clinical activity is not limited to T-Dxd and appears to be
a class effect. Preliminary evidence from other HER2-targeting ADCs appears to show
similar broad range of efficacies 9267, This property of ADCs is also not unique to

the target HER2 and appears to apply to other targets as well, as is evident with the
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experience with Trop-2 targeting ADCs. While, initially explored in triple-negative breast
cancer which has the highest expression of Trop-2, its efficacy has poor correlation with
Trop-2 expression levels and shows similar clinical activity in hormone receptor positive
breast cancers with lower expression of Trop-2 6871, A plethora of other ADCs in the
investigational pipelines exploring other types of linkers, payloads, release properties, and
antibodies and drug-antibody ratios will further expand the body of data available and
allow us to formulate more informed hypotheses regarding potential mechanisms of action.
Although initial pharmacokinetic studies of T-Dxd showed low levels of free deruxtecan

in circulation, the role of systemic release products must be revisited 7273, Much of the
mechanistic foundation for the broad clinical activities of these ADCs remains unknown and
eagerly awaits new hypotheses and experimental studies.

Distinct from cancers driven by amplification and overexpression of HER2, there are

also rarer cancers that harbor somatic mutations in HER2 7475, Most, but not all, are

within the kinase domain and generally result in increased catalytic activity of the HER2
kinase. Individual mutations appear to have different characteristics with respect to catalytic
activities and partner preferences and exhibit cell-context dependent characteristics /4. Most
experimental studies have used overexpression systems and in these artificial systems many
are more potent oncogenes compared with wildtype HER2. But in human cancers they

are typically mutated in copy-neutral fashion without overexpression and whether they

are primary disease drivers in human cancers remains speculative. The irreversible TKI
neratinib has modest but short-lived activity in HER2-mutant cancers, confirming a limited
biologic role for at least some of these mutants in the human disease. The diverse nature

of these HER2 mutants makes for a complex arena for analysis and it remains difficult to
know whether non-responsive mutants are not biologically relevant or whether they harbor
intrinsic resistance to TKIs. There is much more to be learned about the biology of HER2
mutant cancer.

Distinct from HER2-amplified and HER2-mutant cancers are exceedingly rare cancers
driven by ligand activation of HER2. These appear to be driven by genetic fusions of the
NRG1 gene leading to neuregulin fusion proteins expressed at the plasma membrane 76:77.
Anecdotal reports of these rare cases suggest that these tumors are responsive to HER2 TKIs
or HER2 or HER3 targeting mAbs that block dimerization or ligand binding 78:7°.

Clinical Implications

Breast Cancer

The field of HERZ amplified breast cancer has benefited greatly from decades of
translational cancer research through the development of numerous targeted therapies that
have made substantial impact in the clinical realm. Addition of trastuzumab and pertuzumab
to chemotherapy significantly improves outcomes in patients with metastatic or early-stage
breast cancer and is now the standard of care for the treatment of HER2 amplified breast
cancer at all stages of disease 1113.15.80 T_.DMZ1 has shown significant clinical activity

in trastuzumab-resistant disease and has become a standard second-line salvage option in
patients with metastatic disease or in early stage patients who have significant residual
disease following neo-adjuvant therapy 1781, The second generation ADC, T-Dxd, has
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shown clinical activity superior to T-DM1 and activity in disease that is resistant to T-DM1
82, As discussed previously, T-Dxd has a much broader range of clinical activity that
encompasses HER2-negative breast cancers, including cancers traditionally labeled HER2-
low 2263, This broad range of activity appears to somewhat uncouple T-Dxd from its target
biomarker and it may be best considered a broadly active breast cancer agent without a
biomarker association, exhibiting clinical activity in breast cancers spanning HER2 positive
and negative and hormone receptor positive and negative subtypes, albeit with superior
activity against HER2-amplified cancers. This has sparked substantial interest and numerous
other investigational HER2 targeting ADCs are exploring this newly discovered terrain 82,

The HER2 TKis lapatinib or tucatinib in combination with capecitabine are active regimens
for the treatment of metastatic HER2 amplified breast cancers refractory to prior HER2
therapy, providing additional options for later lines of therapy 2324, The combination of
lapatinib and trastuzumab has clinical activity that provides a non-chemo option for patients
with low disease burden, indolent disease, or not suitable candidates for chemotherapy 84.

The HERZ-amplified subtype of breast cancer has a higher predilection for brain metastases
and numerous studies have attempted to define the activities of HER2-targeted therapies

in the treatment of brain metastases 8°. Small molecule HER2 TKIs have better CNS
penetration than mAbs and these and have been actively pursued for CNS activity. The
CNS activity with lapatinib is minimal, but more significant activity is evident with
neratinib in the treatment of brain metastases 86. The highest CNS activity is seen with

the brain-penetrant TKI tucatinib and the tucatinib, capecitabine, trastuzumab combination
has become a standard in the management of patients with brain metastases 87. Although
the activity of ADCs in the CNS compartment were thought to be restricted by the large
size of their mAb component, hints from subset analyses of their clinical studies suggested
these agents may have activity in the CNS and this was followed by specific clinical studies

showing modest activity with T-DM1 88-90 and substantial intracranial activity with T-Dxd
91,92

Gastroesophageal Cancer

HERZ2-overexpression/amplification, to date, remains the only clinically usable biomarker
for selection of targeted therapy in metastatic gastroesophageal adenocarcinoma (GEC) and
is seen in about 12%-20% of cases (Figure 2) 6.7:93, HER2-amplification is seen in a greater
proportion of patients with liver metastasis, GEJ adenocarcinomas and intestinal subtype
tumors, although its prognostic significance is unclear 93:94. Compared to circumferential
staining seen in breast cancer, HER2 expression in GEC is predominantly basolateral/lateral
and has more notable intratumoral heterogeneity, making testing (ToGA criteria) and patient
selection, more challenging 9394,

Anti-HER? therapy is mainstay of therapy for advanced HER2-overexpressed/amplified
GEC. Addition of trastuzumab to chemotherapy for first-line treatment of HER2-positive
advanced GEC demonstrated a clear survival benefit over chemotherapy alone 94. However
further efforts, as in the case of breast cancer, such as addition of dual anti-HER?2 therapy
with pertuzumab and T-DM1, showed limited activity and failed to significantly improve
overall survival in patients with HER2-positive metastatic GEC 95:9. More recently,
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addition of pembrolizumab to trastuzumab and chemotherapy significantly improved
objective response rate (74% vs. 52%) highlighting the immune interactions of the HER2
pathway 97. T-Dxd has also shown significant activity in treatment of HER2-positive
metastatic GEC after progression of first line anti-HER2 therapy with a significantly higher
response rate (51%) compared to physician's choice of chemotherapy (14%) and longer
overall survival (median: 12.5 vs. 8.4 months) 21,

Lung Cancer

Unlike breast and gastric cancer, HERZ amplification are rare in lung cancer (0.88%

cases) and HERZ2 mutations are the driver events in 3.5% cases, comprising 80% of all
HER? alterations (Figure 2) 7. These HER2 mutations, specifically exon 20 mutations

are analogous to in-frame £GFR deletions and dysregulate the HER2 pathway due to
constitutive tyrosine kinase activity, are enriched in non-smokers, adenocarcinomas, and
are mutually exclusive of other oncogenic mutations in NSCLC %. HER2 mutations,
barring amplifications and overexpression, appear to be key determinant of response to
HER2 targeted therapies. No clinical benefit was observed with addition of trastuzumab

to chemotherapy in HERZ-overexpressed/amplified non-small-cell lung cancer (NSCLC)
99, This aspect of aberrant HER2 pathway is unique to lung cancer. Although, HER2
kinase domain mutations are also seen in other tumor types, such as breast (4.3%), gastric
(5.0%), and colorectal (2.9%) carcinomas, they are often missense mutations (not deletions/
insertions) and involve exons other than exon 20, indicating tissue dependent oncogenic
mechanisms 8. Additionally, HER2 mutation are not associated with HER2 overexpression/
amplification 100,

HERZ2-mutant lung cancer responds to HER? inhibitors, especially small-molecule TKIs
and ADCs 191, Although, selective HER2 TKIs have yielded response rates of 20-35%

in single-arm phase 2 studies, many of these have shown limited overall clinical benefit.
Recent evidence has brought HER2 ADCs to the forefront in treatment of HER2-mutant
NSCLC. T-DM1 demonstrated a response rate of 44% (N = 18) in treatment refractory
HERZ2-mutant lung cancer, across a variety of HERZexon 20 insertions and point mutations
(in kinase, transmembrane, and extracellular domains) and regardless of HER2 expression
or amplification status 192, Similarly, T-Dxd showed a confirmed objective response in 55%
patients (N = 91) with refractory metastatic #ERZ-mutant NSCLC, again notwithstanding
HER?2 expression or amplification 193, Currently there is no mechanistic paradigm to
account for this activity of ADCs and this is an active area of pursuit as discussed previously.

Colorectal Cancer

HER?Z overexpression/amplification is seen in 2-3% of all colorectal cancers (CRC) and
represents a very distinct subset of CRC (Figure 2) 6.7, Pre-clinical and retrospective

clinical evidence shows that HER2 amplification is enriched in RAS/BRAF wild-type
tumors (5-6%) compared to RAS-mutant CRC (1-2%) 104.105 |n RAS/BRAF wild-type
mCRC, HERZ2 amplification appears to be a negative predictive biomarker of response to the
anti-EGFR monoclonal antibody based therapy, which is the current standard of care in these
patients with metastatic CRC 195, Although a diverse array of HERZ2 somatic mutations are
seen in a very small subset of CRC, only a small number appear to have oncogenic potential

Clin Cancer Res. Author manuscript; available in PMC 2024 January 05.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Raghav and Moasser

Page 9

and show response to irreversible TKIs (such as neratinib and afatinib), and as such they
have not been exploited clinically 106,

As opposed to gastric cancer, single agent anti-HER2 therapy shows limited efficacy in
HER2-amplified metastatic CRC 104107 However, dual-HER?2 targeting with trastuzumab
combined with lapatinib, pertuzumab and tucatinib has shown robust activity in treatment
refractory metastatic CRC with response rates ranging from 28-40% in RAS wild-type
tumors 107-110_ Notably, dual anti-HER?2 therapy benefits only patients with RAS wild-
type tumors (response rate of 40% vs. 8% for RAS-mutant cases) 199, Along similar

lines although the HER2 ADC, T-DM1 showed very limited activity (response rate 9.7%
combined with pertuzumab) in HERZ-amplified metastatic CRC, trastuzumab deruxtecan
(DS-8201) showed very promising and durable activity in HERZ-amplified metastatic CRC
refractory to standard treatment with response rate of 45%, including those who had
received prior anti-HER2 therapies 20111,

Other Solid Tumors and HER2-mutant cancers

In addition to tumor types mentioned above, HER2 alterations can be seen in a variety

of tumor types such as salivary gland tumors (particularly non-adenoid cystic carcinoma,
non-secretory type), hepatobiliary tumors (principally gallbladder cancer) and others (Figure
2). Dual HER?2 targeting with trastuzumab and pertuzumab showed a response rate of

23% (N = 39) in HERZ-amplified metastatic biliary tract cancer 112, A phase 2 trial of
trastuzumab and docetaxel in HERZ-amplified salivary duct carcinoma (N = 57) showed an
overall response rate of 70.2% and is the preferred treatment option for these rare cancers
113 Basket trials of HER2 targeted therapies to engage tumor types with lower prevalence of
HER? alterations are ongoing.

Numerous basket studies and disease-specific phase 2 studies of TKIs have been conducted
in cancers harboring somatic mutation of HER2 (Figure 2) 6.7, As a class, TKIs do have
activity, albeit modest, in these cancers although there is variation in activity according

to disease type, specific mutations, and specific drug. The irreversible class of TKIs have
clinically meaningful activity and neratinib has been studied the most with modest activity in
breast and lung cancers but evidence of activity in other cancers 25:101.114-117 pyrotinib and
poziotinib also have similar efficacies while afatinib appears to lack efficacy 118-120,

Future Directions

The field of HER2 targeting has been an archetype for pan-cancer developmental
therapeutics with promising clinical results, continuously evolving new mechanistic insights,
profound translational efforts, and tremendous hope for patients suffering with cancer.
While we have achieved unprecedented success, a substantial subset of patients derive
limited benefits from current approaches and resistance develops eventually. Through a
barrage of ongoing clinical trials (Table 1), three major themes are evolving: 1) therapeutics
strategies involving combining anti-HER2 therapies with immunotherapy, inhibitors of DNA
damage pathway, receptor cycling modulators among others which may work synergistically
to increase the responses, 2) targeting a large subset of patients who have tumors that

were traditionally considered HER2-low and not amenable to past generation anti-HER2
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therapies, and 3) immune targeting of HER2 using novel immunotherapy approaches, such

as

CAR-Tcells, and vaccines. No matter the strategy, one thing is for sure, HER2 targeting

remains the epitome of precision cancer medicine in oncology.
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Figure 1. HER2 pathway and pharmacologic strategies
Schematic showing the structures and events occurring in HERZ2-amplified cancers and the

site of binding of various HER2-targeted therapies. HER2 is shown in red and HER3 is
shown in blue. HER3 is shown in the activated ligand-bound state as well as the inactive

unbound state. HER2 only has one conformation always poised for dimerization. The shaded

light blue enclosures highlight aspects of dimerization that are non-physiologic but occur in
cancers propelled by the massive expression of HER2, reflecting the uncoupling of kinase
domain dimerization and signaling from the ECDs and tolerance to antibody binding.
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Figure 2. Pan-cancer prevalence of HER2 alterations (mutations and amplifications)
Panel A shows ERBBZ alterations seen in 6% of 85,575 patients with diverse cancers as per

the cancer genomic data aggregated through AACR Project Genomics Evidence Neoplasia
Information Exchange (GENIE) effort (AACR Genie v11.0-public). Only tumor types with
=10 cases and at least 1% prevalence were included. Panel B shows the oncoprint in the
same cohort and highlights the type of mutations seen in these patients with limited overlap
of mutations and amplifications.
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