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1  |  WHAT ARE KELP?

Kelp is a non-taxonomic term that refers to ecologically import-
ant canopy-forming large brown macroalgae, usually of the Order 
Laminariales (although other functionally similar macroalgae are 
sometimes included; Fraser, 2012), that inhabit hard substrata of the 
seafloor (Figure  1). Kelp play a key role in primary and secondary 
productivity through photosynthesis and the export of dissolved 

and particulate organic material in coastal ecosystems (Paine 
et al., 2021; Takao et al., 2015), where a large proportion of kelp pro-
duction enters coastal food webs mainly as detritus (Krause-Jensen 
et al.,  2018; Krumhansl & Scheibling,  2011; Queirós et al.,  2019; 
Steneck et al., 2002). Kelp form habitats for invertebrates and juve-
nile fish and also act as ecosystem engineers by altering water flow 
and sedimentation rates (Smale et al.,  2013). The loss of kelp can 
drive disruptions in ecosystems (Filbee-Dexter & Wernberg, 2018; 
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Abstract
As primary producers and ecosystem engineers, kelp (generally Order Laminariales) 
are ecologically important, and their decline could have far-reaching consequences. 
Kelp are valuable in forming habitats for fish and invertebrates and are crucial for 
adaptation to climate change by creating coastal defenses and in providing key func-
tions, such as carbon sequestration and food provision. Kelp are threatened by mul-
tiple stressors, such as climate change, over-harvesting of predators, and pollution. 
In this opinion paper, we discuss how these stressors may interact to affect kelp, and 
how this varies under different contexts. We argue that more research that bridges 
kelp conservation and multiple stressor theory is needed and outline key questions 
that should be addressed as a priority. For instance, it is important to understand how 
previous exposure (either to earlier generations or life stages) determines responses 
to emerging stressors, and how responses in kelp scale up to alter food webs and 
ecosystem functioning. By increasing the temporal and biological complexity of kelp 
research in this way, we will improve our understanding allowing better predictions. 
This research is essential for the effective conservation and potential restoration of 
kelp in our rapidly changing world.
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Scherner et al., 2012), affecting the abundance and diversity of spe-
cies, including economically important organisms, such as abalone 
(Kiyomoto et al., 2013). The kelp life cycle consists of two main life 

stages, the macroscopic diploid sporophyte and the microscopic 
haploid gametophyte (Figure  1). The sporophyte produces zoo-
spores, which grow into gametophytes. Gametophytes produce 

F I G U R E  1 Examples of different kelp species at various life stages and locations; (a) Laminaria hyperboea in Ireland, (b) Macrocystis pyrifera 
forest in Tasmania, Australia, (c) Ecklonia radiata in Tasmania, Australia. Male and female gametophytes (d) and young sporophytes (e) of 
Macrocystis pyrifera. Pictures by Kenan Chan (a), Joanna Smart (b, c), and MS (d, e).

F I G U R E  2 Schematic demonstrating 
the range of anthropogenic stressors 
that can affect kelp-dominated systems. 
Local stressors include pollution (chemical 
and nutrient) from the land and sea and 
expanding grazer populations caused 
by human exploitation. Global stressors 
associated with climate change include 
acidification, changes to ultraviolet 
radiation, and temperature.
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gametes (through gametogenesis), which fuse to form zygotes, ma-
turing into sporophytes (Hurd et al.,  2014). Zoospores depend on 
lipid reserves as an energy source, while gametophytes and subse-
quent stages are supported by photosynthesis, thus zoospores use 
different biochemical mechanisms and are often sensitive to differ-
ent levels and types of environmental stressors compared to other 
life stages (Leal et al., 2018).

2  |  MULTIPLE STRESSORS IN KELP 
ECOSYSTEMS

As the human footprint on our planet continues to grow, most eco-
systems are subject to multiple simultaneous stressors (Côté et al., 
2016). Kelp are affected by stressors, such as rising sea temperature 
and marine heat waves, invasions by species introductions and range 
expansions, direct and indirect effects of over-fishing, algal blooms, 
ocean acidification, loss of sea ice, and the resulting increase in ul-
traviolet exposure (Diehl et al., 2020; Donham et al., 2022; Filbee-
Dexter et al.,  2019; Hollarsmith et al.,  2020; Kroeker et al.,  2017; 
Miranda et al., 2019; Shukla & Edwards, 2017; Starko et al., 2022). 
Kelp generally live in coastal habitats which are also exposed to 
stressors from land use including nutrient enrichment, toxins, and 
sedimentation (Wernberg et al.,  2019). For example, near urban 
coasts, kelp are affected by toxins, such as copper from industrial 
waste and mine drainage, which decrease the rate of zoospore ger-
mination in Undaria pinnatifida, Macrocystis pyrifera, and Lessonia ni-
grescens (Contreras et al.,  2007; Leal et al.,  2018). Climate change 
is having negative effects by, for instance, causing reduced sea ice 
in polar regions, resulting in increased turbidity, and reduced light 
penetration. While in some cases shrinking ice caps may initially in-
crease the substrata available for kelp settlement, it has been pre-
dicted that kelp growth, productivity, and vertical distribution will 
ultimately decline in these regions (Bonsell & Dunton, 2018; Filbee-
Dexter et al., 2019). Melting sea ice also locally reduces salinity, and 
Alaria esculenta, Saccharina latissima, and Laminaria solidungula have 
strong bleaching and high mortality in low salinities. In contrast, spo-
rophytes of Laminaria digitata tolerate a range of salinities and may 
not be negatively affected (Karsten, 2007). Evidence also suggests 
that high levels of ultraviolet radiation can reduce growth by damag-
ing biochemical processes in photosynthesis and denaturing DNA 
(Heinrich et al., 2015; Müller et al., 2008; Xiao et al., 2015).

These stressors, which operate from local to global scales, can 
interact to determine their combined cumulative effect (Figure  2; 
Falkenberg et al., 2012). Growing evidence suggests that the com-
bined effect of two stressors is rarely additive (i.e., additive = the 
sum of their parts; Orr et al.,  2020, 2022). Instead, stressor pairs 
frequently result in impacts which are more or less than the sum of 
their parts (i.e., non-additive responses). These are known as syner-
gistic and antagonistic stressor interactions, respectively (Jackson 
et al., 2021; Orr et al., 2020). Evidence suggests that climate warm-
ing can exacerbate the negative effects of acidification and pol-
lutants. For instance, warming and acidification combine to inhibit 

gametophyte growth in Ecklonia stolonifera (Gao et al.,  2019) and 
increase mortality of Macrocystis pyrifera zoospores (Gaitán-Espitia 
et al., 2014), while warming and copper pollution interact synergisti-
cally to decrease the size of Macrocystis pyrifera gametophytes (but 
do not affect Undaria pinnatifida gametophytes; Leal et al.,  2018). 
Warming also exacerbates damage caused by elevated ultraviolet 
radiation on sporophyte formation causing reduced egg release 
in Saccharina latissima and Laminaria digitata (Müller et al.,  2008) 
and decreases in the zoospore germination rate in Alaria marginata 
(Fredersdorf et al.,  2009). In contrast, increased temperature can 
mitigate the effects of some stressors. For example, warming re-
duced the negative effects of increased ultraviolet radiation in Alaria 
esculenta by promoting photosynthesis (Roleda, 2009). In compar-
ison, other studies have found that warming exacerbates damage 
of elevated ultraviolet radiation on sporophyte formation, reduces 
egg release in Saccharina latissima and Laminaria digitata (Müller 
et al., 2008), and decreases the zoospore germination rate in Alaria 
marginata (Fredersdorf et al.,  2009). Despite the growing under-
standing of the effects of multiple stressors on kelp (see Table S1) 
there are still large areas where further research is needed (Hoffman 
et al., 2003; Hollarsmith et al., 2020) to understand the growing list 
of context dependencies (i.e., variation in responses between spe-
cies, locations, and life stages). Here, we outline knowledge gaps and 
key questions to help us understand how multiple stressors will af-
fect kelp and shape the future global distribution of this important 
foundation species.

3  |  HOW DOES THE INTENSIT Y (OR 
SE VERIT Y ) OF DIFFERENT STRESSORS 
AFFEC T THE RESPONSE OF KELP 
POPUL ATIONS TO MULTIPLE STRESSORS?

Many field and experimental studies are limited in the resolution of 
the stressor gradient they use, which can cause problems when pre-
dicting impacts of stressors that vary in intensity over space and/or 
time (Vye et al., 2015). For instance, global sea temperatures have 
increased by 0.1°C per decade since the 1950s (IPCC, 2022), with 
rates of warming at least two times higher in the Arctic (IPCC, 2022). 
There is also some uncertainty in the level of warming that will be 
experienced over coming decades, with predictions ranging (on av-
erage) from 1.5 to 7°C (IPCC, 2022). Although some kelp, such as 
Saccharina latissima, have high thermal plasticity (Müller et al., 2008) 
and may have increased growth rate with warming, other species 
have reduced growth and productivity with increasing temperature 
(Table  S1). This usually depends on the location, with populations 
at a latitude with temperatures near their thermal maxima experi-
encing reduced growth with increasing temperature, while the same 
species in a location with historical temperatures at the lower end 
of their thermal limits might experience higher growth rates with 
warming. However, warmer trailing edge kelp populations in the 
Northeast Atlantic have been shown to be more thermotolerant than 
cooler range center populations (King et al., 2018, 2019). The level 
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of warming will also be important when determining the outcome 
of interactions with other stressors, and vice versa. For instance, 
with low nutrient concentrations, increasing temperature miti-
gates the reduced growth rates in juvenile S. japonica sporophytes 
(Gao et al.,  2017) and juvenile Eisenia bicyclis sporophytes (Endo 
et al., 2017) but exacerbates the damage in juvenile Undaria pinnati-
fida sporophytes (Gao et al., 2013). In contrast, high nutrient concen-
trations ameliorate the negative impacts of warming in Macrocystis 
pyrifera (Fernández et al., 2020; Schmid et al., 2020). More research 
is needed over gradients of multiple stressor severity to make robust 
predictions about kelp responses to an uncertain future.

4  |  HOW DO MULTIPLE STRESSOR 
EFFEC TS VARY OVER TIME IN KELP 
POPUL ATIONS?

Since kelp have distinct life stages, it is important to consider how 
combined stressor effects on one life stage influences the other 
stage (Gauci et al., 2022). When considering climate warming, the 
different life stages of kelp vary in tolerance to increased tempera-
ture, for example, Ecklonia cava sporophytes can tolerate a larger 
range than gametophytes (Takao et al., 2015). Similarly, ocean acidi-
fication can have contrasting effects on different life stages because 
of the different mechanisms used to maximize photosynthetic rates: 
both passive diffusion of CO2 as well as the carbon-concentrating 
mechanism (Maberly et al.,  1992). The use of both mechanisms 
could explain the lack of response to ocean acidification observed in 
sporophytes of many kelp species (Fernández et al., 2015; Gordillo 
et al., 2016; Hollarsmith et al.,  2020; Iñiguez et al., 2016; Kang & 
Chung, 2018; Nunes et al., 2016). However, decreased survival and 
growth have been observed in Macrocystis pyrifera gametophytes 
under low pH (van der Loos et al., 2019). Zoospores do not rely on 
photosynthesis for growth; therefore, no effect of decreased pH 
on zoospore germination in Macrocystis pyrifera and Undaria pin-
natifida has been detected (Leal et al.,  2018; Roleda et al.,  2012). 
Gauci et al. (2022) found that gametophyte exposure to warming re-
duced recruitment and thermal tolerance of juvenile sporophytes in 
Laminaria digitata. However, there is still an open question of how re-
sponses to multiple stressors at one life stage are transferred to the 
next. Here, amplified impacts may be caused by lagged responses 
to past events or accumulation of stress severity over time (Jackson 
et al., 2021), as seen in coral reefs (Hughes et al., 2019).

The timing of stressor events can also be important across gen-
erations, with historical exposure to stressors altering how organ-
isms respond to current and future stress (Fernández et al., 2021; 
Jackson et al., 2021; Schmid et al. 2021). For instance, adaptation 
following stressor events can result in reduced impacts of similar fu-
ture events on kelp populations (Filbee-Dexter et al., 2020; Jackson 
et al., 2021). However, Filbee-Dexter et al. (2020) found that kelps 
from degraded and healthy reefs were equally vulnerable to heat-
waves. This suggests no effect of previous exposure, but much 
more research is needed to understand how different stressors 

interact over time, especially when species interactions are consid-
ered (Jackson et al., 2021).

5  |  HOW DO MULTIPLE STRESSORS 
SC ALE UP TO ALTER KELP INTER AC TIONS 
WITH OTHER SPECIES (AND ENTIRE 
KELP- BA SED FOOD WEBS)?

Although some kelp populations may survive and even increase 
productivity and resilience with anthropogenic stressors, many 
populations will decline in diversity and biomass, causing shifts to 
irreversible alternative states (Christie et al.,  2019; Filbee-Dexter 
& Wernberg,  2018; Kumagai et al.,  2018; Miranda et al., 2019; 
Veenhof et al., 2022). In nutrient-enriched and polluted waters, the 
green algae Ulva spp. may increase in abundance at the expense 
of canopy-forming kelp (Martins et al., 2014; Russell et al.,  2009; 
Scherner et al.,  2012). Nutrient enrichment can also cause phyto-
plankton blooms, which decreases light penetration to kelp (Filbee-
Dexter et al., 2019), causing high mortality and decreasing growth 
rate, for example, in Undaria pinnatifida juvenile sporophytes (Gao 
et al., 2013). Alternatively, increased nutrient concentrations might 
increase kelp growth and resilience against competitive turf-forming 
algae (Tamburello et al., 2019), but most of the evidence suggests 
a negative outcome for kelp. There is also evidence to suggest that 
over-fishing of large predators can compound the effects of ocean 
warming via mechanisms such as range-shifting grazers and marine 
heatwaves (Rogers-Bennett & Catton,  2019; Vergés et al., 2016). 
However, we still know very little about how multiple stressors in-
teract to alter complex food webs—a question that should be ad-
dressed (Kroeker et al., 2017).

Another important stressor in marine ecosystems is the loss of 
top predators (such as crabs from over-harvesting or sea stars due 
to disease), which may lead to an increase in the abundance of her-
bivores, such as sea urchins, and subsequent over-grazing of kelp 
(Gorra et al., 2022; Ling et al., 2009). For example, the hunting of 
otters in the 19th century reduced otter populations and led to an 
increase in sea urchin populations, and a subsequent decrease in 
kelp forest cover. The kelp population recovered after a hunting ban 
in 1911 with population densities maintained for decades until the 
decline of otter populations again in the 1990s due to increased pre-
dation by whales (Filbee-Dexter & Scheibling,  2014; Paine,  1980). 
In Northern California, the dramatic decline in keystone predator 
population densities (such as the sunflower star, Pycnopodia helian-
thoides due to disease), also led to an increase in sea urchin popu-
lation densities. Here, marine heat waves interacted synergistically 
with the loss of the sunflower star, resulting in a decline of the kelp 
Nereocystis luetkeana (McPherson et al., 2021). Ultimately, this can 
result in a shift from kelp forests to essentially barren grounds 
(Filbee-Dexter & Scheibling, 2014; Smale et al., 2013), with implica-
tions for the entire food web. However, most studies on the effects 
of multiple stressors on kelp have focused on individuals at a sin-
gle life stage and have been principally conducted in the laboratory, 
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and thus may not represent the complexities of communities and 
ecosystems.

6  |  HOW DO THE IMPAC TS OF MULTIPLE 
STRESSORS AFFEC T THE FUNC TIONING 
OF KELP AND THE ECOSYSTEM SERVICES 
A SSOCIATED WITH THEM?

Kelp provide many important services for humans. Some kelp spe-
cies are used for human consumption, play a role in mitigating climate 
change through carbon sequestration (Dolliver & O'Connor, 2022; 
Filbee-Dexter & Wernberg,  2020; Gilson et al.,  2021), or assist in 
climate adaptation by damping waves and protecting coasts (Smale 
et al., 2013; UNEP, 2023). Recent studies show that the economic 
value of kelp is at least three times higher than previously estimated 
(e.g., Northeast Atlantic kelp is valued at $71 k per hectare per year), 
which is driven primarily by fisheries production and nitrogen uptake 
(Eger et al., 2023). In a potential negative feedback loop, more regu-
lar enhanced wave action from climate change induced cyclones and 
storms has been shown to cause population losses (Perkol-Finkel 
& Airoldi,  2010), but some kelp communities can recover quickly 
through frequent recruitment and high growth rates (Krumhansl 
et al.,  2016). Other evidence suggests storms may promote kelp 
growth and increase kelp density, by reducing the diffusion bound-
ary layer and increasing nutrient uptake, dislodging competing epi-
phytes, and increasing recruitment (e.g., in L. hyperborean; Pedersen 
et al., 2012).

Overall, knowledge on the interactive effect of multiple stressors 
on the functions and services provided by kelp is limited, with many 
studies restricted to population-level responses in unrealistic labo-
ratory trials (Bass et al., 2021; Smale et al., 2013). We need more ex-
periments in complex, semi-natural settings to fully understand how 
kelp responses scale up to alter ecosystem functions and services.

7  |  HOW WILL MULTIPLE STRESSORS 
IMPAC T MITIGATION APPROACHES?

Despite variability in the responses of kelp to anthropogenic stress-
ors, global kelp populations have already begun to decline since 
the 1980s, especially in the South Australian Gulfs, Tasmania, the 
Gulf of Maine, and the Arctic Sea (Johnson et al., 2011; Krumhansl 
et al., 2016; Perkol-Finkel & Airoldi, 2010). Other kelp populations, 
however, have increased in the past, which may also be attributed 
to improved local management, such as reduction in local pollution 
and recovery of sea urchin predators on the west coast of Vancouver 
Island and Southern California Bight (Krumhansl et al., 2016). The 
larger variation in local trends compared with the global trend sug-
gests that there is spatial variation in adaptations and resilience of 
kelp species to anthropogenic stressors (Smale et al., 2013). It also 
provides hope that management and restoration of kelp ecosys-
tems could be successful with the control of only local stressors. 

For example, the experimental removal of sea urchins and limpets 
in eastern Australia led to an increase in the population size of E. ra-
diata and Sargassum sinclairii after 3 months, compared to sites with-
out the removal of these herbivores (Fletcher, 1987). Controlling or 
removing local stressors usually leads to such successful restora-
tion outcomes when multiple stressor interactions are synergistic 
(Brown et al., 2013). Here, the removal of one stressor would result 
in improvements greater than expected additively. However, some 
evidence suggests the control of one stressor alone may not be suf-
ficient for kelp restoration (Wilman,  2021). Where two stressors 
have a negative effect on kelp and interact antagonistically, sub-
stantial recovery of kelp may only be observed after the removal of 
both stressors. Indeed, the removal of only one stressor may even 
reduce ecosystem fitness further if the presence of the removed 
stressor mitigated the effects of other stressors (Brown et al., 2013). 
Therefore, the survival of kelp ecosystems may not be severely af-
fected if a second stressor mitigates the damage from the first, but 
much more research is needed here as more nature recovery strate-
gies are implemented (Eger et al., 2022).

8  |  CONCLUSION: WHAT DOES THE 
FUTURE LOOK LIKE FOR KELP?

As sea temperature rises, some kelp begin to approach the edge of 
their range and experience range contractions (Smale et al., 2013; 
Vye et al., 2015; Vergés et al., 2016), while temperate-adapted algae 
expand into polar regions and outcompete kelp which are less well-
adapted to higher temperatures (Filbee-Dexter et al.,  2019). For 
example, the distribution of suitable habitats for Ecklonia cava is pre-
dicted to decrease to between 15% and 45% of current distributions 
by 2100, and it could become extinct with increased herbivore graz-
ing (Takao et al., 2015). In contrast, some species of Arctic kelp have 
high optimal temperatures, higher than those predicted to occur 
with climate change (Filbee-Dexter et al., 2019), suggesting that an 
increase in sea temperature may be beneficial to the growth and 
productivity of some stages in some kelp species. This was shown 
in Spitsbergen, where the increasing temperature between 1996 
and 2014 increased total biomass and stability of the ecosystem 
(Paar et al., 2019). In parts of Alaska, the species composition of kelp 
communities has also remained relatively static between 1978 and 
2012 despite increasing temperature (Filbee-Dexter et al.,  2019). 
Although the loss of Arctic sea ice will decrease salinity and increase 
turbidity locally, Arctic rocky shores may present a large potential 
for the future niches of kelp as they expand northwards (Filbee-
Dexter et al., 2019; Paar et al., 2019).

The context dependencies in kelp responses to multiple 
stressors could be further understood using advances in mul-
tiple stressor theory, with key areas outlined above. Overall, an 
increase in complexity (biological and temporal) is needed, along-
side a focus on mitigation strategies. Here, the multifaceted 
concept of stressor similarity could be used to predict the out-
come of restoration plans (Orr et al.,  2022). There is hope that 
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increasing awareness will remove some of the local stressors on 
marine ecosystems, such as by reducing coastal pollution and 
over-harvesting of predators (Steneck et al., 2002). However, ev-
idence suggests that climate tipping points are dangerously close 
(Lenton et al., 2019) and that global stressors such as increasing 
temperature, loss of Arctic sea ice, and ocean acidification may 
already be irreversible. Population declines will be inevitable, but 
some kelp species will adapt to anthropogenic stressors, increas-
ing growth and reproduction. However, this may be constrained 
if some life stages are inhibited. As the effects of stressors on all 
life stages are still largely unknown for most kelp species, future 
research must focus on understanding these impacts for effective 
kelp conservation.
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