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Defects in the light-evoked responses of the retina occur early in the sequalae of diabetic retinopathy (DR).
These defects, identified through the electroretinogram (ERG), represent dysfunction of retinal neurons and
the retinal pigment epithelium and are commonly identifiable at the timing of, or almost immediately
following, diabetes diagnosis. Recently, systemic reduction of the facilitated glucose transporter type 1,
Glut1, in type 1 diabetic mice was shown to reduce retinal sorbitol accumulation, mitigate ERG defects, and
prevent retinal oxidative stress and inflammation. Herein, the study investigated whether systemic
reduction of Glut1 also diminished hallmarks of DR in type 2 diabetic mice. Transgenic nondiabetic Leprdb/þ

and spontaneously diabetic Leprdb/dbmice that expressedwild-type (Glut1þ/þ) or systemically reduced levels
of Glut1 (Glut1þ/�) were aged and subjected to standard strobe flash electroretinography and c-wave
analysis before evaluation of inflammatory cytokines and oxidative stress molecules. Although Leprdb/
dbGlut1þ/�mice still displayedovert obesity and diabetes, no scotopic, photopic, or c-wave ERG defectswere
present through 16 weeks of age, and expression of inflammatory cytokines and oxidative stress molecules
was also normalized. These findings suggest that systemic reduction of Glut1 is sufficient to prevent
functional retinal pathophysiology in type 2 diabetes. Targeted, moderate reductions of Glut1 or inhibition
of Glut1 activity in the retina of diabetic patients should be considered as a novel therapeutic strategy to
prevent development and progression of DR. (Am J Pathol 2023, 193: 927e938; https://doi.org/10.1016/
j.ajpath.2023.04.003)
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Diabetes affects >537 million adults worldwide, accounting
for 11.5% of the global health expenditure (International Dia-
betes Federation Diabetes Atlas, 10th edition, 2021). Despite
differing etiology of type 1 (inability to produce insulin) and
type2 (insulin-resistant) diabetes, the characteristics of diabetic
retinopathy (DR) are not distinguished between the two
diseases. Nevertheless, because approximately 90% to 95% of
all diabetes cases are classified as type 2 diabetes (T2D),
therapeutic interventions for DR need to be tested in and
specifically addressed in this group (CDC National
Diabetes Statistics Report, https://www.cdc.gov/diabetes/data/
statistics-report/index.html, last accessed March 1, 2023).

Inhibition of glucose transport has long been a target for
the microvascular complications of diabetes. Recently, the
stigative Pathology. Published by Elsevier Inc
inhibition of Sglt2, the sodium-glucose cotransporter, has
been investigated for the prevention of DR, diabetic kidney
disease, and diabetic neuropathy. However, the findings
. All rights reserved.
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from these studies are mixed.1e5 Moreover, a recent study
found reduced Sglt2 levels in peripheral blood mononuclear
cells of patients with proliferative diabetic retinopathy,
suggesting that although targeting of glucose is desired,
inhibition of Sglt2 may not be an effective therapeutic for
prevention of DR.6 Recent work demonstrated that systemic
or retina-specific reduction of the primary facilitative
glucose transporter in the retina and retinal pigment
epithelium (RPE), Glut1 (Slc2a1), attenuated hallmarks of
DR in the streptozotocin mouse model of type 1 diabetes at
both acute (2 and 4 weeks) and prolonged (12 weeks) time
points. This included a normalization of reductions in
electroretinogram (ERG) component amplitudes, reduced
accumulation of the neurotoxic polyol, sorbitol, in the
retina, and a marked reduction in inflammation/oxidative
stress molecules. The reversal of these outcome measures
was found at both early (4 weeks) and sustained (12 weeks)
durations of diabetes.7 To determine whether systemic
reduction of Glut1 levels in a mouse model of T2D also
prevents pathologic characteristics of DR, Glut1 expression
was genetically reduced in the Leprdb/db mouse by crossing
it with a Glut1þ/� line. Nondiabetic Glut1þ/�Leprdb/þ mice
displayed 40% reduced Glut1 levels throughout the retina,
compared with Glut1þ/þLeprdb/þ littermates. Glut1þ/

þLeprdb/db mice exhibited overt obesity and hyperglycemia
compared with nondiabetic Glut1þ/þLeprdb/þ mice.
Although Glut1þ/�Leprdb/db mice remained diabetic and
obese, they also exhibited a significant reduction of Glut1 in
the retina. All four genotypes underwent strobe flash elec-
troretinography and c-wave analysis at 8 and 16 weeks of
age. At both time points, the reduction in Glut1 levels
(Glut1þ/�) in diabetic (Leprdb/db) mice normalized ERG
component amplitudes, including the photoreceptor-derived
a-wave, the bipolar cell-dependent b-wave, and the RPE-
dependent c-wave. Retinal oscillatory potentials were also
normalized at 8 and 16 weeks of age. Expression of in-
flammatory cytokines and markers of oxidative stress mol-
ecules was similarly attenuated in diabetic mice by the
systemic reduction of Glut1.
Materials and Methods

Mice

Leprdb/db mice of the C57BLKS background were pur-
chased from The Jackson Laboratory (Bar Harbor, ME;
number 000642). Glut1þ/� mice were kindly provided by
Darryl De Vivo (Columbia University, New York, NY).
Mice were intercrossed to generate control (Leprdb/þ) and
diabetic (Leprdb/db) mice with one (Glut1þ/�) or two
(Glut1þ/þ) wild-type Glut1 alleles. Both male and female
mice were used. All animals were maintained on a 12-hour
light/dark cycle and provided food ad libitum. All experi-
ments were performed in accordance with the Institutional
Animal Care and Use Committee at the Louis Stokes
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Cleveland VA Medical Center (Cleveland, OH) and fol-
lowed the Association for Research in Vision and
Ophthalmology Guidelines for Use of Animals in
Ophthalmic and Vision Research.
Genotyping

The Glut1þ/þ and Glut1þ/� alleles were identified using the
following primers: wild-type forward, 50-CCATAAAGTCA
GAAATGGAGGGAGGTGGTGGT-30; wild-type reverse,
50-GCGAGACGGAGAACGGACGCGCTGTAACTA-30;
and mutant reverse, 50-CTACCGGTGGATGTGGAAT
GTGTGCGAGGC-30.
The Leprdb/db allele was identified by high-resolution

melt analysis using the following primers: forward, 50-
TGACCACTACAGATGAACCCA-30; and reverse, 50-
GTCATTCAAACCATAGTTTAGGTTTGT-30.
Electroretinography

After overnight dark adaptation, mice were anesthetized with
65 mg/kg sodium pentobarbital. Eye drops were used to
anesthetize the cornea (1%proparacaineHCl) and to dilate the
pupil (2.5% phenylephrine HCl, 1% tropicamide, and 1%
cyclopentolate HCl). Mice were placed on a temperature-
regulated heating pad throughout the recording session, which
was performed as previously described.7 In brief, ERGs were
recorded in response to strobe flash stimuli presented in the
dark by an Espion E3 ColorDome Full Field Ganzfeld
(Diagnosys, Lowell, MA). An Ag/AgCl electrode in contact
with the corneawas referenced to an Ag/AgCl pellet electrode
placed in the mouth of the mouse, and a ground lead was
placed in the tail. Scotopic responseswere obtained in the dark
with 10 steps of a white-light flash stimulus, ranging from
�3.6 log cd.s/m2 to 2.1 log cd.s/m2. The duration of the inter-
stimulus intervals increased from 4 seconds for low-
luminance flashes to 90 seconds for the highest stimuli. Two
minutes following the scotopic ERG, a 10-second white light
stimulus (5 cd/m2) was presented to elicit the c-wave. After 7
minutes of light adaptation, cone ERGs were recorded with
strobe-flash stimuli (�1 to 2 log cd$s/m2) superimposed on the
adapting field. Amplitude of the a-wave was measured at 8.3
milliseconds following the stimulus. Amplitude of the b-wave
was calculated by summing the amplitude of the a-wave at 8.3
milliseconds with the peak of the waveform after the oscilla-
tory potentials (�40 milliseconds). Light-adapted response
amplitudes were calculated by summing the peak of the
waveform with the amplitude at 8.3 milliseconds. Oscillatory
potentials (OPs) were filtered from the strobe flash responses
by the Diagnosys program. OP amplitude was determined by
measuring the change in amplitude from the preceding trough
to the peak of each potential. Amplitude of the c-wave was
determined by subtracting the average baseline amplitude
from the maximal response following the b-wave.
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Table 1 Antibodies

Antigen Supplier Catalog no. Species Dilution: WB analysis Dilution: IHC

Actin Cell Signaling 3700S Mouse 1:1000
Glut1 Millipore Sigma (St. Louis, MO) 07-1401 Rabbit 1:2000 1:500
Glutamine synthetase BD Biosciences (San Jose, CA) 610517 Mouse 1:500
Alexa Fluor 488 Invitrogen (Waltham, MA) A11008 Rabbit 1:500
Alexa Fluor 594 Invitrogen A11032 Mouse 1:500
Donkey anti-mouse 800CW Li-Cor 926-32212 Mouse 1:10,000
Donkey anti-rabbit 680RD Li-Cor 926-68073 Rabbit 1:10,000

IHC, immunohistochemistry; WB, Western blot.

Reduced Glut1 Stops Diabetic Retinopathy
Western Blot Analysis

Retinas were isolated from enucleated eyecups, and protein
was extracted using 100 mL per retina in radio-
immunoprecipitation assay buffer (Cell Signaling, Danvers,
MA; number 9806S) with Roche cOmplete ULTRA Pro-
tease Inhibitor (Sigma, St. Louis, MO; number
5892970001). Retinal samples were homogenized by tritu-
ration with a P200 pipette. Samples were placed on ice for
30 minutes with intermittent vortexing every 10 minutes.
The samples were centrifuged at 18,626 � g for 20 minutes,
and the supernatants were removed for protein quantifica-
tion by BCA Protein Assay (Thermo Scientific, Rockford,
IL; number 23208).

A total of 15 mg of retina protein was loaded on 4% to
15% Mini-PROTEAN TGX gels (BioRad, Hercules, CA;
number 4561083) with diluted 6� Laemelli SDS reducing
sample buffer. Gels were run for approximately 90 minutes
at 125 V and transferred electrophoretically onto poly-
vinylidene difluoride transfer membranes (activated with
methanol) at 100 V for 1 hour. Membranes were then
incubated for 1 hour at room temperature in Odyssey
blocking buffer (Li-Cor, Lincoln, NE; number 927-500) and
incubated overnight with primary antibodies at 4�C in Od-
yssey blocking buffer. See Table 1 for sources and dilutions
of all primary and secondary antibodies used for Western
blot analysis. Membranes were washed 3 � 5 minutes with
tris-buffered saline with 0.1% Tween 20 and incubated for 1
hour in the dark with Li-Cor IRdye secondary antibodies
(1:10,000) in Odyssey blocking buffer þ 0.2% Tween
20 þ 0.01% SDS. Blots were washed 3 � 5 minutes in tris-
buffered saline with Tween 20 at room temperature in the
dark, rinsed with tris-buffered saline, and imaged with an
Odyssey CLx Infrared Imaging System (Li-Cor). Densi-
tometry was performed with Li-Cor Image Studio Software.

Immunohistochemistry

Enucleated eyes were fixed in 4% paraformaldehyde, and
eyecups were prepared by removal of the cornea and lens.
Tissue was fixed for 1 to 4 hours at room temperature before
equilibration in sucrose solutions (10% for 1 hour; 20% for 1
hour; and 30% overnight). Equilibrated eyecups were
The American Journal of Pathology - ajp.amjpathol.org
embedded in Tissue Tek OCT Compound (Sakura Finetek
USA, Torrence, CA), frozen on dry ice, and cryosectioned at
10 mm. Slides were stored at �20�C and brought to room
temperature before rehydration with 1 � phosphate-buffered
saline (PBS). Endogenous peroxidases were quenched with
50 mmol/L NH4Cl (30 minutes at room temperature), and
antigen retrieval was performed by incubation of sections with
hot 0.1 mol/L sodium citrate buffer (10 minutes at room
temperature). Sections were blocked in 5% normal goat serum
þ 5% bovine serum albumin in PBS þ 0.1% Triton X-100
and incubated with primary antibodies overnight at 4�C. Slides
were washed 3 � 5 minutes in PBS and incubated with sec-
ondary antibodies in blocking buffer for 45 minutes at 37�C.
Slides were washed 3 � 5 minutes in PBS, counterstained
with DAPI, and coverslipped with 50% glycerol. All slides
were imaged using a Zeiss LSM 800 confocal microscope
with Airyscan superresolution (Dublin, CA). See Table 1 for
dilutions of all primary and secondary antibodies.

DHE Staining

Reactive oxygen species were measured in retinal cry-
osections by dihydroethidium (DHE) staining. Enucleated
eyes were dissected on ice-cold PBS, frozen in Tissue Tek
OCT Compound within 15 minutes of enucleation, and
cryosectioned at 10 mm. Slides were stored at �20�C and
brought to room temperature before rehydration with 1 �
PBS. Fresh frozen retinal cryosections spanning the optic
nerve were incubated with DHE (Thermo Fisher, Waltham,
MA; 1:5000) for 20 minutes, followed by counterstaining
with DAPI (1:10,000).

Quantitative PCR

Gene expression of glucose transporters, inflammatory cy-
tokines, and oxidative stress molecules was measured by
quantitative PCR on dissected retinal tissue. RNA was
extracted using the RNAeasy Mini Kit (Qiagen, Hilden,
Germany; number 74104), and RT-PCR was performed
using the Verso cDNA synthesis kit (Thermo Scientific;
number AB1453A). Radiant Green 2X qPCR Lo-ROX
enzyme (Alkali Scientific Inc., Fort Lauderdale, FL) was
used for all real-time quantitative PCRs. Relative fold
929
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Table 2 Primers

Gene Forward primer Reverse primer

Tnf 50-CATCTTCTCAAAATTCGAGTGACAA-30 50-TGGGAGTAGACAAGGTACAACCC-30

Il1b 50-GATCCACACTCTCCAGCTGCA-30 50-CAACCAACAAGTGATATTCTCCATG-30

Ptgs2 (Cox2) 50-CACAGCCTACCAAAACAGCCA-30 50-GCTCAGTTGAACGCCTTTTGA-30

Nos2 50-GACTCTTGGTGAAAGTGGTGTTC-30 50-GCAGACAACCTTGGTGTTGA-30

Actb 50-TCATGAAGTGTGACGTTGACATCCGT-30 50-CCTAGAAGCATTTGCGGTGCACGATG-30

Aiello et al
changes in gene expression were determined using the
comparative threshold cycle (CT) method (2DDCT method).
For all analyses, b-actin was used as the reference gene.
Hypoxia-inducible factor (HIF)-1a (number QT01039542)
and vascular endothelial growth factor (VEGF; number
QT00160769) were analyzed using primers from Qiagen.
Primers for all other genes investigated are listed in Table 2.
Statistical Analysis

For all experiments, data are presented as average � SEM
unless otherwise indicated. At least three mice per genotype/
time point were utilized for all experiments. Statistical sig-
nificance was determined by one- or two-way analysis of
variance (ANOVA) with Tukey multiple comparisons test
using GraphPad Prism 6 Software (Boston, MA). Western
blot and real-time quantitative PCR analysis was performed
using one-way ANOVA (genotype). Analysis of a-waves, b-
waves, and the light-adapted response was performed using
two-way ANOVA (genotype and flash intensity) for each
time point. The c-wave and each OP was analyzed by one-
way ANOVA (genotype) for each time point. No repeated-
measures tests were performed.
Results

Glut1þ/þLeprdb/db mice on the C57BLKS background
exhibit elevated body weight and blood glucose levels as
early as 4 weeks of age.8 When crossed with the Glut1þ/�

line to generate a Glut1þ/�Leprdb/db mouse, there was no
change in the development of obesity (Figure 1A) or hy-
perglycemia (Figure 1B), despite the presence of only one
Glut1 (Slc2a1) allele. Glut1þ/� mice displayed a significant
reduction in Glut1 levels, as depicted by Western blot
analysis (Figure 1C) [F(3,8) Z 15.73, P Z 0.0010] and
immunohistochemistry (Figure 1D). As previously shown,
Glut1 was expressed throughout the retina, with high
expression in the RPE and exclusion from the outer seg-
ments.9 Notably, as observed in the streptozotocin-induced
type 1 diabetic mouse retina,7 Glut1 appeared to be
elevated in the Leprdb/db retina.

Leprdb/db mice on the C57BLKS background initially
display reductions to ERG b- and c-wave amplitudes at 8
weeks of age.10 Herein, significant reductions were found in
930
all ERG component amplitudes (including the a-wave) at 16
weeks. Therefore, to determine whether the reduction of
Glut1 affected the onset and progression of ERG defects
found in these mice, strobe flash electroretinography was
conducted at both 8 and 16 weeks of age. A 10-step ERG
protocol was performed on control (Leprdb/þ) and diabetic
(Leprdb/db) mice with wild type (Glut1þ/þ) or reduced levels
of Glut1 (Glut1þ/�). Figure 2A (8 weeks) and Figure 2C (16
weeks) depict representative waveform traces from step 9 of
the protocol (1.4 log cd.s/m2). As expected, no differences
were observed between Glut1þ/þLeprdb/þ and Glut1þ/

�Leprdb/þ mice, and Glut1þ/þLeprdb/db mice exhibited sig-
nificant reductions in a- and b-wave amplitudes compared
with controls (Figure 2, B and D) [ANOVAs by genotype:
a-wave, F(3, 229) Z 12.53, P < 0.0001; b-wave
F(3,229) Z 14.02, P < 0.0001). However, both compo-
nents were fully normalized in Glut1þ/�Leprdb/db mice, at
both ages (Figure 2, AeD). The average amplitude of each
mouse cohort in response to all flash intensities is shown in
the intensity response curves in Figure 2B (8 weeks) and
Figure 2D (16 weeks). Importantly, no difference between
Glut1þ/þLeprdb/þ and Glut1þ/�Leprdb/þ mice was observed
in the scotopic light-evoked response to any flash lumi-
nance, at either age.
As reduced OP amplitudes and increased latency of these

filtered wavelets are also characteristic of early DR, the OPs
from each cohort of mice were analyzed at both ages.
Figure 2, E and F, depicts the normalization of the OP
amplitudes in the Glut1þ/�Leprdb/db mice compared with
Glut1þ/þLeprdb/db mice (Figure 2, E and F) [ANOVAs by
genotype: OP1 8 weeks, F(3,15) Z 6.673, P Z 0.0044;
OP2 8 weeks, F(3,16) Z 5.656, P Z 0.0077; OP3 8 weeks,
F(3,16) Z 8.653, P Z 0.0012; OP1 16 weeks,
F(3,11) Z 7.846, P Z 0.0045; OP2 16 weeks,
F(3,11) Z 24.58, P < 0.0001; OP3 16 weeks,
F(3,11) Z 11.40, P Z 0.0011]. Table 3 further demon-
strates the significant increase in latency of OP2 and OP3 at
16 weeks in the Glut1þ/þLeprdb/db mice, which was
normalized by the reduction of Glut1 in the Glut1þ/�Leprdb/
db strain (Table 3) [ANOVA: OP2 16 weeks,
F(3,11) Z 13.47, P Z 0.0005; OP3 16 weeks,
F(3,11) Z 12.10, P Z 0.0008].
Dysfunction of the RPE is one of the earliest patho-

physiological hallmarks of DR. To assess whether reduction
of the Glut1 similarly prevents RPE dysfunction in T2D,
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Leprdb/db mice exhibit obesity and hyperglycemia despite expression of one Glut1 allele. A: Body weight of nondiabetic [Lepr control (cntl)] and
diabetic (Leprdb/db), Glut1 wild-type (Glut1þ/þ) or heterozygous (Glut1þ/�) mice from 8 to 16 weeks of age. B: Nonfasting blood glucose. Measurements >250
mg/dL were considered hyperglycemic. Red line indicates threshold for hyperglycemia (250 mg/dL). C: Protein levels of Glut1 from dissected retinas of 16-
weekeold mice. Retinas were dissected, and total Glut1 levels were normalized to b-actin for quantitative analysis. D: Confocal images of Glut1 immuno-
reactivity (green) and DAPI counterstaining (blue) in cryosections from retinas at 16 weeks of age. n � 3 in each group (C). *P � 0.05, **P � 0.01. Scale
bar Z 50 mm (D).

Reduced Glut1 Stops Diabetic Retinopathy
c-wave amplitudes evoked in response to a 5-cd.s/m2 light
stimulus (Figure 3) were analyzed. Representative wave-
forms are depicted in Figure 3, A and C. As observed in
response to the strobe flash stimulus, i) no differences in
response were identified in c-wave amplitudes between
Glut1þ/þLeprdb/þ and Glut1þ/�Leprdb/þ mice, ii) Glut1þ/

þLeprdb/db mice exhibited a significant reduction in c-wave
amplitude compared with both nondiabetic controls, and iii)
c-wave amplitudes of Glut1þ/�Leprdb/db mice were fully
normalized (Figure 3, B and D) [ANOVA by genotype: F(3,
208) Z 13.98, P < 0.0001].

Cone photoreceptor function can be evaluated by the
photopic light-adapted response. Following the c-wave,
mice were light adapted for 7 minutes before another strobe
flash stimulus (Figure 4). At 8 weeks of age, the light-
adapted responses of the Glut1þ/þLeprdb/db mice were
reduced (Figure 4A), but not to the same extent as the dark-
adapted responses, or the c-wave. However, at both 8 and 16
weeks of age (Figure 4C; when a significant reduction in the
light-adapted response of Glut1þ/þLeprdb/db mice was
identified), Glut1þ/�Leprdb/db responses were restored
(Figure 4, B and D) [ANOVA by genotype: F(3,
227) Z 4.570, P Z 0.004].
The American Journal of Pathology - ajp.amjpathol.org
To determine whether systemic reduction of Glut1 also
affected presence of oxidative stress and inflammation in the
retina of Leprdb/db mice, expression of oxidative stress
molecules cyclooxygenase-2 (Cox2) and nitric oxide syn-
thase 2 (Nos2) (Figure 5, A and B) was analyzed. Expres-
sion of each gene was significantly elevated in Glut1þ/

þLeprdb/db retinas compared with nondiabetic controls, and
levels were normalized in retinas dissected from Glut1þ/

�Leprdb/db mice [Cox2, F(3, 8)Z 8.723, PZ 0.0067;Nos2,
F(3, 8) Z 17.59, P Z 0.0007] (Figure 5, A and B). To
further evaluate the presence of superoxide production in
the retina, fresh frozen sections incubated with DHE were
evaluated. Figure 5C depicts elevated levels of DHE
throughout the inner nuclear layer, outer nuclear layer, and
outer segments of Glut1þ/þLeprdb/db retinas compared with
nondiabetic controls and Glut1þ/�Leprdb/db mice.

The expression of classic inflammatory cytokines, IL-1b
and tumor necrosis factor (TNF)-a (Figure 6, A and B), and
pro-angiogenic factors, HIF-1a and VEGF (Figure 6, C and
D) was analyzed next. Expression of each gene was
significantly increased in Glut1þ/þLeprdb/db retinas
compared with nondiabetic controls, and levels were
normalized in retinas dissected from Glut1þ/�Leprdb/db mice
931
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Figure 2 Diabetes-induced electroretinogram (ERG) defects are normalized in mice with reduced Glut1. AeF: Strobe flash ERGs were performed on
nondiabetic [Lepr control (cntl)] and diabetic (Leprdb/db), Glut1 wild-type (Glut1þ/þ) or heterozygous (Glut1þ/�) mice at both 8 and 16 weeks of age. A and C:
Representative strobe flash ERG waveform traces evoked in response to a 1.4 log cd.s/m2 light stimulus are depicted from testing at 8 (A) and 16 (C) weeks. B
and D: Luminance-response functions for the a- and b-wave. E: Representative traces of filtered oscillatory potentials (OPs) from strobe flash ERGs evoked by a
1.4 log cd.s/m2

flash stimulus at 8 (left side) and 16 (right side) weeks of age. F: Average amplitude of OP1, OP2, and OP3 at 8 (left side) and 16 (right side)
weeks of age. Amplitude was measured from the minimum of the preceding trough to the peak of the potential. *P � 0.05, **P � 0.01, ***P � 0.001, and
****P � 0.0001.

Aiello et al
[ IL-1b, F(3, 10) Z 56.23, P < 0.0001;TNF-a, F(3,
8) Z 11.24, P Z 0.0031;HIF-1a, F(3, 8) Z 33.60,
P < 0.0001;VEGF, F(3, 9) Z 11.60, P Z 0.0019]
(Figure 6, AeD). To assess the activation status of Müller
glia in the Glut1þ/þLeprdb/db retina, immunohistochemistry
was performed on retinal cryosections using an
antieglutamine synthetase antibody (Figure 6E). As ex-
pected, in the Glut1þ/þLeprdb/db retina, staining was
932
observed from the external limiting membrane to the
ganglion cell layer, spanning the length of the Müller glia.
However, immunoreactivity was primarily limited to
Müller glia end feet (and autofluorescent blood vessels) in
all other cohorts. These data demonstrate that reduction of
Glut1 prevents both functional defects of the diabetic retina
as well as the development of inflammation and oxidative
stress.
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Table 3 Diabetes Does Not Alter OP Latency with or without Reduction in Glut1

Oscillatory potential latency, average � SEM, milliseconds (n)

Age, weeks Genotype OP1 OP2 OP3

8 Glut1þ/þ Lepr cntl 11.37 � 0.277 (6) 23.30 � 0.372 (6) 34.25 � 0.397 (6)
8 Glut1þ/þ Lepr db/db 11.81 � 0.485 (5) 23.80 � 0.424 (5) 34.61 � 0.564 (5)
8 Glut1þ/e Lepr cntl 11.09 � 0.277 (6) 23.57 � 0.411 (6) 33.83 � 0.668 (6)
8 Glut1þ/e Lepr db/db 11.09 � 0.734 (3) 23.02 � 0.999 (3) 34.39 � 1.544 (3)
16 Glut1þ/þ Lepr cntl 12.06 � 0.277 (4) 24.13 � 0.555 (4) 35.36 � 0.734 (4)
16 Glut1þ/þ Lepr db/db 11.23 � 0.537 (4) 27.04 � 0.240 (4)*,y 38.27 � 0.588 (4)y,z

16 Glut1þ/e Lepr cntl 10.82 � 0.215 (4) 23.30 � 0.588 (4) 33.70 � 0.712 (4)
16 Glut1þ/e Lepr db/db 11.09 � 0.277 (3) 23.30 � 0.480 (3)z 33.02 � 0.548 (3)x

Cntl, control; OP, oscillatory potential.
*P < 0.01, Glut1þ/þ Lepr cntl versus Glut1þ/þ Lepr db/db.
yP < 0.01, Glut1þ/� Lepr cntl versus Glut1þ/þ Lepr db/db.
zP < 0.05, Glut1þ/þ Lepr cntl versus Glut1þ/þ Lepr db/db.
xP < 0.01, Glut1þ/þ Lepr db/db versus Glut1þ/� Lepr db/db.

Reduced Glut1 Stops Diabetic Retinopathy
Discussion

This study demonstrates, for the first time, that moderate,
systemic reduction of Glut1 is effective in preventing retinal
pathophysiology in a mouse model of T2D. All previous
work to date investigating the therapeutic potential for Glut1
in DR utilized mouse models of type 1 diabetes.7,11e13

Therefore, the findings presented here are critically impor-
tant as, of the one-third of diabetic patients who will develop
DR, 90% to 95% experience T2D.14,15

Functional retinal defects, neurodegeneration, and inflam-
mation were first identified in the Leprdb/db spontaneous T2D
mouse model by Bogdanov et al16 in 2014, establishing early
Figure 3 Retinal pigment epithelium defects are ameliorated in diabetic Glut1
stimulus for 10 seconds. Red line indicates duration of light stimulus. B and D: Av
wave was determined by subtracting the average baseline amplitude from the
****P � 0.0001. Cntl, control.
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neuronal involvement as a hallmark of DR in T2D. This
study also demonstrated that caloric restriction, which
reduced hyperglycemia in the mice, led to a normalization of
ERG OP latency and amplitude, reduced retinal inflamma-
tion, and prevented ganglion cell death.16 Recently, in vivo
ERGs from 3- and 6-montheold Leprdb/db mice demon-
strated reductions in a- and b-wave amplitudes only at 6
months.17 When compared with ex vivo ERGs performed on
retinas dissected at the same age, normal light-evoked re-
sponses were recorded from retinas cultured in a normogly-
cemic environment. These findings revealed that extrinsic
factors induced the functional defects in Leprdb/db diabetic
mice, indicating that the defects are reversible.
þ/� mice. A and C: Representative waveforms induced by a 5-cd/m2 white
erage amplitude of the c-wave at 8 and 16 weeks of age. Amplitude of the c-
maximal response following the b-wave. *P � 0.05, **P � 0.01, and
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Figure 4 Photopic electroretinogram (ERG) defects are normalized in diabetic Glut1þ/� mice. A and C: Representative light-adapted ERG waveform traces
evoked by a 1.4 log cd.s/m2 light stimulus superimposed over the adapting field. B and D: Luminance-response function for the light-adapted responses at 8
(B) and 16 (D) weeks of age. Amplitudes were calculated by summing the peak of the waveform with the amplitude at 8.3 milliseconds. Cntl, control.

Aiello et al
Indeed, the current findings demonstrated that reducing
Glut1 normalized ERG defects seen at 8 and 16 weeks in
Leprdb/db mice. However, the mice remained severely obese
despite the reduction in Glut1 and were difficult to maintain
through 24 weeks. Of the mice that did survive, electro-
retinograms were similarly restored to normal amplitudes
(data not shown). These findings suggest that obesity (and
presumably hyperlipidemia) does not overtly contribute to
retinal dysfunction associated with DR and that glucose
transport into the retina or retinal glucose metabolism can be
utilized as a primary target for intervention.

It has been suggested that oxidative stress both contributes
to and is a consequence of metabolic dysfunction associated
with DR.18 Evidence of oxidative stress in Leprdb/db mice has
been observed as early as 8 weeks of age,16 and glial acti-
vation was increased in diabetic mice at all ages/time points
examined. Herein, elevated levels of inflammatory cytokines,
oxidative stress molecules, and pro-angiogenic factors were
found at 16 weeks of age. Moreover, glutamine synthetase
elevation in Müller glia demonstrated a neuroprotective effect
by these cells. Bogdanov et al16 found elevated levels of
Slc38a1, the glutamine transporter. These increases in both
glutamine synthetase and the glutamine transporter demon-
strate that the diabetic retina is attempting to combat eleva-
tions in glutamate to prevent neural toxicity and cell death.
More importantly, in addition to the prevention of ERG de-
fects, Glut1þ/�Leprdb/db mice displayed low levels of gluta-
mine synthetase, superoxide production (DHE), as well as
control expression levels of IL-1b, TNF-a, VEGF, HIF-1a,
Cox2, and Nos2 (Figure 5), indicating that both functional
defects as well as molecular signatures of diabetic retinas
(reactive oxygen species and inflammation) are normalized
by reducing Glut1.
934
An increase in Glut1 has been demonstrated in the
streptozotocin-induced diabetic retina.7 Here, the study
shows a similar trend for increased Glut1 throughout the
Glut1þ/þLeprdb/db retina (Figure 1, C and D), which was not
observed in the Glut1þ/�Leprdb/db mice. These findings
indicate that a glucose-induced increase in Glut1 may drive
the elevation. When glucose transport to the retina is limited
by the systemic reduction in Glut1 caused by loss of one
Slc2a1 allele, Glut1 is not increased. This follows the
premise of glucose-induced glucose uptake more commonly
observed occurring via Glut4 in muscle, fat, and heart,
where glucose is insulin-regulated.19 Future investigations
will determine whether Glut1 levels are altered by insulin
signaling in the retina and whether Glut1 activity, rather
than expression, can also be modulated to prevent DR.
Notably, the use of a mouse strain that expresses only one

Glut1 allele to induce reduction of Glut1 provides a means
to extrapolate our findings to hypothesize how a moderate,
systemic inhibition of Glut1 achieved via pharmacology
could be utilized for prevention of DR. Cancer therapies
already utilize Glut1-specific and pan-Glut inhibitors to
combat the increased proliferation of neoplastic cells.20,21

Cancer cells utilize the same metabolic paradigm as the
retina, relying primarily on glycolysis (also known as the
Warburg effect), and a promising new field of chemotherapy
for cancer is the inhibition of Glut-mediated transport of
glucose to starve tumors.
Interestingly, many therapeutics identified to reduce or

prevent characteristics of DR are known Glut inhibitors also
used in anti-neoplastic cancer studies.20 Among these
include curcumin,22,23 genistein,24e26 quercetin,27e29 and
resveratrol.30e33 Some inhibit Glut1 at the gene/protein
level (genistein and resveratrol), whereas others also
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Oxidative stress is reduced in diabetic Glut1þ/� mice. A and B: Quantification of oxidative stress mediators [Cox2 (A) and Nos2 (B)] at 16 weeks
of age. Relative fold changes in gene expression were determined using the 2DDCT method. Both genes were normalized to expression of b-actin and compared
with expression in Leprdb/þGlut1þ/þ mice. C: Confocal microscopy of fresh frozen retinal cryosections from 24-weekeold mice stained with dihydroethidium
(DHE; red). *P � 0.05, **P � 0.01. Scale bar Z 50 mm (C). Cntl, control; GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; ONL,
outer nuclear layer; OPL, outer plexiform layer; OS, outer segments.
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noncompetitively (resveratrol) or competitively inhibit
Glut1 (quercetin).20 Many of these compounds are also
polyphenols and may exert their actions through multiple
mechanisms, including targeting of cell signaling, hormonal
regulation, and anti-oxidation. The lipid/cholesterol drug,
fenofibrate, which has also emerged as a promising treat-
ment for DR among patients with T2D,34 similarly reduces
The American Journal of Pathology - ajp.amjpathol.org
Glut1 levels in cancer cells.35 Much like the current findings
of normalized retinal pathophysiology by reducing Glut1, it
has been shown to be effective for DR despite sustained
hyperlipidemia.

Whether by use of a naturally occurring compound, or
synthetically generated small-molecule inhibitor, moderated
targeting of glucose transport is essential as the reduction of
935
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Figure 6 Inflammatory cytokines are not elevated in diabetic Glut1þ/� mice. AeD: Quantification of inflammatory cytokines [IL-1b (A) and TNF-a (B)] and
pro-angiogenic factors [HIF-1a (C) and VEGF (D)] at 16 weeks of age. Relative fold changes in gene expression were determined using the 2DDCT method. All
genes were normalized to expression of b-actin and compared with expression in Leprdb/þGlut1þ/þ mice. E: Confocal microscopy of retinal cryosections from
16-weekeold mice stained with antieglutamine synthetase (red). *P � 0.05, **P � 0.01, ***P � 0.001, and ****P � 0.0001. Scale bar Z 50 mm (E). Cntl,
control; GCL, ganglion cell layer; INL, inner nuclear layer, IPL, inner plexiform layer; ONL, outer nuclear layer; OPL, outer plexiform layer.
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glucose levels in the brain beyond normoglycemia is detri-
mental. Systemically, loss of a single Glut1 allele in humans
leads to Glut1 deficiency syndrome, characterized by sei-
zures, reduced locomotion, abnormal brain microvasculature,
936
micrencephaly, neuroinflammation, developmental delay,
and speech/language impairments. This sequelae of symp-
toms arises from insufficient glucose in the brain for neuronal
metabolism.36,37 However, in a mouse model of Glut1
ajp.amjpathol.org - The American Journal of Pathology
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deficiency syndrome, when Glut1 reduction is induced in
adult mice rather than at birth, the pathologic phenotypes of
Glut1 deficiency syndrome are prevented.38 Therefore, as
reduction of Glut1 in diabetic patients would be initiated after
development is complete, targeting of Glut1 is a viable
treatment option.

With specific regard to retinal function, although sus-
tained hypoglycemia within the retina leads to age-related
vision loss, characterized by reduced visual acuity, ERG
amplitudes, and death of inner retinal neurons,39 acute hy-
poglycemia in individuals with or without diabetes induced
reversible reductions in ERG amplitudes, appearance of
scotomas, and reduced contrast sensitivity. All perturbations
in vision and retinal function were stabilized on euglyce-
mia.40 The use of precision pharmacology and nano-
concentrations of Glut1 inhibitors for the treatment of DR
can ensure glucose concentrations are titrated to normal
endogenous levels. Alternatively, topical ocular treatment
with Glut1 inhibitors may be considered. Future studies will
utilize data from anti-cancer drug trials to design a treatment
paradigm using Glut1 inhibitors for the determination of
whether systemic, pharmacologic inhibition of Glut1 can
also be harnessed to prevent or treat DR. Looking toward
whole-body treatment of Glut1 inhibition for T2D, which
may also be relevant for the other microvascular compli-
cations of diabetes (neuropathy and nephropathy) as well as
the macrovascular complications associated with diabetes
(eg, coronary heart disease and cerebrovascular disease), it
will be important in translation to clinical research to i)
begin Glut1 inhibition early, ii) concomitantly treat the mice
for comorbidities, such as obesity, and iii) determine how a
multipharmacologic approach to treating T2D affects Slc2a1
expression, Glut1 levels, and Glut1 activity in the retina
(and other tissues).

In sum, the current findings demonstrate that a moderate,
systemic reduction of Glut1 inhibits both functional retinal
defects observed by electroretinography and the molecular
signatures of retinal oxidative stress and inflammation
characteristic of the Leprdb/db mouse model of type 2 dia-
betes. These data are significant as 95% of patients with
diabetes experience type 2 diabetes, and preclinical in-
vestigations for therapies must address this group.
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