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Summary

Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-

dependent degradation of proteins. TPD is of interest in drug development as it can address 

previously inaccessible targets. However, degrader discovery and optimization remain an 

inefficient process due to a lack of understanding of the relative importance of the key 

molecular events required to induce target degradation. Here we use chemo-proteomics to 

annotate the degradable kinome. Our expansive dataset provides chemical leads for ~200 kinases 

and demonstrates that the current practice of starting from the highest potency binder is an 

ineffective method for discovering active compounds. We develop multitargeted degraders to 

answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase 

degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also 

provides a blueprint for evaluating targeted degradation across entire gene families, to accelerate 

understanding of TPD beyond the kinome.

In Brief:

A synthetic chemistry and chemo-proteomics platform used to annotate the ‘degradable kinome’, 

provides chemical leads for developing degraders of approximately 200 distinct kinase targets and 

offers new general design principles for developing future kinase degraders.

Graphical Abstract
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E3 ligase

INTRODUCTION

Targeted Protein Degradation (TPD) is an emerging therapeutic modality with the potential 

to overcome limitations of traditional pharmacological inhibition approaches (Bondeson and 

Crews, 2017; Burslem and Crews, 2020; Neklesa et al., 2017). TPD uses small molecules 

(degraders) to hijack the cellular degradation machinery by recruiting E3 ubiquitin ligases to 

proteins of interest (POI), which would not otherwise be recognized as substrates (Sakamoto 

et al., 2001) (Figure 1A).

A key promise of TPD is the prospect of increased efficacy due to a single degrader 

molecule being able to degrade multiple protein molecules, this unique mechanism of action 

is referred to as event-driven pharmacology (Bondeson et al., 2015). Degraders result in loss 

of both enzymatic and non-enzymatic functions of proteins, such as the scaffolding function 

of kinases (Cromm et al., 2018), or the gene regulatory functions of transcriptional effectors 

(Winter et al., 2015). Finally TPD may expand our ability to target the remaining 80% of the 

human proteome that has previously been considered undruggable (Russ and Lampel, 2005), 
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due to the ability to utilize phenotypically silent ligands as POI-recruiting handles (Silva et 

al., 2019).

The majority of degraders recruit the CUL4-RBX1-DDB1-CRBN (CRL4crbn) (Ito et al., 

2010; Kronke et al., 2014; Winter et al., 2015), or CUL2-RBX1-ElonginB-ElonginC-VHL 

(CRL2vhl) (Buckley et al., 2012; Galdeano et al., 2014) E3 ligases to ubiquitinate a POI. 

Additional ligases, such as MDM2 (Hines et al., 2019), cIAP1 (Okuhira et al., 2011), XIAP 

(Ohoka et al., 2017) and others (Bingqi et al., 2020; Lu et al., 2018; Simonetta et al., 2019; 

Spradlin et al., 2019; Ward et al., 2019; Zhang et al., 2019) have also been utilized. Over 

60 POIs from diverse protein families and structural classes have been successfully degraded 

using a TPD strategy. Notable targets include; BCR/ABL (Lai et al., 2016), BRD4 (Lu et 

al., 2015; Nowak et al., 2018; Winter et al., 2015; Zengerle et al., 2015), HDAC6 (Wu et 

al., 2019), PI3K (Li et al., 2018) and aberrant Tau (Silva et al., 2019). Although degraders 

often have chemical properties outside the typical range for therapeutics (Lipinski et al., 

1997), recent advancements in medicinal chemistry have resulted in development of orally 

bioavailable TPD molecules evaluated in human trials (NCT03888612, NCT04072952).

Despite the widespread exploration of TPD as a novel pharmacological modality, it remains 

difficult to predict which proteins are tractable and which may prove recalcitrant to this 

approach. Similarly, because of a non-linear dependence on binding, degradation target 

profiles often differ vastly from parental inhibitor selectivity profiles (Olson et al., 2018), 

and therefore large empirical datasets are necessary to establish the TPD target space.

We chose to focus on kinases due to the size of the gene family, the availability of 

chemically-diverse binders, and their high translational potential. Despite the increasing 

number of small molecule kinase inhibitors approved by the FDA (52 as of January 1st 

2020) or in clinical development (> 175) (Roskoski Jr, 2019; Roskoski, 2019), only 7% 

of the human kinome has been therapeutically explored, and it is likely that many more 

attractive kinase targets await discovery. In this study, we built an experimental map of 

degradable kinases, targeting all clades of the kinome and containing chemical starting 

points for more than 200 distinct kinases, which we present as a public resource (http://

proteomics.fischerlab.org), to accelerate chemical probe development, drug discovery, and 

the study of fundamental aspects of protein degradation pathways.

RESULTS

Part 1: An experimental map of the degradable kinome

Mapping the Degradable Kinome—The human protein kinase super family consists 

of 514 protein kinases (Manning et al., 2002), which makes up 2.5% of the total human 

genome. Utilizing the vast amount of chemical matter reported to bind kinases, as well 

as access to more than six thousand protein kinase X-ray structures in the Protein Data 

Bank (PDB) (Roskoski, 2019) to guide the positioning of linker exit vectors compatible 

with compound binding, we developed a large library of kinase-targeting degraders as a 

toolset to define the degradable kinome (Table S1). We designed this library to incorporate 

a wide range of kinase targeting scaffolds and binding modes, including Type I, Type II and 

allosteric. These parental molecules were derived from numerous sources including; FDA 

Donovan et al. Page 4

Cell. Author manuscript; available in PMC 2023 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT03888612
https://clinicaltrials.gov/ct2/show/NCT04072952
http://proteomics.fischerlab.org/
http://proteomics.fischerlab.org/


approved small molecules, such as imatinib (Gleevec), and ibrutinib (Imbruvica), where 

degraders that can overcome clinical resistance may be of value, patents, publications and 

novel in-house kinase targeting ligands (Figure 1C; Table S1). Finally, several degraders 

were synthesized based on highly multitargeted kinase inhibitors, such as desmethoxy-

TAE684, AT7519 and ponatinib. Based on reported and in-house biochemical data, the 

parental inhibitors corresponding to degraders profiled in this study are able to engage 

370 of the 395 unique kinases present in the DiscovRX kinomeSCAN panel (93%), 

corresponding to at least 70% coverage of the human kinome, enabling large scale 

investigation of the relative degradability of kinases (Figure 1D, E; Data File S1). To 

increase the probability of favorable ternary complex formation between a target kinase and 

the recruited ligase, we employed a variety of linker lengths, compositions and attachment 

chemistries, and incorporated E3-recruiting ligands targeting both CRBN and VHL into the 

library design (Figure 1C; Table S1). Degraders were prescreened for cellular permeability 

in the relevant ligase engagement assays and a final set of 91 compounds were selected 

based on their chemical diversity and their ranking in cellular ligase engagement assays 

relative to close analogs for unbiased profiling of their degradation targets (Table S1; Figure 

1B, C).

We employed global proteomics to identify targets by measuring changes in protein 

abundance in response to treatment with each of the kinase degrader molecules (Table 

S1-3). Initial standard screening conditions of 5 h treatment time with 1 μM degrader 

compound were selected to reduce the likelihood of observing secondary effects on 

protein abundance and allow for similar comparisons (Bushman et al., 2020) (Table S1). 

Deep proteome coverage permitted quantification of 411 protein kinases across 7 cell 

lines: HEK293T, MOLT-4, Mino, MM1.S, OVCAR-8, KATO III and KELLY cells (Table 

S1-2). Using significance cutoffs of FC < −1.25, P-value < 0.01, identified 172 degraded 
protein-kinases, corresponding to 33% of the human kinome, and 42% of the detected 

kinome (Figure 1D, E; Data File S1; Table S2-3). An additional 204 proteins, that define 

the extended human kinome, have been identified as protein kinase-like and include 

mitochondrial kinases, metabolic kinases which phosphorylate lipids, carbohydrates and 

nucleosides, and a subset of bromodomains (Moret et al., 2020). We detected 173 of these 

proteins in at least one experiment, and identified degraders for 40 proteins from this list 

(Table S4; Figure S1A), validating them as pharmacologically related to protein kinases, 

and tractable TPD targets. In total, we identify 212 degraded protein kinase/kinase-related 
targets, a substantial increase from the 57 kinases that have been reported to be targetable 

through degrader-induced mechanisms in the literature (Table S5; Figure 1F) (Bondeson 

et al., 2018; Huang et al., 2018). Additionally, our dataset identifies kinases that may be 

refractory to degradation using currently available TPD technologies, and characterizes their 

binary target engagement, ternary complex formation and expression profiles (Table S2-6). 

This data quantifies how different parental kinase-binder chemotypes affect degradation of 

individual kinases.

Assigning a Degradability Score—Empirical measures of target ligandability, a term 

that reflects the expected balance between effort and reward in a traditional small molecule 

inhibitor discovery project based on currently available technologies, have proved critical for 
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target prioritization (Vukovic and Huggins, 2018). Although development of targeted protein 

degraders requires a POI binder, among already-liganded proteins such as kinases, we 

hypothesized that different targets would have a different propensity for current approaches 

to degrader-mediated destruction, which we termed ‘degradability’. To assess degradability, 

we determined the frequency of degradation (number of times a kinase is determined to be 

a down-regulated hit across the database) for each protein kinase across all 155 treatments 

(Table S3-4). We rationalized that the probability of identifying the same kinase as a false 

positive in multiple treatments is low, therefore this analysis also served to assess the 

robustness of our data and subsequent interpretations. Across the 172 hits, 136 were shown 

to be downregulated in at least two independent treatments, and remarkably, 9 of these 

(CDK4, AURKA, FER, WEE1, BLK, LIMK2, CDK6, GAK, LIMK1) were each degraded 

in at least 40 of the 155 independent treatments, emphasizing their predisposition to induced 

degradation (Figure 1G; Table S4).

To assess transcriptional changes in response to the most multitargeted degrader molecule, 

SK-3–91, we performed a time-course RNA-sequencing experiment (Table S7) and found 

that transcript levels were largely unchanged up until the 4 h time point (Figure S1B), 

indicating that the hits in our database are unlikely to be transcriptionally downregulated. 

By the 8 and 12 h time points, complete transcriptional collapse occurred (Figure S1C), 

an unsurprising result given the number of kinases (including transcriptional kinases such 

as CDK9) that are down-regulated in response to SK-3–91, and these data were therefore 

excluded from our kinase degradation count and degradability scoring assessments (Figure 

1E, G).

We next corrected the frequency of degradation assessment for over-representation of 

molecules in the full dataset by omitting replicate profiling of compounds under different 

experimental conditions. This allowed us to calculate “the degradability score” across all 

unique compound treatments (Table S8). Unsurprisingly, the top degradable kinases mirror 

those from the previous analysis (CDK4, AURKA, FER, WEE1, BLK), confirming that in 

sufficiently large datasets, even with over-representation of certain molecules, frequency of 

degradation is a good measure of general tractability.

We utilized published literature to assess the degree to which our scoring underestimates 

kinase degradability (Table S5). Here, we found that 52 of the 57 kinases with at least one 

active degrader reported were also identified as degradable in this study (> 90%, Figure 

1F). Of the 5 degradable kinases that were detected in at least one published experiment by 

proteomics, and not degraded by any molecules in our study (ALK, CK2, MEK, MAPK13 

and HER2) we found that all targets could be explained by low frequency of detection (Table 

S2), and/or slow degradation kinetics by the reported molecule. For example, reported CK2 

degraders were active only at the 24 h time point (Chen et al., 2018). Outliers such as CK2 

represent limitations of the study, and indicate that some detected but not degraded kinases 

may indeed be tractable under different experimental conditions.

With a large dataset in hand, we evaluated whether our degradable kinase hits were biased 

towards kinases that are well-studied, by examining the correlation between frequency of 

degradation and maximum observed protein abundance fold change for each kinase, with 
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knowledge metrics such as the pubmed score (Pletscher-Frankild et al., 2015) and the 

number of entries in the PDB (Figure 1H; Figure S1D, E). We found no correlation between 

these variables, consistent with evidence that kinase inhibitor pharmacophores display a high 

degree of polypharmacology (Karaman et al., 2008; Knight et al., 2010) and indicating that 

our degradable kinome dataset may prove a valuable resource for generating initial leads 

for the development of selective chemical tools for understudied kinases (Rodgers et al., 

2018). This analysis revealed active degraders for at least 16 of the NIH’s understudied 

kinases, some of which may be highly tractable for TPD (Table S4, Figure 1I). For example, 

cyclin-dependent kinase 17 (CDK17) is degraded by 15 different compounds. Here, we 

identified at least one lead-like degrader molecule, DD-03–156, which induces potent and 

selective degradation of CDK17 and LIMK2 (Figure 1J).

The human kinome contains approximately 55 pseudokinases, which are kinases that 

lack catalytic phospho-transfer activity but often have important scaffolding functions, 

making them potentially attractive targets for degraders (Moret et al., 2020). Out of 42 

pseudokinases quantified, 10 were degradable by at least one compound in our set, including 

well characterized pseudokinases IRAK3 and TRIB3 (Table S4; Figure 1I). Due to the 

increased interest in targeting lipid kinases for therapeutic applications (Burke, 2018), 

we examined their degradability and identified leads for putative cancer targets PI3K-γ, 

PIP5K1A, PIP4K2B and PIP4K2C (Table S4; Figure 1I). Together with our extended 

kinome analysis (Table S4), these data suggest a subset of therapeutically relevant non-

protein kinases are tractable targets for TPD.

Degradable Kinome Dataset Accelerates Lead Discovery—Current degrader 

design for a selected target typically starts with the identification of a high affinity binding 

ligand followed by the synthesis of a library of molecules incorporating different ligase 

recruiters and linkers. While the number of reported successes in compound development 

might imply that the design of these molecules is seamless (Lebraud and Heightman, 2017), 

some proteins have proven resistant to TPD, and most unsuccessful campaigns likely remain 

unpublished (Gasic et al., 2020; Zeng et al., 2019).

Beginning a targeted protein degrader discovery project with solid prior knowledge of 

optimal chemotype-target pairs can rapidly speed up hit-to-lead time (Brand et al., 2019; 

Cromm et al., 2018; Dobrovolsky et al., 2019; Jiang et al., 2019; Li et al., 2019; Olson et al., 

2018). Our chemoproteomics data provides critical insights regarding target tractability, and 

potential starting points for degraders against novel targets. Equally important is the negative 

data contained within the dataset which illuminates the kinases that are not yet ‘degradable’ 

and reveals the chemical structures that are not active towards a particular kinase target 

(Table S1; Table S3-4).

Here we used two examples to illustrate the utility of database-assisted prioritization of lead 

molecules for novel kinase targets (Figure 2). To identify tractable targets, we created a list 

of degradable kinases (Table S3; represented as heatmap Figure 2A) and evaluated the active 

molecules for lead-like selectivity profiles. Despite an absence of prior reports that CSK 

is a degradable kinase, 15 compounds in our library were able to target CSK. Compound 

DB-3-291 was found to induce the strongest degradation, in addition to having the greatest 
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selectivity (Figure 2A, B; Table S4). The DB-3-291 degrader incorporates the multitargeted 

inhibitor dasatinib as the kinase binding ligand, which was found to have a 1 nM in vitro 
binding affinity to CSK (KINOMEscan), however CSK was ranked 40th of over 100 kinases 

that had sub μM binding affinity (KD) (Davis et al., 2011). Thus, it is surprising that this 

molecule does not degrade additional kinases.

Given the general lack of reported selective CSK inhibitors, and the role of this kinase 

in promoting the innate immune response to viral DNA (Gao et al., 2020), DB-3-291 not 

only provides an advanced lead for further development into a chemical probe, but also 

demonstrates the utility of this resource for providing lead molecules for indications beyond 

oncology.

Using a similar strategy, we identified 31 molecules capable of inducing degradation of 

AURKA (Aurora A) (Figure 2C; Table S4). Incorporation of an AURKA selective inhibitor, 

alisertib, as the target binder resulted in potent and selective degradation by dAURK-4, 

validated by immunoblotting, confirming the relative ease of active compound development 

for highly degradable kinases with reported selective ligands (Figure 2C-F). Viability studies 

revealed that dAURK-4 has superior antiproliferative effects over parental inhibitor alisertib 

in the MM.1S multiple myeloma cell line (Figure 2G).

Part 2: Examining the effect of chemical and cellular variables on TPD outcomes

Having established tractable targets, we next set out to evaluate the contributions that 

chemical and cellular variables have on TPD efficacy and selectivity. Guidelines and 

observations, oftentimes contradictory, have been reported for the optimization of degraders 

and summarized in a number of reviews (Churcher, 2019; Paiva and Crews, 2019). However, 

as these studies are usually limited to one scaffold/binder, protein target and cell line 

combination, general conclusions about the frequency, magnitude and significance of these 

effects across a target space are challenging to extract. Motivated by a desire to understand 

the factors contributing to a successful TPD event, we sought to investigate some of the 

field’s hypotheses kinome-wide. Here, we examined cellular events including; cellular target 

engagement (Figure 3), ternary complex formation, target protein abundance, expression of 

components of the ubiquitin proteasome system (UPS) and ABC-drug transporters, target 

protein half-life, cell line variance (Figure 4), and the impact of altering the recruited 

E3-ligase (Figure 5), as well as chemical variables such as; linker length and exit vector 

(Figure 6).

Cellular Target Engagement Does Not Predict Degradation Efficiency—It is 

widely believed that degraders uncouple efficacy from target occupancy (Gadd et al., 2017; 

Nowak et al., 2018; Olson et al., 2018; Roy et al., 2019). While this has been confirmed 

in a limited number of individual studies, we sought to test the generalizability of this 

hypothesis. To do so, we selected the four degraders (SK-3–91, DB0646, SB1-G-187, and 

WH-10417–099) that could collectively induce degradation of the largest number of unique 

kinases (> 125 unique kinases) (Figure 3D, Figure S2A-B). To measure the occupancy of 

kinase targets in live cells, we performed KiNativ profiling (Patricelli et al., 2007) with 

each of the four degraders (Figure 3B). KiNativ is an activity based chemoproteomic assay, 
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which measures the ability of a small molecule of interest to block binding of a covalent 

ATP-mimetic probe. The resulting data revealed that of the ~ 170 kinases quantified in 

both experiments, 47 were significantly engaged (> 35% inhibition of binding) by at least 

one of the four multi-kinase targeting degraders (Figure S2C; Table S6). Comparison of 

the change in relative abundance of all quantified protein kinases (Figure S2D) with their 

occupancy revealed that there is no correlation between cellular target engagement and 

potency of degradation across the four degraders (Figure 3E), suggesting that target binding 

is not a major factor that drives efficacy of degradation. In agreement with this, unlike kinase 

inhibitors, the clogP and the number of (degraded) targets of a molecule are not correlated 

across the dataset (Table S1; Figure S2E). Furthermore, the proportion of degraded kinases 

with detectable binding varied dramatically between compounds, and was unrelated to 

cellular permeability (Figure 3F). However, we did observe instances where a specific kinase 

is potently degraded with a high affinity degrader but shows no degradation with weaker 

affinity molecules, suggesting that in order to be efficacious some degraders need to clear a 

certain threshold of binding affinity. For example, GCK is bound and degraded by DB0646 

(58 %I) and SB1-G-187 (94 %I), but not degraded by SK-3–91 (50 %I). We also observed 

examples of kinases that were engaged by multiple degraders to a similar extent, but were 

degraded by only one of these molecules, such as IRAK1 and CDK17 (Tables S4, S6).

There are many factors to consider when designing a degrader, and when a series is 

unsuccessful it is often difficult to gauge if this is in part because the target is particularly 

hard to degrade, and the size of the challenge if development is continued. Here, we used 

the degradability score to identify four protein kinases (CAMKK2, DNAPK, IKKe, and 

JAK2) that despite sufficient engagement by at least one molecule, show no indication 

of degradation by any of the 91 degraders included in our chemical library (Tables S4). 

To assess whether the absence of downregulation of protein levels could be a result of 

transcriptional compensation, we evaluated the transcriptional changes of these four kinases 

in response to a 4 h treatment with SK-3–91 (Table S7). The resulting transcriptional 

analysis showed no upregulation of these kinases (Figure S2F), ruling out compensatory 

upregulation (Figure S2C; Figure S2B), as causes of a lack of observed degradation.

Instead of relying on the binding profile of compounds to inform design, an activity-guided 

approach based on broad profiling data of multiple different scaffolds can accelerate lead 

identification for degraders.

Formation of a Stable Ternary Complex Does Not Predict Degradation 
Efficacy.—An important aspect of protein degraders is their potential for heightened 

target selectivity due to differences in the complementarity of target-ligase protein-protein 

interactions (Farnaby et al., 2019). For compound-induced degradation to be successful, 

productive ternary complex formation (ligase-degrader-POI) is necessary for proximity-

mediated ubiquitin transfer onto the POI. Multiple studies have reported that the stability 

of the E3-degrader-POI ternary complex may influence degradation kinetics and selectivity, 

and may be a more reliable predictor for degradation than target engagement alone 

(Bondeson et al., 2018; Roy et al., 2019). To compare ternary complex formation to both 

target engagement and degradation across the kinome, and scaffolds, we experimentally 

assessed the breadth of kinases that form complexes with CRBN in the presence of our 
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4 selected multi-kinase targeting degraders (Figure 4A,B; Figure S3B). We performed 

cellular affinity purification followed by mass spectrometry (AP-MS) of FLAG-tagged 

CRBN, and the degree of kinase target enrichment was compared to kinase degradation 

hits in matched global proteomics experiments (Figure 3A, C). The proteins identified as 

complexed with CRBN were enriched for kinases as well as their known binding partners 

such as Cyclin B (CDK1) and RASSF1 (STK4), consistent with the binding profiles of the 

assayed degraders. All kinases identified by AP-MS except CSNK1A1 were also detected in 

the global degradation profiling, allowing us to interrogate trends across 52 unique kinases 

(Figure 4A; Figure S3B; Table S6). Limitations of this experiment include the potential 

loss of transient or weakly bound complexes in the enrichment and subsequent wash steps, 

the inherent noise associated with AP-MS relative to global proteomics analysis (Dunham 

et al., 2012; Yugandhar et al., 2019) and the short time point of the experiment, which 

precludes detection of degradation events with slow kinetics. Therefore, we focus here on 

the relationship between the formation of abundant, stable ternary complexes and rapid 

degradation.

We found instances where a kinase enriched in the AP-MS experiment was degraded in 

the corresponding global proteomics profiling for every compound. However, overall a low 

proportion of the degraded kinases for each molecule formed detectable ternary complexes 

in our experiment (Figure 4B; Table S4, 6). For the two molecules with the highest number 

of degradation targets (DB0646, SK-3–91), we observed fewer enriched proteins in the 

CRBN AP-MS, relative to SB1-G-187 and WH-10417–099. We hypothesize that this may 

be because these degraders form low levels of stable unique ternary complexes with multiple 

kinase partners, which dilutes the enrichment of many targets to immeasurable levels, or 
these degraders form transient, unstable, but highly productive ternary complexes that are 

unable to be captured in AP-MS experiments, indicating the rapid activity of DB0646 and 

SK-3–91 against their kinase targets, relative to SB1- G-187 and WH-10417–099, is driven 

by their ability to induce more effective degradation catalysis, rather than induce higher 

levels of stable complex formation with their targets,.

Although ternary complex formation is a mechanistic requirement of TPD, the frequency 

with which effective complex formation results in productive degradation, is poorly 

understood. In our experiment we observed evidence of the formation of both productive 

and unproductive ternary complexes with all compounds (Figure 4A; Figure S3B; Table 

S6). For YES1, IRAK1 and LYN, complex formation and degradation are sometimes 

detected together (YES1: DB0646, SB1-G-187. IRAK1, LYN: SB1-G-187), but complex 

formation does not predict degradation (YES1: SK-3–91, IRAK1: WH-10417–099). These 

data indicate that kinases have high compatibility for degrader induced binding with CRBN, 

but that different complexes differ in their ability to efficiently catalyze degradation. 

Finally, we observed that BUB1 was complexed but not degraded by all 4 degraders in 

HEK293T experiments, but was degraded in 24 independent treatments across the database 

in MOLT-4 and MM.1S cell lines, including by DB0646 and SK-3–91 (Tables S3-6). Here, 

altered degradation kinetics or other cell-type related variables could be drivers of this 

discrepancy. Together, these data highlight how the complex cellular environment, and the 

substoichiometric mode of action of degraders, decouple single molecular events, such as 

the degree of stable ternary complex formation, from efficient degradation.
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Target Protein Abundance Does Not Predict Degrader Efficacy—The 

concentration of the two protein binding partners can affect ternary complex formation 

kinetics and equilibria in cells, and it has been suggested that target expression and/or 

local concentration influence target degradability (Sievers et al., 2018). To investigate 

the dependence of TPD efficiency on target expression level, we quantitatively evaluated 

the relative expression of proteins across 3 orthogonal cell lines, MOLT-4, KELLY and 

HEK293T, and profiled the 4 multi-kinase degraders in these lines (Figure 4C; Table 

S2-3). We observed differences in the number of degraded kinase targets of each molecule 

dependent on the cell line. In all cases the largest number of protein kinases per compound 

were degraded in MOLT-4 cells, followed by KELLY and HEK293T (Figure S3C). 

Encouragingly, the target overlap across cell lines was good, with ~ 50% of the hits in 

MOLT-4 cells degraded in all 3 cell lines. Cell-line specific kinase hits were found for 3 of 

the 4 compounds (Figure S3C). Whilst a small number of these differences are driven by 

differences in kinase detection, globally we did not observe a linear relationship between 

protein expression and protein abundance fold change (FC) upon degrader treatment 

across the 3 cell lines (Figure 4E). We examined this relationship across the dataset, by 

calculating the frequency of degradation for each kinase profiled in MOLT-4 cells (Table 

S8). In both cases, a U-shaped relationship was observed between either max FC or 

degradation frequency and protein expression (Figure 4D), consistent with that expected 

from mathematical models of three-body binding equilibria (Douglass Jr et al., 2013). These 

data suggest it may be more challenging to rapidly degrade kinases with either very high 

or very low relative expression levels. We looked at expression levels of the previously 

identified poorly-degradable kinases. Here we found DNAPK is the most highly expressed 

kinase in MOLT-4 cells, potentially explaining its resistance to rapid degradation (Table S2).

Although target expression did not appear to be the key driver of degradation differences 

between cell lines, we hypothesized that kinase expression level may alter degradation 

kinetics. To assess this, we performed a degradation time course (1 to 12 h) in MOLT-4 cells 

treated with SK-3–91 or DB0646 (Figure S3E; Table S3-4), however no correlation between 

expression level and degradation rate was observed (Table S2).

We next examined the expression levels of the CRL4crbn E3 ligase subunits, the E2 enzyme 

UBE2G1, the p97-unfoldase, proteasome subunits and ABC drug transporters across the 3 

cell lines (Figure 4E; Table S2). Here we found expression levels of the CRL4crbn complex 

did not correlate with number of targets per compound (Figure 4E; Table S2). Finally, we 

examined the relationship between the reported protein half-life and a targets degradability. 

We utilized reported kinase half-life data from 3 independent studies, and 8 different cell 

lines or primary cell types and compared this to the totaled degradation frequency across 

our dataset (Becher et al., 2018; Mathieson et al., 2018; Zecha et al., 2018). We observed 

positive correlation between kinase half-lives reported in different studies and different cell 

types (Figure 4F; Figure S3F). A weak negative correlation was observed in the HeLa 

cell kinase half-life data, where highly degradable kinases had a lower T1/2 (Figure 4F). 

No correlation was present between kinase half-life and either degradation frequency or 

maximal protein abundance fold change in response to degraders in all other cell types 
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(Figure 4F; Figure S3F), leading us to conclude that endogenous protein turnover rate is 

unrelated to TPD tractability.

Varying the Recruited E3 Ligase Can Influence Degrader Target Space—The 

propensity of different E3 ligases to ubiquitinate specific proteins has been reported to vary 

in the literature (Bondeson et al., 2018; Smith et al., 2019) and variation is attributed to 

the unique protein-protein interactions that may form between the E3 ligase and target. To 

assess the impact of altering the target scaffold on the ability of the E3 ligase to influence 

accessible target scope (Bondeson et al., 2018), we compared the degradation profiles of 

three matched pairs of multitargeted kinase degraders in MOLT-4 cells. Each of the pairs 

contained the same kinase targeting ligand (either a thienopyrimidine, desmethoxy-TAE684, 

or GNF-7) and either a CRBN or a VHL binding moiety, enabling an evaluation of the 

E3-ligase preference of 86 degraded kinases (Figure 5, Table S9).

The CRBN and VHL ligands have distinct chemical properties (Table S9). To rule out 

differences in cell permeability as a cause for observed differences in target scope, we tested 

these six degraders in intracellular E3 ligase engagement assays. Side-by-side comparison 

of each of the matched pairs of degrader molecules revealed only minor differences (Figure 

S4A-C), with the exception of the desmethoxy-TAE684 based degraders where the CRBN-

based degrader was significantly more cell permeable (Figure S4C).

By altering the ligase recruited, the kinases accessible using these three scaffolds expanded. 

Seventy unique kinases were degraded by at least one of the three CRBN-recruiting 

degraders. Upon inclusion of the VHL-recruiting pairs, we identified an additional 16 

degraded kinases, corresponding to a 23% increase in kinases targeted. Encouragingly, 50 

kinases were degradable by either CRBN or VHL ligase (Figure 5D; Table S9). We assessed 

whether the nature of the target recruiting ligand impacted the observed ligase preference. 

We found that a number of kinases showed the same ligase preference across more than one 

pair, and this preference held true across the entire degradable kinome database, for example 

MAP3K11 and SRC, which despite being targeted by many different compounds (8 and 14 

respectively), were found to be degraded exclusively by CRBN-recruiting degraders (Table 

S9).

In addition to highlighting kinases that are exclusively targeted by one E3 ligase over 

another, we can also use this dataset to assist with compound design and synthetic 

prioritization by extracting information about which ligase may be more effective at 

degrading specific targets. Such as NEK9, which is degradable by both ligases but clearly 

favors CRBN (Figure 5A; Figure S4B, C). Utilizing direct comparisons of CRBN and VHL 

degrader pairs with three different kinase targeting scaffolds we quantified the magnitude of 

effect that can be achieved by the addition of another E3 ligase to the TPD toolbox (23% 

increase in degraded kinases) and provide additional evidence that expanding the number of 

ligandable E3-ligases may significantly expand the degradable target space, thus justifying 

efforts towards developing new E3-targeting molecules. In addition, this dataset delivers 

critical insights into E3 ligase preferences for over 80 protein kinases which is valuable 

information for assisting the initial design of new degrader molecules.
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Protein Kinases and IMiD Off-Targets Have Varied Tolerance for Subtle 
Changes in Linker Design—Changes to linker length have proven to significantly alter 

the selectivity profile of degraders, such as the transformation of a pan-BET degrader to 

a BRD4 selective degrader (Nowak et al., 2018). Using post hoc PPI docking, it was 

rationalized that the observed differences in selectivity were likely due to differences in the 

ternary complex conformations available.

To systematically assess the importance of subtle linker differences more broadly, we 

synthesized six multitargeted kinase degraders designed to cover the linker space and E3 

binding exit vector around the previously published TL12–186 degrader (Huang et al., 2018) 

(Figure 6A). These compounds were profiled to confirm comparable intracellular CRBN 

engagement across the series (Figure 6B). We found that of the 26 kinases degraded, a 

subset showed comparable degradation across all 6 compounds suggesting that they are 

highly tolerant of linker alterations (Figure 6C; Table S3-4) and indicating that these specific 

kinases may have the ability to adopt multiple productive complex conformations with 

CRBN. This set is enriched for kinases found to be highly degradable across the dataset, 

suggesting that the plasticity of the ternary complex may be an important feature of highly 

degradable targets.

Analysis of the data revealed that the number of kinase targets decreased with increasing 

linker length - PEG1 (25), PEG2 (23) and PEG3 (18) (Figure 6C; Table S10). This 

is surprising because multiple use cases have reported that longer linkers can be more 

productive at forming ternary complexes and inducing degradation than their shorter 

counterparts (Chan et al., 2018; Zorba et al., 2018), highlighting the difficulty in 

extrapolating TPD design rules across different E3 ligase-target pairs. In our data, a subset 

of kinases had strong linker preferences, ranging from preference for a specific molecule 

(CSK, CDK9), preference for short linker (ABL2, CDK4, CDK5, CDK12 and LIMK2), 

or specific linker-attachment regioselectivity (CDK7, AAK1, BLK). In the absence of 

empirical data, or yet-to-be developed predictive models, linker exploration by extensive 

analog synthesis may be required to find compounds active toward the subset of kinases 

with narrow linker SAR. Another aspect of target specificity that has shown to be amenable 

to manipulation of the linker exit vector is the degradation of IMiD targets, a consequence 

of using IMiD molecules to recruit CRBN. Direct comparison of the expression of known 

IMiD targets in response to these degraders provided insights into the linker structure 

activity relationships (SAR) for this family of off-targets, revealing that ZNF653 and IKZF1 

clearly favor ortho-linked degraders, whereas RNF166 favors meta-linked degraders (Figure 

6D, Table S10).

Previous studies have shown that a nitrogen to oxygen modification on the thalidomide aryl 

attachment point can reduce or remove IMiD off-target effects in BTK and CDK4/6 targeted 

degraders (Dobrovolsky et al., 2019; Jiang et al., 2019). To assess the applicability of this 

design feature to a broad target and scaffold scope, we assessed the propensity of the 68 

CRBN-recruiting degraders in this database to degrade known IMiD targets (Donovan et al., 

2018; Sievers et al., 2018). Consistent with previous reports, we found that all 34 degraders 

containing an aryl amine exit vector, were able to induce degradation of at least one, but in 

most cases several, IMiD targets. Surprisingly, the majority of aryl ether linked degraders 
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also induced degradation of IMiD targets. However, 19 of the 25 CRBN-recruiting degraders 

with an aryl oxy acetamide conjugation to linker showed no degradation of IMiD off-targets, 

highlighting this as a preferred linker-attachment chemistry for selective degraders (Figure 

6E).

Proteasomal Degradation of Most Kinases is p97 Dependent—AAA+ ATPase 

p97 unfoldase activity has been demonstrated to be necessary for extracting a subset of 

proteins marked for degradation from multi-protein complexes, chromatin, or membrane 

bound complexes (Ramadan et al., 2007; Shcherbik and Haines, 2007; Verma et al., 2011). 

However, it is unclear what factors determine whether degradation of a ubiquitinated 

protein occurs in a p97 dependent, or independent manner. The ability to induce rapid 

polyubiquitination of large numbers of kinases with multitargeted degraders provided an 

opportunity to examine whether degradation of protein kinases is p97 dependent, and if this 

dependency changes with differences in recruited E3 ligase.

To assess p97 dependence across the kinome we measured changes in protein abundance 

in response to treatment with each of the four multi-kinase targeting degraders alone and 

compared to co-treatment with the p97 inhibitor CB-5083 (Table S3). Analysis of the 

four treatment groups revealed that almost all of the kinases downregulated in response to 

degrader treatment show some degradation rescue when p97 is inhibited (Figure 7A; Figure 

S5A). Given the major role of p97 in regulating cellular protein degradation, we sought 

to rule out the possibility of indirect effects of p97 inhibition contributing to the observed 

p97-dependent degradation rescue. To thoroughly test the global proteome response to p97 

inhibition, we performed protein expression measurements after a time course (20 min to 6 

h) of p97 inhibition (Table S3). Analysis of protein expression of the top kinase hits from 

each experiment revealed that expression levels were stable over 6 h, confirming that in 

absence of degrader, p97 inhibition does not cause global blocking of kinase degradation 

(Figure 7B). In addition, we confirmed that the proposed p97 dependence is independent 

of the ligase responsible for mediating ubiquitination by comparing results from three 

GNF-7-based multitargeted kinase degraders that recruit different E3 ligases (CRBN, VHL 

or IAP) (Figures 7C, D; Figure S5B).

Taken together, our results suggest that the role of p97 in the handover of substrates to the 

proteasome goes beyond the extraction of proteins from large cellular structures, but also 

includes unfolding soluble polyubiquitinated proteins, such as the diverse array of protein 

kinases.

DISCUSSION

Targeted protein degradation is a rapidly growing area of interest, yet degrader development 

remains empirical (Kostic and Jones, 2020). In this study we applied a broad analysis of the 

degradability of the kinome to address the current lack of datasets from which to extract 

general features of TPD-mediated degradation. We combined a curated library of degraders, 

with mass spectrometry-based quantitative proteomics to map the degradability of more than 

200 kinases across 7 different cell lines.
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Many of the degraders characterized here represent valuable initial leads for the 

development of selective degrader chemical probes for understudied kinases (Oprea et 

al., 2018). Strikingly, we found active degrader molecules for more than 16 understudied 

kinases including two potent and selective degraders for CDK17. The kinase ligand in these 

two molecules is dabrafenib (Tafinlar), an approved inhibitor of BRAF V600E mutations 

in patients with malignant melanoma. Given that dabrafenib is commonly described as 

a BRAF selective molecule (Rheault et al., 2013), it is extremely unlikely that it would 

feature on the list of initial ligands for beginning a CDK17 selective degrader campaign, 

yet the selectivity and potency of DD-03–156 is exquisite and would make an advanced 

starting point for the development of a chemical probe for the degradation of CDK17. 

This example illustrates how the additional constraints required for degradation can lead 

to dramatically altered selectivity in the degrader relative to a parental inhibitor, and 

the significant benefit that informed scaffold selection can have for the identification of 

starting chemistry and degrader design. Whilst the inhibition profile of kinase binders will 

likely contribute to phenotypic effects of selective degraders developed from multitargeted 

inhibitors at high doses, the substoichiometric and irreversible nature of degraders means 

that it is feasible to optimize degraders to achieve complete target depletion at cellular 

concentrations below those required for measurable target occupancy (Olson et al., 2018). 

One of the largest challenges in the use of degrader technology is the length of the resource-

intensive discovery phase (Burslem and Crews, 2020). So far, a number of potential trends 

or observations to guide rational degrader design have been reported, often only backed by 

a few exemplified molecules and targets. With the large dataset presented here, we observed 

that many factors typically considered important, such as linker length, ligase binding 

moiety, cellular target occupancy, ternary complex formation or target expression level, 

play a surprisingly inconsistent role in the efficacy of degraders for kinases, highlighting 

the need for data-driven approaches. We were able to successfully sort kinases according 

to how they are affected by each of these variables, and this experimentally-determined 

categorization will prove crucial for the design of optimization workflows and synthetic 

prioritization. For example, while we can generally conclude that cellular target engagement 

is not a good predictor of degrader efficacy, suggesting a catalytic mechanism uncoupled 

from primary affinities, we also discovered kinases where an affinity threshold must be met 

for degradation, such as GCK. We found evidence of both productive and unproductive 

degrader induced ternary complex formation with CRBN, and observe that many kinases are 

degraded even though they do not form detectable ternary complexes, indicating transient 

or low abundance complexes can result in efficient degradation. While many targets can be 

degraded with both CRBN and VHL targeting degraders, a significant number show clear 

preferential compatibility with one over the other. We observed differences in the target 

profile of compounds when tested in MOLT-4, KELLY or HEK293T cells, and ruled out 

target expression levels as the determining factors driving these differences. We conclude 

that the downregulated targets of degraders should be characterized in the cellular or in 
vivo systems in which their effects will be studied. Furthermore, we found the effects 

of linker composition differences on degradation are highly variable across the kinome. 

High linker-variant tolerance was observed for the most degradable kinases, indicating that 

these proteins can form a range of productive ternary complex conformations with CRBN. 

Together our conclusions underline the complexity of the degradation-based mechanism 
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of action, and the importance of creating and expanding systematic resources. Crucially, 

the database includes negative data, which although often overlooked and underreported is 

critical for accelerating degrader discovery in the broader community.

Technological advances often facilitate new biological discoveries (Botstein, 2010). We 

demonstrate that this database can serve as a rich source of small molecule tools with which 

to study the basic biology of the ubiquitin proteasome system (UPS), by interrogating 

the role of the AAA+-ATPase p97. Our observations suggest that the majority of the 

degradable kinome is processed in a p97-dependent fashion, and that this dependence occurs 

irrespective of the E3 ligase recruited (CRBN, VHL and IAP). Although much still remains 

to be understood about the role of p97 in facilitating the proteasomal degradation of kinases, 

this study demonstrates how our collection of multitargeted degraders can be harnessed to 

reveal effects of perturbations to the UPS on protein degradation across gene families.

A limitation of our approach is that it informs on TPD in the context of degraders developed 

from reported kinase binders and commonly employed linkers and E3-recruiting ligands, 

of which it is implausible to generate all possible variants. In addition, these degraders are 

tested in the biological setting of immortalized cancer cell lines. These variables were all 

found to dramatically influence the degradation of specific targets, and it is probable that 

there are more discoveries to be made by expanding beyond the scope of this study. Hence, 

we envision the degradable kinome database as a living resource that will continue to expand 

as new results become available. We anticipate this large dataset will accelerate development 

not only of degrader chemical probes and clinically relevant lead compounds across the 

kinome, but also of informatics and molecular modeling-based approaches that may lead to 

improved prediction of degradation activity and rational design of these bifunctional entities.

STAR★Methods

RESOURCES AVAILABILITY

Lead Contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the Lead Contact, Eric Fischer 

(Eric_Fischer@DFCI.HARVARD.EDU).

Materials Availability—Small molecules described in this study will be made available on 

request, upon completion of a Materials Transfer Agreement.

Data and Code Availability—The raw proteomics datasets generated during this study 

are available at PRIDE accession: PXD019142; PXD019143; PXD019144; PXD019242; 

PXD019168; PXD019167; PXD019166; PXD019164; PXD019165; PXD019171; 

PXD021255; PXD021313; PXD021242.

Proteomics data generated during this study are also available in our custom online database 

webtool: http://proteomics.fischerlab.org.

The RNA sequencing data generated during this study is available at GEO accession: 

GSE157560.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture—All cells were grown in a 37 °C incubator with 5% CO2.

HEK293T cells: Human embryonic kidney cells (fetus) were cultured in DMEM media 

supplemented with 10% fetal bovine serum.

MOLT-4 cells: Human T lymphoblastic cells from acute lymphoblastic leukemia (male, 19 

yr) were cultured in RPMI-1640 media supplemented with 10% fetal bovine serum.

MM. 1S cells: Human B lymphoblastic cells from immunoglobulin A lambda myeloma 

(female, 42 yr) were cultured in RPMI-1640 media supplemented with 10% fetal bovine 

serum.

KELLY cells: Human brain cells from neuroblastoma were cultured in RPMI-1640 media 

supplemented with 10% fetal bovine serum.

OVCAR-8 cells: Human ovarian cells from ovarian carcinoma (female, 64 yr) were 

cultured in RPMI-1640 media supplemented with 10% fetal bovine serum.

Mino cells: Human lymphoblastic cells from mantle cell lymphoma (male, 64 yr) were 

cultured in RPMI-1640 media supplemented with 15% fetal bovine serum.

KATO III cells: Human stomach cells from gastric carcinoma (male, 55 yr) were cultured 

in IMDM media supplemented with 20% fetal bovine serum.

METHOD DETAILS

Competitive displacement assay for cellular CRBN and VHL engagement—
HEK293T cells stably expressing the BRD4BD2-GFP with mCherry reporter were seeded 

at 30 – 50% confluency in 384-well plates with 50 μL FluoroBrite DMEM media (Thermo 

Fisher Scientific A18967) containing 10% FBS per well a day before compound treatment. 

Degrader titrations and 100 nM dBET6 or 250 nM AT1 were dispensed using a D300e 

Digital Dispenser (HP), normalized to 0.5% DMSO, and incubated with cells for 5 h. Assay 

plates were imaged using Acumen (TTP Labtech) as described above. Experiments were 

performed in triplicates and the values for the concentrations that lead to a 50% increase in 

BRD4BD2-eGFP accumulation (EC50) were calculated using the nonlinear fit variable slope 

model (GraphPad Software).

CellTiter-Glo Viability Assay—MM1.S (purchased from ATCC) was seeded in a 96-well 

microplate at 10,000 cells per well in RPMI-1640 media supplemented with 10% FBS 

and incubated with compounds (final DMSO concentration at 0.1%). Relative cell viability 

was measured 72 h after addition of drug using CellTiter-Glo (Promega) according to the 

manufacturer’s protocol. Each analysis was performed in biological triplicate.

KiNativ Live Cell Profiling Protocol—CRBN−/− MOLT-4 cells were plated in fresh 

media (RPMI-1640 + 10% FBS) in 15 cm plates and treated for 5 h with candidate 

compounds. To harvest cells, plates were harvested using detachment using CellStripper 
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detachment solution (Corning) and washed twice with cold PBS, followed by centrifugation 

and snap-freezing of cell pellets in liquid nitrogen. The remainder of the KiNativ profiling 

experiment was performed by ActivX Biosciences (La Jolla, CA).

RNA Sequencing—MOLT-4 cells were seeded into 24 T25 flasks with 10 mL of culture 

at 106 cells/mL prior to compound treatment. Cells were treated in four replicates each 

with either 0.05% DMSO or 1 μM SK-3–91 for a total duration of 1, 2, 4 or 8 h. 

Cells were harvested using CellStripper Dissociation reagent (Corning), washed twice 

with PBS, followed by snap freezing in liquid nitrogen. Total RNA was isolated from 

cell pellets using the RNeasy Mini Kit (Qiagen) following the manufacturer’s directions. 

For quality control, RNA concentration and rRNA ratio (28S/18S) were measured using 

an Agilent 2100 Bioanalyzer. Samples were submitted to BGI Group for RNA-seq 

library preparation and Next Generation Sequencing using the BGISEQ-500 platform 

producing 50 base-pair single-end reads. Sequencing reads were aligned to the human 

genome (BSgenome.Hsapiens.UCSC.hg19 Bioconductor package, using splicedAlignment 

= FALSE) and quantified at the level of genes (TxDb.Hsapiens.UCSC.hg19.knownGene 

Bioconductor package) using the QuasR package with default parameters (Gaidatzis et al., 

2015). Expressed genes were identified using the edgeR Bioconductor package (Robinson et 

al., 2010).

Immunoblots—Cells were treated with indicated compounds and doses for 4 h and 

washed once with cold PBS. Cells were lysed in an NP40 buffer (50 mM Tris-HCl pH 

7.5, 1% NP40, 1 mM EDTA, 150 mM NaCl, 5 mM Na3VO4 and 2.5 mM NaF) containing 

a protease inhibitor cocktail (Roche, 11873580001) or a triton buffer (20 mM Tris HCl pH 

7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 

1mM β-glycerophosphate, 1 mM Na3VO4, 1 μg/ml leupeptin) containing halt protease and 

phosphatase inhibitor cocktail (Thermo Fisher Scientific, 78442). Protein quantification 

was performed using Pierce BCA Protein Assay (Life Technologies). Equal amounts of 

each lysate were loaded and separated on a 8% SDS-PAGE gel and transferred to PVDF 

membrane. All primary antibodies were diluted in TBS containing 0.05% Tween-20 were 

incubated overnight. After three washes with TBS-T, secondary antibodies were incubated 

for 1 h. The ECL (Enhanced ChemiLuminescence solution) (Lugen LGW-P1001, Korea) 

was dropped on the membrane and exposed to X-ray film (Agfa, Japan).

Affinity purification TMT LC-MS3 mass spectrometry—HEK293T cells were 

seeded into 15 cm plates and cells were transiently transfected with 8 μg of pNTM-FLAG-

CRBN construct using lipofectamine 2000. 30 h post transfection, cells were co-treated 

for 5 h with 0.1 μM bortezomib and 1 μM of either SK-3–91, DB0646, SB1-G-187, 

WH-10417099 in biological triplicates or pomalidomide or DMSO control in biological 

duplicates. Cells were harvested with non-enzymatic CellStripper Dissociation reagent 

(Corning), followed by three washes with cold PBS and snap freezing. Cell lysis was 

performed by the addition of IP lysis buffer (50 mM Tris, pH 7.5, 0.5% NP-40, 1 mM 

EDTA, 10% glycerol and 200 mM NaCl) containing protease inhibitor cocktail (cOmplete) 

and relevant co-treatment (above), followed by end-over-end rotation at 4 °C for 3 h. Lysate 

was clarified by centrifugation and salt concentration diluted to 100 mM NaCl with the 

Donovan et al. Page 18

Cell. Author manuscript; available in PMC 2023 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



addition of 0 mM NaCl lysis buffer (containing protease inhibitors and 1 μM of relevant 

compounds to retain ternary complexes throughout binding). Lysate was added to 20 μL 

of pre-washed anti-FLAG M2 magnetic bead slurry (Millipore Sigma) and incubated with 

end-over-end rotation at 4 °C overnight. Beads were washed six times with 100 mM NaCl 

lysis buffer containing 1 μM of relevant degraders to retain ternary complexes throughout 

wash steps. Proteins were eluted in a two-step elution with the addition of 0.1 M Glycine 

hydrochloride (Millipore Sigma) and elution buffered to pH 8.5 using 200 mM Tris buffer, 

pH 8.5.

Protein eluates were reduced, alkylated and precipitated using methanol/chloroform as 

previously described (Donovan et al., 2018) and the resulting washed precipitated protein 

was allowed to air dry. Protein pellets were resuspended in 50 μL of EPPs pH 8 and first 

digested with 2 μg LysC for 12 h at room temperature (RT), followed by 1 jg of trypsin for 

6 h at 37 °C. Tandem mass tag (TMT) reagents (Thermo Fisher Scientific) were dissolved 

in anhydrous acetonitrile (ACN) according to manufacturer’s instructions. Anhydrous ACN 

was added to each peptide sample to a final concentration of 30% v/v, and labeling was 

induced with the addition of 4 μL of TMT reagent to each sample. The 16-plex labeling 

reactions were performed for 1 h at RT and the reaction quenched by the addition of 

hydroxylamine to a final concentration of 0.3% for 15 minutes at RT. Each of the sample 

channels were combined in a 1:1 ratio, desalted using C18 solid phase extraction plates 

(SOLA, Thermo Fisher Scientific) and analyzed by LC-MS.

Sample preparation TMT LC-MS3 mass spectrometry—Cells were treated with 

DMSO (biological triplicate) or degrader at indicated dose and time (Table S1) and cells 

were harvested by centrifugation. Lysis buffer (8 M Urea, 50 mM NaCl, 50 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (EPPS) pH 8.5, Protease and Phosphatase 

inhibitors) was added to the cell pellets and homogenized by 20 passes through a 21-gauge 

(1.25 in. long) needle to achieve a cell lysate with a protein concentration between 1 – 

4 mg/mL. A bradford (Bio-Rad) was used to determine the final protein concentration 

in the cell lysate. 100 – 200 μg of protein for each sample was reduced, alkylated and 

precipitated using methanol/chloroform as previously described (Donovan et al., 2018) and 

the resulting washed precipitated protein was allowed to air dry. Precipitated protein was 

resuspended in 4 M Urea, 50 mM HEPES pH 7.4, followed by dilution to 1 M urea 

with the addition of 200 mM EPPS, pH 8. Proteins were first digested with LysC (1:50; 

enzyme:protein) for 12 h at RT. The LysC digestion was diluted to 0.5 M Urea with 

200 mM EPPS pH 8 followed by digestion with trypsin (1:50; enzyme:protein) for 6 h 

at 37 °C. Tandem mass tag (TMT) reagents (Thermo Fisher Scientific) were dissolved in 

anhydrous acetonitrile (ACN) according to manufacturer’s instructions. Anhydrous ACN 

was added to each peptide sample to a final concentration of 30% v/v, and labeling was 

induced with the addition of TMT reagent to each sample at a ratio of 1:4 peptide:TMT 

label. The 10, 11 or 16-plex labeling reactions were performed for 1.5 h at RT and the 

reaction quenched by the addition of hydroxylamine to a final concentration of 0.3% for 15 

minutes at RT. Each of the sample channels were combined in a 1:1 ratio, desalted using 

C18 solid phase extraction cartridges (Waters) and analyzed by LC-MS for channel ratio 

comparison. Samples were then combined using the adjusted volumes determined in the 
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channel ratio analysis and dried down in a speed vacuum. The combined sample was then 

resuspended in 1% formic acid and acidified (pH 2 – 3) before being subjected to desalting 

with C18 SPE (Sep-Pak, Waters). Samples were then offline fractionated into 96 fractions 

by high pH reverse-phase HPLC (Agilent LC1260) through an aeris peptide xb-c18 column 

(phenomenex) with mobile phase A containing 5% acetonitrile and 10 mM NH4HCO3 in 

LC-MS grade H2O, and mobile phase B containing 90% acetonitrile and 10 mM NH4HCO3 

in LC-MS grade H2O (both pH 8.0). The 96 resulting fractions were then pooled in a non-

contiguous manner into 24 fractions and desalted using C18 solid phase extraction plates 

(SOLA, Thermo Fisher Scientific) followed by subsequent mass spectrometry analysis.

Data were collected using an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher 

Scientific, San Jose, CA, USA) coupled with a Proxeon EASY-nLC 1200 LC pump 

(Thermo Fisher Scientific) or an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Fisher 

Scientific, San Jose, CA, USA) coupled with an UltiMate 3000 RSLCnano System. Peptides 

were separated on an EasySpray ES803a/ES803a.rev2 75 μm inner diameter microcapillary 

column (Thermo Fisher Scientific) or a 100 μm inner diameter microcapillary column 

packed with ~ 50 cm of Accucore C18 resin (2.6 μM, 100 Å, Thermo Fisher Scientific). 

Peptides were separated using a 190 min gradient of 6 – 27% acetonitrile in 1.0% formic 

acid with a flow rate of 350 nL/min.

Each analysis used a MS3-based TMT method as described previously (McAlister et al., 

2014). The data were acquired using a mass range of m/z 340 – 1350, resolution 120,000, 

AGC target 5 × 105, maximum injection time 100 ms, dynamic exclusion of 120 seconds 

for the peptide measurements in the Orbitrap. Data dependent MS2 spectra were acquired 

in the ion trap with a normalized collision energy (NCE) set at 35%, AGC target set to 1.8 

× 104 and a maximum injection time of 120 ms. MS3 scans were acquired in the Orbitrap 

with HCD collision energy set to 55%, AGC target set to 2 × 105, maximum injection time 

of 150 ms, resolution at 50,000 and with a maximum synchronous precursor selection (SPS) 

precursors set to 10.

LC-MS data analysis—Proteome Discoverer 2.1, 2.2 or 2.4 (Thermo Fisher Scientific) 

was used for .RAW file processing and controlling peptide and protein level false discovery 

rates, assembling proteins from peptides, and protein quantification from peptides. MS/MS 

spectra were searched against a Uniprot human database (September 2016 or December 

2019) with both the forward and reverse sequences as well as known contaminants such as 

human keratins. Database search criteria were as follows: tryptic with two missed cleavages, 

a precursor mass tolerance of 20 ppm, fragment ion mass tolerance of 0.6 Da, static 

alkylation of cysteine (57.02146 Da), static TMT labelling of lysine residues and N-termini 

of peptides (229.16293 Da), and variable oxidation of methionine (15.99491 Da).

QUANTIFICATION AND STATISTICAL ANALYSIS

Global proteomics datasets—This manuscript contains data from 50 independent 

multiplexed (10, 11, and 16plex) global mass spectrometry experiments. Each experiment 

was fractionated and included LC/MS analysis of 24 fractions to maximize proteome 

coverage. Throughout the manuscript we refer to the ‘degradable kinome database’, 
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which contains a subset of the 50 multiplexed experiments. In this database we only 

include degrader treatments that we believe best represents direct degrader-induced target 

degradation (excluded treatments of > 8 h and treatments that induced transcriptional 

collapse to reduce misinterpretation of cellular stress and secondary effects as direct targets). 

We included 155 degrader treated samples in this database and the remaining treatments/

samples presented in the manuscript were used to probe various other aspects of TPD, e.g., 

requirement of p97 for degradation or time course of target degradation (Table S1). We 

combined the results of all treatments into one excel sheet (Table S3). Each independent 

multiplexed experiment contained three biological replicates of DMSO control treatments 

and the number of biological replicates for each sample treatment is listed in Table S1.

Protein quantification—For quantification, TMT reporter ion intensities were measured 

using a 0.003 Da window around the theoretical m/z value for each reporter ion in the 

MS3 scan and the maximum intensity peak nearest to the theoretical m/z was used for 

quantification. Following the manufacturer’s specifications, the reporter ion intensities were 

adjusted to correct for the isotopic impurities of each different TMT reagent set. Peptide 

spectral matches with poor quality MS3 spectra were excluded from quantitation (summed 

signal-to-noise across channels < 100 (Whole Proteome) or < 50 (Affinity Purification) 

and precursor isolation specificity < 0.5), and resulting data was filtered to only include 

proteins that had a minimum of 2 unique peptides quantified. Reporter ion intensities were 

normalized and scaled using in-house scripts in the R framework (R Development Core 

Team, 2014). Significant changes comparing the relative protein abundance of treatment 

samples to the DMSO control treatments were assessed by moderated t-test as implemented 

in the limma package within the R framework (Ritchie et al., 2015). A protein was 

considered a ‘hit’ if it met our pre-determined ‘hit’ threshold of P-value < 0.01 and fold 

change > 1.25.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A global map of kinase degradability provides chemical leads for > 200 

kinases.

• Open-access chemical proteomics resource (http://proteomics.fischerlab.org).

• Large scale chemical exploration of key variables for targeted protein 

degradation.

• Multi-targeted degraders uncover fundamentals of ubiquitin mediated protein 

turnover.
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Figure 1 |. An Experimental Map of the Degradable Kinome.
(A) Mode of action of targeted protein degraders. (B) Experimental approach taken in this 

study. (C) Features of the profiled degrader library. Chemical structures reported in Table 

S1. (D) Kinome tree presenting protein kinases that were significantly downregulated by 

at least one degrader. Image created using KinMap, illustration reproduced courtesy of 

Cell Signaling Technology, Inc. (www.cellsignal.com). (E) Proportion of the human protein 

kinome detected and degraded by proteomics in at least one experiment. Data reported 

in Table S1, 4. (F) Comparison of degraded kinase targets reported in the literature and 
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in this study. Literature searching was performed in PubMed, using search terms ‘kinase 

PROTAC’ and ‘kinase degrader’. Data reported in Table S5. (G) The number of independent 

compound treatments for which degradation was observed for each kinase. Inset, the top 

20 most frequently degraded kinases. (H) Comparison of kinase degradability score with 

PubMed Count and PDB count. (I) Proportion of understudied kinases, lipid kinases and 

pseudokinases detected and degraded by proteomics in at least one experiment in this 

study. Data reported in Tables S4. (J) Scatterplot displaying relative fold change in protein 

abundance following treatment of MOLT-4 cells with 1 μM DD-03–156 for 5 h. Inset, 

chemical structure of DD-03-156. Data are from n = 1 biologically independent treatment 

samples. The associated dataset is provided in Table S3-4.
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Figure 2 |. Degradable Kinome Dataset Accelerates Lead Discovery.
(A) Heatmap comparing relative fold change in protein abundance in response to treatment 

with indicated degrader (see Table S1 for treatment details and Table S3 for data). Inset, 

chemical structure of degrader DB-3-291. (B) Scatterplot displaying relative fold change 

in protein abundance following treatment of MOLT-4 cells with 1 μM DB-3-291 for 

5 h. (C) Kinome tree representing the kinase degradability (DK) score calculated for 

each of the protein kinases degraded in this study. Data reported in Table S8. Image 

created using KinMap, illustration reproduced courtesy of Cell Signaling Technology, 

Inc. (www.cellsignal.com). (D) Strategy for conversion of Alisertib into selective AURKA 

degrader dAURK-4. (E) Scatterplot depicting relative fold change in protein abundance 

following treatment of MOLT-4 cells with 1 μM dAURK-4 for 5 h. Data in B, E are from 

n = 1 biologically independent treatment samples. Associated dataset is provided in Table 

Donovan et al. Page 30

Cell. Author manuscript; available in PMC 2023 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cellsignal.com/


S3. (F) Immunoblot analysis of MM.1S cells treated with the indicated concentration of 

dAURK-4 for 4 or 24 h. Data in F are representative of n = 2 independent experiments. 

(G) DMSO-normalized antiproliferation of MM.1S cells treated with Alisertib or dAURK-4. 

Data are presented as mean ± s.d. of n = 3 biologically independent samples and are 

representative of n = 2 independent experiments.
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Figure 3 |. Cellular Target Engagement Does Not Predict Degradation Efficiency.
Multiplexed TMT-based quantitative proteomics workflow used in this study. (B) ABPP-

based KiNativ proteomics workflow used for target engagement measurements. (C) AP-

MS approach used to enrich for degrader-mediated ternary complexes with CRBN. (D) 

Chemical structures of the 4 multitargeted degrader probes. (E) Scatterplot comparing kinase 

engagement (KiNativ, B) with kinase degradation (proteomics, A). KiNativ data are from n 
= 2 technically independent samples, proteomics analysis data are from n = 1 biologically 

independent treatment samples. Associated datasets are provided in Table S3, 4, 6. Negative 
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KiNativ values were interpreted as 0% inhibition of binding. (F) Bar chart showing the 

proportion of degraded kinase targets for which detectable target engagement (TE, > 35% 

inhibition of binding) and degradation (FC > 1.25, P-value < 0.01) were observed for the 4 

compounds tested.
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Figure 4 |. Effects of ternary complex formation and target protein abundance on degrader 
efficacy.
(A) Left. Scatterplot depicts relative fold change in protein abundance following treatment 

of HEK293T cells (See Fig. 3A). Right. Rank order plot showing the ranked relative 

abundance ratios of enriched proteins in FLAG-CRBN AP-MS experiments from HEK293T 

cells (see Fig. 3C). Data in scatterplots are from n = 2 biologically independent treatment 

samples. Data in rank order plots are from n = 3 biologically independent treatment samples. 

Associated datasets are provided in Tables S3, 7, 6. (B) Bar chart depicting the proportion 

of targets complexed and degraded by the indicated compounds. (C) Venn diagrams showing 
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number of unique and overlapping kinase hits found for each compound in MOLT-4 

(blue), KELLY (orange) and HEK293T (gray) cells. (D) Kinome wide comparison of the 

degradation frequency and the relative protein abundance in MOLT-4 cells. (E) Bar plot 

showing the average relative expression the indicated proteins (left) and number of kinases 

degraded by the indicated degraders (right) in MOLT-4, KELLY and HEK293T cells. 

Average abundance measurements were derived from n = 2 independent biological samples. 

Associated datasets are provided in Tables S2. (F) Correlation of kinase degradability score 

and reported protein half-life in listed cell types.
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Figure 5 |. Varying the target recruiting ligase can influence degrader selectivity.
(A-C) Chemical structures and scatterplot log2 FC pairwise comparisons from treatment 

with VHL vs CRBN degrader pairs. Relative fold change in protein abundance 

measurements were determined from global quantitative proteomics experiments (Fig. 3C). 

Quantitative proteomics analysis data are from n = 2 biologically independent treatment 

samples. (D) Venn diagram illustrating the target overlap for the aggregated data in A, for 

lists see Table S9.
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Figure 6 |. Protein kinases and IMiD off-target proteins have varied tolerance for subtle changes 
in linker design.
(A) Chemical structures of the compounds evaluated. (B) Intracellular ligase engagement 

assay. Data are represented as means ± s.d of n = 3 biologically independent replicates. 

(C, D) Heatmap showing log2 FC of (C) kinases, (D) known IMiD targets determined to 

be hits (FC >1.25 and P-value <0.01) following a 5 h treatment of MOLT-4 cells with 0.1 

μM of the indicated compounds. (E) Split bar plot showing the number of CRBN-recruiting 

degraders found to hit at least one known IMiD off-target compared to the number that do 

not hit IMiD off-targets. CRBN-recruiting degraders are categorized according their linker 

attachment chemistry. Associated dataset is provided in Table S10.
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Figure 7 |. Proteasomal degradation of most kinases is p97 dependent.
(A) Scatterplots depicting the fold change in relative abundance following a 5 h treatment 

of MOLT-4 cells with 1 μM of the indicated compounds with (blue) and without (orange) 

co-treatment with 5 μM of p97 inhibitor CB-5083. Relative expression data are derived 

from n = 2 biologically independent treatment. Datasets are provided in Table S3. (B) 

Bar chart comparing the relative protein abundance of the top 5 degraded kinases from 

each of the indicated treatments in A. Bars indicate relative protein expression in response 

to inhibition of p97 with 5 μM of CB-5083, over a time course experiment in MOLT-4 
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cells. Relative expression data are represented as mean ± s.d. of from n = 2 biologically 

independent treatment. (C) Chemical structures of GNF7-based kinase degraders utilizing 

either a CRBN, VHL or IAP binding moiety. (D) As in A but for compounds indicated in C. 

(A-D) Datasets are provided in Table S3.

Donovan et al. Page 39

Cell. Author manuscript; available in PMC 2023 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Donovan et al. Page 40

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Tandem Mass Tag (TMT) Reagents Thermo Fisher Scientific Cat# A90406 
Cat# 4808 
Cat# A44520

Pierce BCA Protein Assay Kit Life Technologies Cat# 23225

RNeasy Mini Kit Qiagen Cat# 74136

KiNativ ActivX Biosciences http://www.kinativ.com/

CellTiter-Glo Promega Cat# G7570

Chemicals, Peptides, and Recombinant Proteins

CB-5083 Med Chem Express HY-12861

complete, Mini Protease Inhibitor Cocktail Sigma-Aldrich Cat# 11836153001

PhosSTOP Phosphatase Inhibitor Tablets Sigma-Aldrich Cat# 04906837001

Halt Protease and Phosphatase Inhibitor Single-
Use Cocktail

Thermo Fisher Scientific Cat# 78442

dBET6 Gray Lab N/A

AT1 Tocris Cat# 6356

BRD4BD2-GFP-P2a-mCherry Fischer Lab
Nowak et al. (2018)
Nat. Chem. Biol.

N/A

Deposited Data

wp-esf_016 This paper PXD019142

wp-esf_103 This paper PXD019143

wp-esf_105 This paper PXD019144

wp-esf_107 This paper PXD019242

wp-esf_117 This paper PXD019168

wp-esf_131 This paper PXD019167

wp-esf_133 This paper PXD019166

wp-esf_152 This paper PXD019164

wp-esf_160 This paper PXD019165

wp-esf_168 This paper PXD019171

wp-esf_172 This paper PXD021255

wp-esf_173 This paper PXD021313

wp-esf_195 This paper PXD021242

RNA sequencing This paper GSE157560

Experimental Models: Cell Lines

HEK293T (H. sapiens) ATCC CRL-11268; 
RRID: CVCL_0063

MOLT-4 (H. sapiens) ATCC CRL-1582;
RRID: CVCL_0013

Mino (H. sapiens) ATCC CRL-3000;
RRID:CVCL_1872
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REAGENT or RESOURCE SOURCE IDENTIFIER

MM1.S (H. sapiens) ATCC CRL-2974;
RRID:CVCL_8792

OVCAR-8 (H. sapiens) Gray Lab RRID:CVCL_1629

KATO III (H. sapiens) ATCC HTB-103;
RRID:CVCL_0371

KELLY (H. sapiens) Sigma-Aldrich 92110411;
RRID:CVCL_2092

Recombinant DNA

pKD214 This paper pNTM-Flag-CRBN

Software and Algorithms

Proteome Discoverer 2.1, 2.2, 2.4 Thermo Fisher Scientific RRID: SCR_014477

R Framework Team RCR: A Language and 
Environment for Statistical Computing

http://www.R-proiect.org/

Statistical Analysis Limma Package (R 
framework)

Ritchie et al. (2015)
Nucleic Acids Res.

https://bioconductor.org/packages/release/
bioc/html/limma.html

GraphPad Prism 8 http://www.graphpad.com/

Antibodies

NEK9 (1:1,000) Santa Cruz Biotech Cat# SC-100401

GAPDH (1:5,000) Cell Signaling Cat# 5174S; RRID:AB_10622025

GAPDH (1:5,000) Santa Cruz Biotech Cat# sc-47724; RRID:AB_627678

AURKA (1:1,000) Cell Signaling Cat# D3E4Q; RRID:AB_2665504

Goat anti-Mouse IgG-HRP (1:10,000) genDEPOT Cat# SA001-500

Goat anti-Rabbit IgG-HRP (1:10,000) genDEPOT Cat# SA002-500

Anti-Flag M2 magnetic beads Millipore Sigma Cat# M8823; RRID:AB_2637089
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